opencv/modules/imgproc/src/subdivision2d.cpp
Vadim Pisarevsky 65e036fe6d fixed bug #1368
2011-09-27 15:34:39 +00:00

1495 lines
41 KiB
C++

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
CV_IMPL CvSubdiv2D *
cvCreateSubdiv2D( int subdiv_type, int header_size,
int vtx_size, int quadedge_size, CvMemStorage * storage )
{
if( !storage )
CV_Error( CV_StsNullPtr, "" );
if( header_size < (int)sizeof( CvSubdiv2D ) ||
quadedge_size < (int)sizeof( CvQuadEdge2D ) ||
vtx_size < (int)sizeof( CvSubdiv2DPoint ))
CV_Error( CV_StsBadSize, "" );
return (CvSubdiv2D *)cvCreateGraph( subdiv_type, header_size,
vtx_size, quadedge_size, storage );
}
/****************************************************************************************\
* Quad Edge algebra *
\****************************************************************************************/
static CvSubdiv2DEdge
cvSubdiv2DMakeEdge( CvSubdiv2D * subdiv )
{
if( !subdiv )
CV_Error( CV_StsNullPtr, "" );
CvQuadEdge2D* edge = (CvQuadEdge2D*)cvSetNew( (CvSet*)subdiv->edges );
memset( edge->pt, 0, sizeof( edge->pt ));
CvSubdiv2DEdge edgehandle = (CvSubdiv2DEdge) edge;
edge->next[0] = edgehandle;
edge->next[1] = edgehandle + 3;
edge->next[2] = edgehandle + 2;
edge->next[3] = edgehandle + 1;
subdiv->quad_edges++;
return edgehandle;
}
static CvSubdiv2DPoint *
cvSubdiv2DAddPoint( CvSubdiv2D * subdiv, CvPoint2D32f pt, int is_virtual )
{
CvSubdiv2DPoint* subdiv_point = (CvSubdiv2DPoint*)cvSetNew( (CvSet*)subdiv );
if( subdiv_point )
{
memset( subdiv_point, 0, subdiv->elem_size );
subdiv_point->pt = pt;
subdiv_point->first = 0;
subdiv_point->flags |= is_virtual ? CV_SUBDIV2D_VIRTUAL_POINT_FLAG : 0;
subdiv_point->id = -1;
}
return subdiv_point;
}
static void
cvSubdiv2DSplice( CvSubdiv2DEdge edgeA, CvSubdiv2DEdge edgeB )
{
CvSubdiv2DEdge *a_next = &CV_SUBDIV2D_NEXT_EDGE( edgeA );
CvSubdiv2DEdge *b_next = &CV_SUBDIV2D_NEXT_EDGE( edgeB );
CvSubdiv2DEdge a_rot = cvSubdiv2DRotateEdge( *a_next, 1 );
CvSubdiv2DEdge b_rot = cvSubdiv2DRotateEdge( *b_next, 1 );
CvSubdiv2DEdge *a_rot_next = &CV_SUBDIV2D_NEXT_EDGE( a_rot );
CvSubdiv2DEdge *b_rot_next = &CV_SUBDIV2D_NEXT_EDGE( b_rot );
CvSubdiv2DEdge t;
CV_SWAP( *a_next, *b_next, t );
CV_SWAP( *a_rot_next, *b_rot_next, t );
}
static void
cvSubdiv2DSetEdgePoints( CvSubdiv2DEdge edge,
CvSubdiv2DPoint * org_pt, CvSubdiv2DPoint * dst_pt )
{
CvQuadEdge2D *quadedge = (CvQuadEdge2D *) (edge & ~3);
if( !quadedge )
CV_Error( CV_StsNullPtr, "" );
quadedge->pt[edge & 3] = org_pt;
quadedge->pt[(edge + 2) & 3] = dst_pt;
}
static void
cvSubdiv2DDeleteEdge( CvSubdiv2D * subdiv, CvSubdiv2DEdge edge )
{
CvQuadEdge2D *quadedge = (CvQuadEdge2D *) (edge & ~3);
if( !subdiv || !quadedge )
CV_Error( CV_StsNullPtr, "" );
cvSubdiv2DSplice( edge, cvSubdiv2DGetEdge( edge, CV_PREV_AROUND_ORG ));
CvSubdiv2DEdge sym_edge = cvSubdiv2DSymEdge( edge );
cvSubdiv2DSplice( sym_edge, cvSubdiv2DGetEdge( sym_edge, CV_PREV_AROUND_ORG ));
cvSetRemoveByPtr( (CvSet*)(subdiv->edges), quadedge );
subdiv->quad_edges--;
}
static CvSubdiv2DEdge
cvSubdiv2DConnectEdges( CvSubdiv2D * subdiv, CvSubdiv2DEdge edgeA, CvSubdiv2DEdge edgeB )
{
if( !subdiv )
CV_Error( CV_StsNullPtr, "" );
CvSubdiv2DEdge new_edge = cvSubdiv2DMakeEdge( subdiv );
cvSubdiv2DSplice( new_edge, cvSubdiv2DGetEdge( edgeA, CV_NEXT_AROUND_LEFT ));
cvSubdiv2DSplice( cvSubdiv2DSymEdge( new_edge ), edgeB );
CvSubdiv2DPoint* dstA = cvSubdiv2DEdgeDst( edgeA );
CvSubdiv2DPoint* orgB = cvSubdiv2DEdgeOrg( edgeB );
cvSubdiv2DSetEdgePoints( new_edge, dstA, orgB );
return new_edge;
}
static void
cvSubdiv2DSwapEdges( CvSubdiv2DEdge edge )
{
CvSubdiv2DEdge sym_edge = cvSubdiv2DSymEdge( edge );
CvSubdiv2DEdge a = cvSubdiv2DGetEdge( edge, CV_PREV_AROUND_ORG );
CvSubdiv2DEdge b = cvSubdiv2DGetEdge( sym_edge, CV_PREV_AROUND_ORG );
CvSubdiv2DPoint *dstB, *dstA;
cvSubdiv2DSplice( edge, a );
cvSubdiv2DSplice( sym_edge, b );
dstA = cvSubdiv2DEdgeDst( a );
dstB = cvSubdiv2DEdgeDst( b );
