mirror of
https://github.com/opencv/opencv.git
synced 2025-01-06 02:08:12 +08:00
affc69bf1f
Fix detect diamonds api #23848 `detectDiamonds` cannot be called from python, reproducer: ``` import numpy as np import cv2 as cv detector = cv.aruco.CharucoDetector( cv.aruco.CharucoBoard( (3, 3), 200.0, 100.0, cv.aruco.getPredefinedDictionary(cv.aruco.DICT_4X4_250) ) ) image = np.zeros((640, 480, 1), dtype=np.uint8) res = detector.detectDiamonds(image) print(res) ``` The error in `detectDiamonds` API fixed by replacing `InputOutputArrayOfArrays markerIds` with `InputOutputArray markerIds`. ### Pull Request Readiness Checklist See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request - [x] I agree to contribute to the project under Apache 2 License. - [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV - [x] The PR is proposed to the proper branch - [x] There is a reference to the original bug report and related work - [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable Patch to opencv_extra has the same branch name. - [ ] The feature is well documented and sample code can be built with the project CMake
366 lines
16 KiB
Python
366 lines
16 KiB
Python
#!/usr/bin/env python
|
|
|
|
# Python 2/3 compatibility
|
|
from __future__ import print_function
|
|
|
|
import os, tempfile, numpy as np
|
|
from math import pi
|
|
|
|
import cv2 as cv
|
|
|
|
from tests_common import NewOpenCVTests
|
|
|
|
def getSyntheticRT(yaw, pitch, distance):
|
|
rvec = np.zeros((3, 1), np.float64)
|
|
tvec = np.zeros((3, 1), np.float64)
|
|
|
|
rotPitch = np.array([[-pitch], [0], [0]])
|
|
rotYaw = np.array([[0], [yaw], [0]])
|
|
|
|
rvec, tvec = cv.composeRT(rotPitch, np.zeros((3, 1), np.float64),
|
|
rotYaw, np.zeros((3, 1), np.float64))[:2]
|
|
|
|
tvec = np.array([[0], [0], [distance]])
|
|
return rvec, tvec
|
|
|
|
# see test_aruco_utils.cpp
|
|
def projectMarker(img, board, markerIndex, cameraMatrix, rvec, tvec, markerBorder):
|
|
markerSizePixels = 100
|
|
markerImg = cv.aruco.generateImageMarker(board.getDictionary(), board.getIds()[markerIndex], markerSizePixels, borderBits=markerBorder)
|
|
|
|
distCoeffs = np.zeros((5, 1), np.float64)
|
|
maxCoord = board.getRightBottomCorner()
|
|
objPoints = board.getObjPoints()[markerIndex]
|
|
for i in range(len(objPoints)):
|
|
objPoints[i][0] -= maxCoord[0] / 2
|
|
objPoints[i][1] -= maxCoord[1] / 2
|
|
objPoints[i][2] -= maxCoord[2] / 2
|
|
|
|
corners, _ = cv.projectPoints(objPoints, rvec, tvec, cameraMatrix, distCoeffs)
|
|
|
|
originalCorners = np.array([
|
|
[0, 0],
|
|
[markerSizePixels, 0],
|
|
[markerSizePixels, markerSizePixels],
|
|
[0, markerSizePixels],
|
|
], np.float32)
|
|
|
|
transformation = cv.getPerspectiveTransform(originalCorners, corners)
|
|
|
|
borderValue = 127
|
|
aux = cv.warpPerspective(markerImg, transformation, img.shape, None, cv.INTER_NEAREST, cv.BORDER_CONSTANT, borderValue)
|
|
|
|
assert(img.shape == aux.shape)
|
|
mask = (aux == borderValue).astype(np.uint8)
|
|
img = img * mask + aux * (1 - mask)
|
|
return img
|
|
|
|
def projectChessboard(squaresX, squaresY, squareSize, imageSize, cameraMatrix, rvec, tvec):
|
|
img = np.ones(imageSize, np.uint8) * 255
|
|
distCoeffs = np.zeros((5, 1), np.float64)
|
|
for y in range(squaresY):
|
|
startY = y * squareSize
|
|
for x in range(squaresX):
|
|
if (y % 2 != x % 2):
|
|
continue
|
|
startX = x * squareSize
|
|
|
|
squareCorners = np.array([[startX - squaresX*squareSize/2,
|
|
startY - squaresY*squareSize/2,
|
|
0]], np.float32)
|
|
squareCorners = np.stack((squareCorners[0],
|
|
squareCorners[0] + [squareSize, 0, 0],