cvSubdiv2DSetEdgePoints( edge, dstA, dstB );
cvSubdiv2DSplice( edge, cvSubdiv2DGetEdge( a, CV_NEXT_AROUND_LEFT ));
cvSubdiv2DSplice( sym_edge, cvSubdiv2DGetEdge( b, CV_NEXT_AROUND_LEFT ));
}
static int
icvIsRightOf( CvPoint2D32f& pt, CvSubdiv2DEdge edge )
{
CvSubdiv2DPoint *org = cvSubdiv2DEdgeOrg(edge), *dst = cvSubdiv2DEdgeDst(edge);
double cw_area = cvTriangleArea( pt, dst->pt, org->pt );
return (cw_area > 0) - (cw_area < 0);
}
CV_IMPL CvSubdiv2DPointLocation
cvSubdiv2DLocate( CvSubdiv2D * subdiv, CvPoint2D32f pt,
CvSubdiv2DEdge * _edge, CvSubdiv2DPoint ** _point )
{
CvSubdiv2DPoint *point = 0;
int right_of_curr = 0;
if( !subdiv )
CV_Error( CV_StsNullPtr, "" );
if( !CV_IS_SUBDIV2D(subdiv) )
CV_Error( CV_StsBadFlag, "" );
int i, max_edges = subdiv->quad_edges * 4;
CvSubdiv2DEdge edge = subdiv->recent_edge;
if( max_edges == 0 )
CV_Error( CV_StsBadSize, "" );
CV_Assert(edge != 0);
if( pt.x < subdiv->topleft.x || pt.y < subdiv->topleft.y ||
pt.x >= subdiv->bottomright.x || pt.y >= subdiv->bottomright.y )
CV_Error( CV_StsOutOfRange, "" );
CvSubdiv2DPointLocation location = CV_PTLOC_ERROR;
right_of_curr = icvIsRightOf( pt, edge );
if( right_of_curr > 0 )
{
edge = cvSubdiv2DSymEdge( edge );
right_of_curr = -right_of_curr;
}
for( i = 0; i < max_edges; i++ )
{
CvSubdiv2DEdge onext_edge = cvSubdiv2DNextEdge( edge );
CvSubdiv2DEdge dprev_edge = cvSubdiv2DGetEdge( edge, CV_PREV_AROUND_DST );
int right_of_onext = icvIsRightOf( pt, onext_edge );
int right_of_dprev = icvIsRightOf( pt, dprev_edge );
if( right_of_dprev > 0 )
{
if( right_of_onext > 0 || (right_of_onext == 0 && right_of_curr == 0) )
{
location = CV_PTLOC_INSIDE;
goto exit;
}
else
{
right_of_curr = right_of_onext;
edge = onext_edge;
}
}
else
{
if( right_of_onext > 0 )
{
if( right_of_dprev == 0 && right_of_curr == 0 )
{
location = CV_PTLOC_INSIDE;
goto exit;
}
else
{
right_of_curr = right_of_dprev;
edge = dprev_edge;
}
}
else if( right_of_curr == 0 &&
icvIsRightOf( cvSubdiv2DEdgeDst( onext_edge )->pt, edge ) >= 0 )
{
edge = cvSubdiv2DSymEdge( edge );
}
else
{
right_of_curr = right_of_onext;
edge = onext_edge;
}
}
}
exit:
subdiv->recent_edge = edge;
if( location == CV_PTLOC_INSIDE )
{
double t1, t2, t3;
CvPoint2D32f org_pt = cvSubdiv2DEdgeOrg( edge )->pt;
CvPoint2D32f dst_pt = cvSubdiv2DEdgeDst( edge )->pt;
t1 = fabs( pt.x - org_pt.x );
t1 += fabs( pt.y - org_pt.y );
t2 = fabs( pt.x - dst_pt.x );
t2 += fabs( pt.y - dst_pt.y );
t3 = fabs( org_pt.x - dst_pt.x );
t3 += fabs( org_pt.y - dst_pt.y );
if( t1 < FLT_EPSILON )
{
location = CV_PTLOC_VERTEX;
point = cvSubdiv2DEdgeOrg( edge );
edge = 0;
}
else if( t2 < FLT_EPSILON )
{
location = CV_PTLOC_VERTEX;
point = cvSubdiv2DEdgeDst( edge );
edge = 0;
}
else if( (t1 < t3 || t2 < t3) &&
fabs( cvTriangleArea( pt, org_pt, dst_pt )) < FLT_EPSILON )
{
location = CV_PTLOC_ON_EDGE;
point = 0;
}
}
if( location == CV_PTLOC_ERROR )
{
edge = 0;
point = 0;
}
if( _edge )
*_edge = edge;
if( _point )
*_point = point;
return location;
}
CV_INLINE int
icvIsPtInCircle3( CvPoint2D32f pt, CvPoint2D32f a, CvPoint2D32f b, CvPoint2D32f c )
{
const double eps = FLT_EPSILON*0.125;
double val = ((double)a.x * a.x + (double)a.y * a.y) * cvTriangleArea( b, c, pt );
val -= ((double)b.x * b.x + (double)b.y * b.y) * cvTriangleArea( a, c, pt );
val += ((double)c.x * c.x + (double)c.y * c.y) * cvTriangleArea( a, b, pt );
val -= ((double)pt.x * pt.x + (double)pt.y * pt.y) * cvTriangleArea( a, b, c );
return val > eps ? 1 : val < -eps ? -1 : 0;
}
CV_IMPL CvSubdiv2DPoint *
cvSubdivDelaunay2DInsert( CvSubdiv2D * subdiv, CvPoint2D32f pt )
{
CvSubdiv2DPoint *point = 0;
CvSubdiv2DPointLocation location = CV_PTLOC_ERROR;
CvSubdiv2DPoint *curr_point = 0, *first_point = 0;
CvSubdiv2DEdge curr_edge = 0, deleted_edge = 0, base_edge = 0;
int i, max_edges;
if( !subdiv )
CV_Error( CV_StsNullPtr, "" );
if( !CV_IS_SUBDIV2D(subdiv) )
CV_Error( CV_StsBadFlag, "" );
location = cvSubdiv2DLocate( subdiv, pt, &curr_edge, &curr_point );
switch (location)
{
case CV_PTLOC_ERROR:
CV_Error( CV_StsBadSize, "" );
case CV_PTLOC_OUTSIDE_RECT:
CV_Error( CV_StsOutOfRange, "" );
case CV_PTLOC_VERTEX:
point = curr_point;
break;
case CV_PTLOC_ON_EDGE:
deleted_edge = curr_edge;
subdiv->recent_edge = curr_edge = cvSubdiv2DGetEdge( curr_edge, CV_PREV_AROUND_ORG );
cvSubdiv2DDeleteEdge( subdiv, deleted_edge );
/* no break */
case CV_PTLOC_INSIDE:
assert( curr_edge != 0 );
subdiv->is_geometry_valid = 0;
curr_point = cvSubdiv2DAddPoint( subdiv, pt, 0 );
base_edge = cvSubdiv2DMakeEdge( subdiv );
first_point = cvSubdiv2DEdgeOrg( curr_edge );
cvSubdiv2DSetEdgePoints( base_edge, first_point, curr_point );
cvSubdiv2DSplice( base_edge, curr_edge );
do
{
base_edge = cvSubdiv2DConnectEdges( subdiv, curr_edge,
cvSubdiv2DSymEdge( base_edge ));
curr_edge = cvSubdiv2DGetEdge( base_edge, CV_PREV_AROUND_ORG );
}
while( cvSubdiv2DEdgeDst( curr_edge ) != first_point );
curr_edge = cvSubdiv2DGetEdge( base_edge, CV_PREV_AROUND_ORG );
max_edges = subdiv->quad_edges * 4;
for( i = 0; i < max_edges; i++ )
{
CvSubdiv2DPoint *temp_dst = 0, *curr_org = 0, *curr_dst = 0;
CvSubdiv2DEdge temp_edge = cvSubdiv2DGetEdge( curr_edge, CV_PREV_AROUND_ORG );
temp_dst = cvSubdiv2DEdgeDst( temp_edge );
curr_org = cvSubdiv2DEdgeOrg( curr_edge );
curr_dst = cvSubdiv2DEdgeDst( curr_edge );
if( icvIsRightOf( temp_dst->pt, curr_edge ) > 0 &&
icvIsPtInCircle3( curr_org->pt, temp_dst->pt,
curr_dst->pt, curr_point->pt ) < 0 )
{
cvSubdiv2DSwapEdges( curr_edge );
curr_edge = cvSubdiv2DGetEdge( curr_edge, CV_PREV_AROUND_ORG );
}
else if( curr_org == first_point )
{
break;
}
else
{
curr_edge = cvSubdiv2DGetEdge( cvSubdiv2DNextEdge( curr_edge ),
CV_PREV_AROUND_LEFT );
}
}
break;
default:
CV_Error_(CV_StsError, ("cvSubdiv2DLocate returned invalid location = %d", location) );
}
return curr_point;
}
CV_IMPL void
cvInitSubdivDelaunay2D( CvSubdiv2D * subdiv, CvRect rect )
{
float big_coord = 3.f * MAX( rect.width, rect.height );
CvPoint2D32f ppA, ppB, ppC;
CvSubdiv2DPoint *pA, *pB, *pC;
CvSubdiv2DEdge edge_AB, edge_BC, edge_CA;
float rx = (float) rect.x;
float ry = (float) rect.y;
if( !subdiv )
CV_Error( CV_StsNullPtr, "" );
cvClearSet( (CvSet *) (subdiv->edges) );
cvClearSet( (CvSet *) subdiv );
subdiv->quad_edges = 0;
subdiv->recent_edge = 0;
subdiv->is_geometry_valid = 0;
subdiv->topleft = cvPoint2D32f( rx, ry );
subdiv->bottomright = cvPoint2D32f( rx + rect.width, ry + rect.height );
ppA = cvPoint2D32f( rx + big_coord, ry );
ppB = cvPoint2D32f( rx, ry + big_coord );
ppC = cvPoint2D32f( rx - big_coord, ry - big_coord );
pA = cvSubdiv2DAddPoint( subdiv, ppA, 0 );
pB = cvSubdiv2DAddPoint( subdiv, ppB, 0 );
pC = cvSubdiv2DAddPoint( subdiv, ppC, 0 );
edge_AB = cvSubdiv2DMakeEdge( subdiv );
edge_BC = cvSubdiv2DMakeEdge( subdiv );
edge_CA = cvSubdiv2DMakeEdge( subdiv );
cvSubdiv2DSetEdgePoints( edge_AB, pA, pB );
cvSubdiv2DSetEdgePoints( edge_BC, pB, pC );
cvSubdiv2DSetEdgePoints( edge_CA, pC, pA );
cvSubdiv2DSplice( edge_AB, cvSubdiv2DSymEdge( edge_CA ));
cvSubdiv2DSplice( edge_BC, cvSubdiv2DSymEdge( edge_AB ));
cvSubdiv2DSplice( edge_CA, cvSubdiv2DSymEdge( edge_BC ));
subdiv->recent_edge = edge_AB;
}
CV_IMPL void
cvClearSubdivVoronoi2D( CvSubdiv2D * subdiv )
{
int elem_size;
int i, total;
CvSeqReader reader;
if( !subdiv )
CV_Error( CV_StsNullPtr, "" );
/* clear pointers to voronoi points */
total = subdiv->edges->total;
elem_size = subdiv->edges->elem_size;
cvStartReadSeq( (CvSeq *) (subdiv->edges), &reader, 0 );
for( i = 0; i < total; i++ )
{
CvQuadEdge2D *quadedge = (CvQuadEdge2D *) reader.ptr;
quadedge->pt[1] = quadedge->pt[3] = 0;
CV_NEXT_SEQ_ELEM( elem_size, reader );
}
/* remove voronoi points */
total = subdiv->total;
elem_size = subdiv->elem_size;
cvStartReadSeq( (CvSeq *) subdiv, &reader, 0 );
for( i = 0; i < total; i++ )
{
CvSubdiv2DPoint *pt = (CvSubdiv2DPoint *) reader.ptr;