|
|
squareCorners[0] + [squareSize, squareSize, 0],
|
|
squareCorners[0] + [0, squareSize, 0]))
|
|
|
|
projectedCorners, _ = cv.projectPoints(squareCorners, rvec, tvec, cameraMatrix, distCoeffs)
|
|
projectedCorners = projectedCorners.astype(np.int64)
|
|
projectedCorners = projectedCorners.reshape(1, 4, 2)
|
|
img = cv.fillPoly(img, [projectedCorners], 0)
|
|
|
|
return img
|
|
|
|
def projectCharucoBoard(board, cameraMatrix, yaw, pitch, distance, imageSize, markerBorder):
|
|
rvec, tvec = getSyntheticRT(yaw, pitch, distance)
|
|
|
|
img = np.ones(imageSize, np.uint8) * 255
|
|
for indexMarker in range(len(board.getIds())):
|
|
img = projectMarker(img, board, indexMarker, cameraMatrix, rvec, tvec, markerBorder)
|
|
|
|
chessboard = projectChessboard(board.getChessboardSize()[0], board.getChessboardSize()[1],
|
|
board.getSquareLength(), imageSize, cameraMatrix, rvec, tvec)
|
|
|
|
chessboard = (chessboard != 0).astype(np.uint8)
|
|
img = img * chessboard
|
|
return img, rvec, tvec
|
|
|
|
class aruco_objdetect_test(NewOpenCVTests):
|
|
|
|
def test_board(self):
|
|
p1 = np.array([[0, 0, 0], [0, 1, 0], [1, 1, 0], [1, 0, 0]], dtype=np.float32)
|
|
p2 = np.array([[1, 0, 0], [1, 1, 0], [2, 1, 0], [2, 0, 0]], dtype=np.float32)
|
|
objPoints = np.array([p1, p2])
|
|
dictionary = cv.aruco.getPredefinedDictionary(cv.aruco.DICT_4X4_50)
|
|
ids = np.array([0, 1])
|
|
|
|
board = cv.aruco.Board(objPoints, dictionary, ids)
|
|
np.testing.assert_array_equal(board.getIds().squeeze(), ids)
|
|
np.testing.assert_array_equal(np.ravel(np.array(board.getObjPoints())), np.ravel(np.concatenate([p1, p2])))
|
|
|
|
def test_idsAccessibility(self):
|
|
|
|
ids = np.arange(17)
|
|
rev_ids = ids[::-1]
|
|
|
|
aruco_dict = cv.aruco.getPredefinedDictionary(cv.aruco.DICT_5X5_250)
|
|
board = cv.aruco.CharucoBoard((7, 5), 1, 0.5, aruco_dict)
|
|
|
|
np.testing.assert_array_equal(board.getIds().squeeze(), ids)
|
|
|
|
board = cv.aruco.CharucoBoard((7, 5), 1, 0.5, aruco_dict, rev_ids)
|
|
np.testing.assert_array_equal(board.getIds().squeeze(), rev_ids)
|
|
|
|
board = cv.aruco.CharucoBoard((7, 5), 1, 0.5, aruco_dict, ids)
|
|
np.testing.assert_array_equal(board.getIds().squeeze(), ids)
|
|
|
|
def test_identify(self):
|
|
aruco_dict = cv.aruco.getPredefinedDictionary(cv.aruco.DICT_4X4_50)
|
|
expected_idx = 9
|
|
expected_rotation = 2
|
|
bit_marker = np.array([[0, 1, 1, 0], [1, 0, 1, 0], [1, 1, 1, 1], [0, 0, 1, 1]], dtype=np.uint8)
|
|
|
|
check, idx, rotation = aruco_dict.identify(bit_marker, 0)
|
|
|
|
self.assertTrue(check, True)
|
|
self.assertEqual(idx, expected_idx)
|
|
self.assertEqual(rotation, expected_rotation)
|
|
|
|
def test_getDistanceToId(self):
|
|
aruco_dict = cv.aruco.getPredefinedDictionary(cv.aruco.DICT_4X4_50)
|
|
idx = 7
|
|
rotation = 3
|
|
bit_marker = np.array([[0, 1, 0, 1], [0, 1, 1, 1], [1, 1, 0, 0], [0, 1, 0, 0]], dtype=np.uint8)
|
|
dist = aruco_dict.getDistanceToId(bit_marker, idx)
|
|
|
|
self.assertEqual(dist, 0)
|
|
|
|
def test_aruco_detector(self):
|
|
aruco_params = cv.aruco.DetectorParameters()
|
|
aruco_dict = cv.aruco.getPredefinedDictionary(cv.aruco.DICT_4X4_250)
|
|
aruco_detector = cv.aruco.ArucoDetector(aruco_dict, aruco_params)
|
|
id = 2
|
|
marker_size = 100
|
|
offset = 10
|
|
img_marker = cv.aruco.generateImageMarker(aruco_dict, id, marker_size, aruco_params.markerBorderBits)
|
|
img_marker = np.pad(img_marker, pad_width=offset, mode='constant', constant_values=255)
|
|
gold_corners = np.array([[offset, offset],[marker_size+offset-1.0,offset],
|
|
[marker_size+offset-1.0,marker_size+offset-1.0],
|
|