/* check for virtual point. it is also check that the point exists */
if( pt->flags & CV_SUBDIV2D_VIRTUAL_POINT_FLAG )
{
cvSetRemoveByPtr( (CvSet*)subdiv, pt );
}
CV_NEXT_SEQ_ELEM( elem_size, reader );
}
subdiv->is_geometry_valid = 0;
}
CV_IMPL void
cvCalcSubdivVoronoi2D( CvSubdiv2D * subdiv )
{
CvSeqReader reader;
int i, total, elem_size;
if( !subdiv )
CV_Error( CV_StsNullPtr, "" );
/* check if it is already calculated */
if( subdiv->is_geometry_valid )
return;
total = subdiv->edges->total;
elem_size = subdiv->edges->elem_size;
cvClearSubdivVoronoi2D( subdiv );
cvStartReadSeq( (CvSeq *) (subdiv->edges), &reader, 0 );
if( total <= 3 )
return;
/* skip first three edges (bounding triangle) */
for( i = 0; i < 3; i++ )
CV_NEXT_SEQ_ELEM( elem_size, reader );
/* loop through all quad-edges */
for( ; i < total; i++ )
{
CvQuadEdge2D *quadedge = (CvQuadEdge2D *) (reader.ptr);
if( CV_IS_SET_ELEM( quadedge ))
{
CvSubdiv2DEdge edge0 = (CvSubdiv2DEdge) quadedge, edge1, edge2;
double a0, b0, c0, a1, b1, c1;
CvPoint2D32f virt_point;
CvSubdiv2DPoint *voronoi_point;
if( !quadedge->pt[3] )
{
edge1 = cvSubdiv2DGetEdge( edge0, CV_NEXT_AROUND_LEFT );
edge2 = cvSubdiv2DGetEdge( edge1, CV_NEXT_AROUND_LEFT );
icvCreateCenterNormalLine( edge0, &a0, &b0, &c0 );
icvCreateCenterNormalLine( edge1, &a1, &b1, &c1 );
icvIntersectLines3( &a0, &b0, &c0, &a1, &b1, &c1, &virt_point );
if( fabs( virt_point.x ) < FLT_MAX * 0.5 &&
fabs( virt_point.y ) < FLT_MAX * 0.5 )
{
voronoi_point = cvSubdiv2DAddPoint( subdiv, virt_point, 1 );
quadedge->pt[3] =
((CvQuadEdge2D *) (edge1 & ~3))->pt[3 - (edge1 & 2)] =
((CvQuadEdge2D *) (edge2 & ~3))->pt[3 - (edge2 & 2)] = voronoi_point;
}
}
if( !quadedge->pt[1] )
{
edge1 = cvSubdiv2DGetEdge( edge0, CV_NEXT_AROUND_RIGHT );
edge2 = cvSubdiv2DGetEdge( edge1, CV_NEXT_AROUND_RIGHT );
icvCreateCenterNormalLine( edge0, &a0, &b0, &c0 );
icvCreateCenterNormalLine( edge1, &a1, &b1, &c1 );
icvIntersectLines3( &a0, &b0, &c0, &a1, &b1, &c1, &virt_point );
if( fabs( virt_point.x ) < FLT_MAX * 0.5 &&
fabs( virt_point.y ) < FLT_MAX * 0.5 )
{
voronoi_point = cvSubdiv2DAddPoint( subdiv, virt_point, 1 );
quadedge->pt[1] =
((CvQuadEdge2D *) (edge1 & ~3))->pt[1 + (edge1 & 2)] =
((CvQuadEdge2D *) (edge2 & ~3))->pt[1 + (edge2 & 2)] = voronoi_point;
}
}
}
CV_NEXT_SEQ_ELEM( elem_size, reader );
}
subdiv->is_geometry_valid = 1;
}
static int
icvIsRightOf2( const CvPoint2D32f& pt, const CvPoint2D32f& org, const CvPoint2D32f& diff )
{
double cw_area = ((double)org.x - pt.x)*diff.y - ((double)org.y - pt.y)*diff.x;
return (cw_area > 0) - (cw_area < 0);
}
CV_IMPL CvSubdiv2DPoint*
cvFindNearestPoint2D( CvSubdiv2D* subdiv, CvPoint2D32f pt )
{
CvSubdiv2DPoint* point = 0;
CvPoint2D32f start;
CvPoint2D32f diff;
CvSubdiv2DPointLocation loc;
CvSubdiv2DEdge edge;
int i;
if( !subdiv )
CV_Error( CV_StsNullPtr, "" );
if( !CV_IS_SUBDIV2D( subdiv ))
CV_Error( CV_StsNullPtr, "" );
if( subdiv->edges->active_count <= 3 )
return 0;
if( !subdiv->is_geometry_valid )
cvCalcSubdivVoronoi2D( subdiv );
loc = cvSubdiv2DLocate( subdiv, pt, &edge, &point );
switch( loc )
{
case CV_PTLOC_ON_EDGE:
case CV_PTLOC_INSIDE:
break;
default:
return point;
}
point = 0;
start = cvSubdiv2DEdgeOrg( edge )->pt;
diff.x = pt.x - start.x;
diff.y = pt.y - start.y;
edge = cvSubdiv2DRotateEdge( edge, 1 );
for( i = 0; i < subdiv->total; i++ )
{
CvPoint2D32f t;
for(;;)
{
assert( cvSubdiv2DEdgeDst( edge ));
t = cvSubdiv2DEdgeDst( edge )->pt;
if( icvIsRightOf2( t, start, diff ) >= 0 )
break;
edge = cvSubdiv2DGetEdge( edge, CV_NEXT_AROUND_LEFT );
}
for(;;)
{
assert( cvSubdiv2DEdgeOrg( edge ));
t = cvSubdiv2DEdgeOrg( edge )->pt;
if( icvIsRightOf2( t, start, diff ) < 0 )
break;
edge = cvSubdiv2DGetEdge( edge, CV_PREV_AROUND_LEFT );
}
{
CvPoint2D32f tempDiff = cvSubdiv2DEdgeDst( edge )->pt;
t = cvSubdiv2DEdgeOrg( edge )->pt;
tempDiff.x -= t.x;
tempDiff.y -= t.y;
if( icvIsRightOf2( pt, t, tempDiff ) >= 0 )
{
point = cvSubdiv2DEdgeOrg( cvSubdiv2DRotateEdge( edge, 3 ));
break;
}
}
edge = cvSubdiv2DSymEdge( edge );
}
return point;
}
namespace cv
{
int Subdiv2D::nextEdge(int edge) const
{
CV_DbgAssert((size_t)(edge >> 2) < qedges.size());
return qedges[edge >> 2].next[edge & 3];
}
int Subdiv2D::rotateEdge(int edge, int rotate) const
{
return (edge & ~3) + ((edge + rotate) & 3);
}
int Subdiv2D::symEdge(int edge) const
{
return edge ^ 2;
}
int Subdiv2D::getEdge(int edge, int nextEdgeType) const
{
CV_DbgAssert((size_t)(edge >> 2) < qedges.size());
edge = qedges[edge >> 2].next[(edge + nextEdgeType) & 3];
return (edge & ~3) + ((edge + (nextEdgeType >> 4)) & 3);
}
int Subdiv2D::edgeOrg(int edge, CV_OUT Point2f* orgpt) const
{
CV_DbgAssert((size_t)(edge >> 2) < qedges.size());
int vidx = qedges[edge >> 2].pt[edge & 3];
if( orgpt )
{
CV_DbgAssert((size_t)vidx < vtx.size());
*orgpt = vtx[vidx].pt;
}
return vidx;
}
int Subdiv2D::edgeDst(int edge, CV_OUT Point2f* dstpt) const
{
CV_DbgAssert((size_t)(edge >> 2) < qedges.size());
int vidx = qedges[edge >> 2].pt[(edge + 2) & 3];
if( dstpt )
{
CV_DbgAssert((size_t)vidx < vtx.size());
*dstpt = vtx[vidx].pt;
}
return vidx;
}
Point2f Subdiv2D::getVertex(int vertex, CV_OUT int* firstEdge) const
{
CV_DbgAssert((size_t)vertex < vtx.size());
if( firstEdge )
*firstEdge = vtx[vertex].firstEdge;
return vtx[vertex].pt;
}
Subdiv2D::Subdiv2D()
{
validGeometry = false;
freeQEdge = 0;
freePoint = 0;
recentEdge = 0;
}
Subdiv2D::Subdiv2D(Rect rect)
{
validGeometry = false;
freeQEdge = 0;
freePoint = 0;
recentEdge = 0;
initDelaunay(rect);
}
Subdiv2D::QuadEdge::QuadEdge()
{
next[0] = next[1] = next[2] = next[3] = 0;
pt[0] = pt[1] = pt[2] = pt[3] = 0;
}
Subdiv2D::QuadEdge::QuadEdge(int edgeidx)
{
CV_DbgAssert((edgeidx & 3) == 0);
next[0] = edgeidx;
next[1] = edgeidx+3;
next[2] = edgeidx+2;
next[3] = edgeidx+1;
pt[0] = pt[1] = pt[2] = pt[3] = 0;
}
bool Subdiv2D::QuadEdge::isfree() const
{
return next[0] <= 0;
}
Subdiv2D::Vertex::Vertex()
{
firstEdge = 0;
type = -1;
}
Subdiv2D::Vertex::Vertex(Point2f _pt, bool _isvirtual, int _firstEdge)
{
firstEdge = _firstEdge;
type = (int)_isvirtual;
pt = _pt;
}
bool Subdiv2D::Vertex::isvirtual() const
{
return type > 0;
}
bool Subdiv2D::Vertex::isfree() const
{
return type < 0;
}
void Subdiv2D::splice( int edgeA, int edgeB )
{
int& a_next = qedges[edgeA >> 2].next[edgeA & 3];
int& b_next = qedges[edgeB >> 2].next[edgeB & 3];
int a_rot = rotateEdge(a_next, 1);
int b_rot = rotateEdge(b_next, 1);
int& a_rot_next = qedges[a_rot >> 2].next[a_rot & 3];
int& b_rot_next = qedges[b_rot >> 2].next[b_rot & 3];
std::swap(a_next, b_next);
std::swap(a_rot_next, b_rot_next);
}
void Subdiv2D::setEdgePoints(int edge, int orgPt, int dstPt)
{
qedges[edge >> 2].pt[edge & 3] = orgPt;
qedges[edge >> 2].pt[(edge + 2) & 3] = dstPt;
vtx[orgPt].firstEdge = edge;
vtx[dstPt].firstEdge = edge ^ 2;
}
int Subdiv2D::connectEdges( int edgeA, int edgeB )
{
int edge = newEdge();
splice(edge, getEdge(edgeA, NEXT_AROUND_LEFT));
splice(symEdge(edge), edgeB);
setEdgePoints(edge, edgeDst(edgeA), edgeOrg(edgeB));
return edge;
}
void Subdiv2D::swapEdges( int edge )
{
int sedge = symEdge(edge);
int a = getEdge(edge, PREV_AROUND_ORG);
int b = getEdge(sedge, PREV_AROUND_ORG);
splice(edge, a);
splice(sedge, b);
setEdgePoints(edge, edgeDst(a), edgeDst(b));
splice(edge, getEdge(a, NEXT_AROUND_LEFT));
splice(sedge, getEdge(b, NEXT_AROUND_LEFT));
}
int Subdiv2D::isRightOf(Point2f pt, int edge) const
{
Point2f org, dst;
edgeOrg(edge, &org);
edgeDst(edge, &dst);
double cw_area = cvTriangleArea( pt, dst, org );
return (cw_area > 0) - (cw_area < 0);
}
int Subdiv2D::newEdge()
{
if( freeQEdge <= 0 )
{
qedges.push_back(QuadEdge());
freeQEdge = (int)(qedges.size()-1);
}
int edge = freeQEdge*4;
freeQEdge = qedges[edge >> 2].next[1];
qedges[edge >> 2] = QuadEdge(edge);
return edge;
}
void Subdiv2D::deleteEdge(int edge)
{
CV_DbgAssert((size_t)(edge >> 2) < (size_t)qedges.size());
splice( edge, getEdge(edge, PREV_AROUND_ORG) );
int sedge = symEdge(edge);
splice(sedge, getEdge(sedge, PREV_AROUND_ORG) );
edge >>= 2;
qedges[edge].next[0] = 0;
qedges[edge].next[1] = freeQEdge;
freeQEdge = edge;
}
int Subdiv2D::newPoint(Point2f pt, bool isvirtual, int firstEdge)
{
if( freePoint == 0 )
{
vtx.push_back(Vertex());
freePoint = (int)(vtx.size()-1);
}
int vidx = freePoint;
freePoint = vtx[vidx].firstEdge;
vtx[vidx] = Vertex(pt, isvirtual, firstEdge);
return vidx;
}
void Subdiv2D::deletePoint(int vidx)
{
CV_DbgAssert( (size_t)vidx < vtx.size() );
vtx[vidx].firstEdge = freePoint;
vtx[vidx].type = -1;
freePoint = vidx;
}
int Subdiv2D::locate(Point2f pt, int& _edge, int& _vertex)
{
int vertex = 0;
int i, maxEdges = (int)(qedges.size() * 4);
if( qedges.size() < (size_t)4 )
CV_Error( CV_StsError, "Subdivision is empty" );
if( pt.x < topLeft.x || pt.y < topLeft.y || pt.x >= bottomRight.x || pt.y >= bottomRight.y )
CV_Error( CV_StsOutOfRange, "" );
int edge = recentEdge;
CV_Assert(edge > 0);
int location = PTLOC_ERROR;
int right_of_curr = isRightOf(pt, edge);
if( right_of_curr > 0 )
{
edge = symEdge(edge);
right_of_curr = -right_of_curr;
}
for( i = 0; i < maxEdges; i++ )
{
int onext_edge = nextEdge( edge );
int dprev_edge = getEdge( edge, PREV_AROUND_DST );
int right_of_onext = isRightOf( pt, onext_edge );
int right_of_dprev = isRightOf( pt, dprev_edge );
if( right_of_dprev > 0 )
{
if( right_of_onext > 0 || (right_of_onext == 0 && right_of_curr == 0) )
{
location = PTLOC_INSIDE;
break;
}
else
{
right_of_curr = right_of_onext;
edge = onext_edge;
}
}
else
{
if( right_of_onext > 0 )
{
if( right_of_dprev == 0 && right_of_curr == 0 )
{
location = PTLOC_INSIDE;
break;
}
else
{
right_of_curr = right_of_dprev;
edge = dprev_edge;
}
}
else if( right_of_curr == 0 &&
isRightOf( vtx[edgeDst(onext_edge)].pt, edge ) >= 0 )
{
edge = symEdge( edge );
}
else
{
right_of_curr = right_of_onext;
edge = onext_edge;
}
}
}
recentEdge = edge;
if( location == PTLOC_INSIDE )
{
Point2f org_pt, dst_pt;
edgeOrg(edge, &org_pt);
edgeDst(edge, &dst_pt);
double t1 = fabs( pt.x - org_pt.x );
t1 += fabs( pt.y - org_pt.y );
double t2 = fabs( pt.x - dst_pt.x );
t2 += fabs( pt.y - dst_pt.y );
double t3 = fabs( org_pt.x - dst_pt.x );
t3 += fabs( org_pt.y - dst_pt.y );
if( t1 < FLT_EPSILON )
{
location = PTLOC_VERTEX;
vertex = edgeOrg( edge );
edge = 0;
}
else if( t2 < FLT_EPSILON )
{
location = PTLOC_VERTEX;
vertex = edgeDst( edge );
edge = 0;
}
else if( (t1 < t3 || t2 < t3) &&
fabs( cvTriangleArea( pt, org_pt, dst_pt )) < FLT_EPSILON )
{
location = PTLOC_ON_EDGE;
vertex = 0;
}
}
if( location == PTLOC_ERROR )
{
edge = 0;
vertex = 0;
}
_edge = edge;
_vertex = vertex;
return location;
}
inline int
isPtInCircle3( Point2f pt, Point2f a, Point2f b, Point2f c)
{
const double eps = FLT_EPSILON*0.125;
double val = ((double)a.x * a.x + (double)a.y * a.y) * cvTriangleArea( b, c, pt );
val -= ((double)b.x * b.x + (double)b.y * b.y) * cvTriangleArea( a, c, pt );
val += ((double)c.x * c.x + (double)c.y * c.y) * cvTriangleArea( a, b, pt );
val -= ((double)pt.x * pt.x + (double)pt.y * pt.y) * cvTriangleArea( a, b, c );
return val > eps ? 1 : val < -eps ? -1 : 0;
}
int Subdiv2D::insert(Point2f pt)
{
int curr_point = 0, curr_edge = 0, deleted_edge = 0;
int location = locate( pt, curr_edge, curr_point );
if( location == PTLOC_ERROR )
CV_Error( CV_StsBadSize, "" );
if( location == PTLOC_OUTSIDE_RECT )
CV_Error( CV_StsOutOfRange, "" );
if( location == PTLOC_VERTEX )
return curr_point;
if( location == PTLOC_ON_EDGE )
{
deleted_edge = curr_edge;
recentEdge = curr_edge = getEdge( curr_edge, PREV_AROUND_ORG );
deleteEdge(deleted_edge);
}
else if( location == PTLOC_INSIDE )
;
else
CV_Error_(CV_StsError, ("Subdiv2D::locate returned invalid location = %d", location) );
assert( curr_edge != 0 );
validGeometry = false;
curr_point = newPoint(pt, false);
int base_edge = newEdge();
int first_point = edgeOrg(curr_edge);
setEdgePoints(base_edge, first_point, curr_point);
splice(base_edge, curr_edge);
do
{
base_edge = connectEdges( curr_edge, symEdge(base_edge) );
curr_edge = getEdge(base_edge, PREV_AROUND_ORG);
}
while( edgeDst(curr_edge) != first_point );
curr_edge = getEdge( base_edge, PREV_AROUND_ORG );
int i, max_edges = (int)(qedges.size()*4);
for( i = 0; i < max_edges; i++ )
{
int temp_dst = 0, curr_org = 0, curr_dst = 0;
int temp_edge = getEdge( curr_edge, PREV_AROUND_ORG );
temp_dst = edgeDst( temp_edge );
curr_org = edgeOrg( curr_edge );
curr_dst = edgeDst( curr_edge );
if( isRightOf( vtx[temp_dst].pt, curr_edge ) > 0 &&
isPtInCircle3( vtx[curr_org].pt, vtx[temp_dst].pt,
vtx[curr_dst].pt, vtx[curr_point].pt ) < 0 )
{
swapEdges( curr_edge );
curr_edge = getEdge( curr_edge, PREV_AROUND_ORG );
}
else if( curr_org == first_point )
break;
else
curr_edge = getEdge( nextEdge( curr_edge ), PREV_AROUND_LEFT );
}
return curr_point;
}
void Subdiv2D::insert(const vector<Point2f>& ptvec)
{
for( size_t i = 0; i < ptvec.size(); i++ )
insert(ptvec[i]);
}
void Subdiv2D::initDelaunay( Rect rect )
{
float big_coord = 3.f * MAX( rect.width, rect.height );
float rx = (float)rect.x;
float ry = (float)rect.y;
vtx.clear();
qedges.clear();
recentEdge = 0;
validGeometry = false;
topLeft = Point2f( rx, ry );
bottomRight = Point2f( rx + rect.width, ry + rect.height );
Point2f ppA( rx + big_coord, ry );
Point2f ppB( rx, ry + big_coord );
Point2f ppC( rx - big_coord, ry - big_coord );
vtx.push_back(Vertex());
qedges.push_back(QuadEdge());
freeQEdge = 0;
freePoint = 0;
int pA = newPoint(ppA, false);
int pB = newPoint(ppB, false);
int pC = newPoint(ppC, false);
int edge_AB = newEdge();
int edge_BC = newEdge();
int edge_CA = newEdge();
setEdgePoints( edge_AB, pA, pB );
setEdgePoints( edge_BC, pB, pC );
setEdgePoints( edge_CA, pC, pA );
splice( edge_AB, symEdge( edge_CA ));
splice( edge_BC, symEdge( edge_AB ));
splice( edge_CA, symEdge( edge_BC ));
recentEdge = edge_AB;
}
void Subdiv2D::clearVoronoi()
{
size_t i, total = qedges.size();
for( i = 0; i < total; i++ )
qedges[i].pt[1] = qedges[i].pt[3] = 0;
total = vtx.size();
for( i = 0; i < total; i++ )
{
if( vtx[i].isvirtual() )
deletePoint((int)i);
}
validGeometry = false;
}
static Point2f computeVoronoiPoint(Point2f org0, Point2f dst0, Point2f org1, Point2f dst1)
{
double a0 = dst0.x - org0.x;
double b0 = dst0.y - org0.y;
double c0 = -0.5*(a0 * (dst0.x + org0.x) + b0 * (dst0.y + org0.y));
double a1 = dst1.x - org1.x;
double b1 = dst1.y - org1.y;
double c1 = -0.5*(a1 * (dst1.x + org1.x) + b1 * (dst1.y + org1.y));
double det = a0 * b1 - a1 * b0;
if( det != 0 )
{
det = 1. / det;
return Point2f((float) ((b0 * c1 - b1 * c0) * det),
(float) ((a1 * c0 - a0 * c1) * det));
}
return Point2f(FLT_MAX, FLT_MAX);
}
void Subdiv2D::calcVoronoi()
{
// check if it is already calculated
if( validGeometry )
return;
clearVoronoi();
int i, total = (int)qedges.size();
// loop through all quad-edges, except for the first 3 (#1, #2, #3 - 0 is reserved for "NULL" pointer)
for( i = 4; i < total; i++ )
{
QuadEdge& quadedge = qedges[i];
if( quadedge.isfree() )
continue;
int edge0 = (int)(i*4);
Point2f org0, dst0, org1, dst1;
if( !quadedge.pt[3] )
{
int edge1 = getEdge( edge0, NEXT_AROUND_LEFT );
int edge2 = getEdge( edge1, NEXT_AROUND_LEFT );
edgeOrg(edge0, &org0);
edgeDst(edge0, &dst0);
edgeOrg(edge1, &org1);
edgeDst(edge1, &dst1);
Point2f virt_point = computeVoronoiPoint(org0, dst0, org1, dst1);
if( fabs( virt_point.x ) < FLT_MAX * 0.5 &&
fabs( virt_point.y ) < FLT_MAX * 0.5 )
{
quadedge.pt[3] = qedges[edge1 >> 2].pt[3 - (edge1 & 2)] =
qedges[edge2 >> 2].pt[3 - (edge2 & 2)] = newPoint(virt_point, true);
}
}
if( !quadedge.pt[1] )
{
int edge1 = getEdge( edge0, NEXT_AROUND_RIGHT );
int edge2 = getEdge( edge1, NEXT_AROUND_RIGHT );
edgeOrg(edge0, &org0);
edgeDst(edge0, &dst0);
edgeOrg(edge1, &org1);
edgeDst(edge1, &dst1);
Point2f virt_point = computeVoronoiPoint(org0, dst0, org1, dst1);
if( fabs( virt_point.x ) < FLT_MAX * 0.5 &&
fabs( virt_point.y ) < FLT_MAX * 0.5 )
{
quadedge.pt[1] = qedges[edge1 >> 2].pt[1 + (edge1 & 2)] =
qedges[edge2 >> 2].pt[1 + (edge2 & 2)] = newPoint(virt_point, true);
}
}
}
validGeometry = true;
}
static int
isRightOf2( const Point2f& pt, const Point2f& org, const Point2f& diff )
{
double cw_area = ((double)org.x - pt.x)*diff.y - ((double)org.y - pt.y)*diff.x;
return (cw_area > 0) - (cw_area < 0);
}
int Subdiv2D::findNearest(Point2f pt, Point2f* nearestPt)
{
if( !validGeometry )
calcVoronoi();
int vertex = 0, edge = 0;
int loc = locate( pt, edge, vertex );
if( loc != PTLOC_ON_EDGE && loc != PTLOC_INSIDE )
return vertex;
vertex = 0;
Point2f start;
edgeOrg(edge, &start);
Point2f diff = pt - start;
edge = rotateEdge(edge, 1);
int i, total = (int)vtx.size();
for( i = 0; i < total; i++ )
{
Point2f t;
for(;;)
{
CV_Assert( edgeDst(edge, &t) > 0 );
if( isRightOf2( t, start, diff ) >= 0 )
break;
edge = getEdge( edge, NEXT_AROUND_LEFT );
}
for(;;)
{
CV_Assert( edgeOrg( edge, &t ) > 0 );
if( isRightOf2( t, start, diff ) < 0 )
break;
edge = getEdge( edge, PREV_AROUND_LEFT );
}
Point2f tempDiff;
edgeDst(edge, &tempDiff);
edgeOrg(edge, &t);
tempDiff -= t;
if( isRightOf2( pt, t, tempDiff ) >= 0 )
{
vertex = edgeOrg(rotateEdge( edge, 3 ));
break;
}
edge = symEdge( edge );
}
if( nearestPt && vertex > 0 )
*nearestPt = vtx[vertex].pt;
return vertex;
}
void Subdiv2D::getEdgeList(vector<Vec4f>& edgeList) const
{
edgeList.clear();
for( size_t i = 4; i < qedges.size(); i++ )
{
if( qedges[i].isfree() )
continue;
if( qedges[i].pt[0] > 0 && qedges[i].pt[2] > 0 )
{
Point2f org = vtx[qedges[i].pt[0]].pt;
Point2f dst = vtx[qedges[i].pt[2]].pt;
edgeList.push_back(Vec4f(org.x, org.y, dst.x, dst.y));
}
}
}
void Subdiv2D::getTriangleList(vector<Vec6f>& triangleList) const
{
triangleList.clear();
int i, total = (int)(qedges.size()*4);
vector<bool> edgemask(total, false);
for( i = 4; i < total; i += 2 )
{
if( edgemask[i] )
continue;
Point2f a, b, c;
int edge = i;
edgeOrg(edge, &a);
edgemask[edge] = true;
edge = getEdge(edge, NEXT_AROUND_LEFT);
edgeOrg(edge, &b);
edgemask[edge] = true;
edge = getEdge(edge, NEXT_AROUND_LEFT);
edgeOrg(edge, &c);
edgemask[edge] = true;
triangleList.push_back(Vec6f(a.x, a.y, b.x, b.y, c.x, c.y));
}
}
void Subdiv2D::getVoronoiFacetList(const vector<int>& idx,
CV_OUT vector<vector<Point2f> >& facetList,
CV_OUT vector<Point2f>& facetCenters)
{
calcVoronoi();
facetList.clear();
facetCenters.clear();
vector<Point2f> buf;
size_t i, total;
if( idx.empty() )
i = 4, total = vtx.size();
else
i = 0, total = idx.size();
for( ; i < total; i++ )
{
int k = idx.empty() ? (int)i : idx[i];
if( vtx[k].isfree() || vtx[k].isvirtual() )
continue;
int edge = rotateEdge(vtx[k].firstEdge, 1), t = edge;
// gather points
buf.clear();
do
{
buf.push_back(vtx[edgeOrg(t)].pt);
t = getEdge( t, NEXT_AROUND_LEFT );
}
while( t != edge );
facetList.push_back(buf);
facetCenters.push_back(vtx[k].pt);
}
}
void Subdiv2D::checkSubdiv() const
{
int i, j, total = (int)qedges.size();
for( i = 0; i < total; i++ )
{
const QuadEdge& qe = qedges[i];
if( qe.isfree() )
continue;
for( j = 0; j < 4; j++ )
{
int e = (int)(i*4 + j);
int o_next = nextEdge(e);
int o_prev = getEdge(e, PREV_AROUND_ORG );
int d_prev = getEdge(e, PREV_AROUND_DST );
int d_next = getEdge(e, NEXT_AROUND_DST );
// check points
CV_Assert( edgeOrg(e) == edgeOrg(o_next));
CV_Assert( edgeOrg(e) == edgeOrg(o_prev));
CV_Assert( edgeDst(e) == edgeDst(d_next));
CV_Assert( edgeDst(e) == edgeDst(d_prev));
if( j % 2 == 0 )
{
CV_Assert( edgeDst(o_next) == edgeOrg(d_prev));
CV_Assert( edgeDst(o_prev) == edgeOrg(d_next));
CV_Assert( getEdge(getEdge(getEdge(e,NEXT_AROUND_LEFT),NEXT_AROUND_LEFT),NEXT_AROUND_LEFT) == e );
CV_Assert( getEdge(getEdge(getEdge(e,NEXT_AROUND_RIGHT),NEXT_AROUND_RIGHT),NEXT_AROUND_RIGHT) == e);
}
}
}
}
}
/* End of file. */