[offset, marker_size+offset-1.0]], dtype=np.float32)
|
|
corners, ids, rejected = aruco_detector.detectMarkers(img_marker)
|
|
|
|
self.assertEqual(1, len(ids))
|
|
self.assertEqual(id, ids[0])
|
|
for i in range(0, len(corners)):
|
|
np.testing.assert_array_equal(gold_corners, corners[i].reshape(4, 2))
|
|
|
|
def test_aruco_detector_refine(self):
|
|
aruco_params = cv.aruco.DetectorParameters()
|
|
aruco_dict = cv.aruco.getPredefinedDictionary(cv.aruco.DICT_4X4_250)
|
|
aruco_detector = cv.aruco.ArucoDetector(aruco_dict, aruco_params)
|
|
board_size = (3, 4)
|
|
board = cv.aruco.GridBoard(board_size, 5.0, 1.0, aruco_dict)
|
|
board_image = board.generateImage((board_size[0]*50, board_size[1]*50), marginSize=10)
|
|
|
|
corners, ids, rejected = aruco_detector.detectMarkers(board_image)
|
|
self.assertEqual(board_size[0]*board_size[1], len(ids))
|
|
|
|
part_corners, part_ids, part_rejected = corners[:-1], ids[:-1], list(rejected)
|
|
part_rejected.append(corners[-1])
|
|
|
|
refine_corners, refine_ids, refine_rejected, recovered_ids = aruco_detector.refineDetectedMarkers(board_image, board, part_corners, part_ids, part_rejected)
|
|
|
|
self.assertEqual(board_size[0] * board_size[1], len(refine_ids))
|
|
self.assertEqual(1, len(recovered_ids))
|
|
|
|
self.assertEqual(ids[-1], refine_ids[-1])
|
|
self.assertEqual((1, 4, 2), refine_corners[0].shape)
|
|
np.testing.assert_array_equal(corners, refine_corners)
|
|
|
|
def test_write_read_dictionary(self):
|
|
try:
|
|
aruco_dict = cv.aruco.getPredefinedDictionary(cv.aruco.DICT_5X5_50)
|
|
markers_gold = aruco_dict.bytesList
|
|
|
|
# write aruco_dict
|
|
fd, filename = tempfile.mkstemp(prefix="opencv_python_aruco_dict_", suffix=".yml")
|
|
os.close(fd)
|
|
|
|
fs_write = cv.FileStorage(filename, cv.FileStorage_WRITE)
|
|
aruco_dict.writeDictionary(fs_write)
|
|
fs_write.release()
|
|
|
|
# reset aruco_dict
|
|
aruco_dict = cv.aruco.getPredefinedDictionary(cv.aruco.DICT_6X6_250)
|
|
|
|
# read aruco_dict
|
|
fs_read = cv.FileStorage(filename, cv.FileStorage_READ)
|
|
aruco_dict.readDictionary(fs_read.root())
|
|
fs_read.release()
|
|
|
|
# check equal
|
|
self.assertEqual(aruco_dict.markerSize, 5)
|
|
self.assertEqual(aruco_dict.maxCorrectionBits, 3)
|
|
np.testing.assert_array_equal(aruco_dict.bytesList, markers_gold)
|
|
|
|
finally:
|
|
if os.path.exists(filename):
|
|
os.remove(filename)
|
|
|
|
def test_charuco_detector(self):
|
|
aruco_dict = cv.aruco.getPredefinedDictionary(cv.aruco.DICT_4X4_250)
|
|
board_size = (3, 3)
|
|
board = cv.aruco.CharucoBoard(board_size, 1.0, .8, aruco_dict)
|
|
charuco_detector = cv.aruco.CharucoDetector(board)
|
|
cell_size = 100
|
|
|
|
image = board.generateImage((cell_size*board_size[0], cell_size*board_size[1]))
|
|
|
|
list_gold_corners = []
|
|
for i in range(1, board_size[0]):
|
|
for j in range(1, board_size[1]):
|
|
list_gold_corners.append((j*cell_size, i*cell_size))
|
|
gold_corners = np.array(list_gold_corners, dtype=np.float32)
|
|
|
|
charucoCorners, charucoIds, markerCorners, markerIds = charuco_detector.detectBoard(image)
|
|
|
|
self.assertEqual(len(charucoIds), 4)
|
|
for i in range(0, 4):
|
|
self.assertEqual(charucoIds[i], i)
|
|
np.testing.assert_allclose(gold_corners, charucoCorners.reshape(-1, 2), 0.01, 0.1)
|
|
|
|
def test_detect_diamonds(self):
|
|
aruco_dict = cv.aruco.getPredefinedDictionary(cv.aruco.DICT_6X6_250)
|
|
board_size = (3, 3)
|
|
board = cv.aruco.CharucoBoard(board_size, 1.0, .8, aruco_dict)
|
|
charuco_detector = cv.aruco.CharucoDetector(board)
|
|
cell_size = 120
|
|
|
|
image = board.generateImage((cell_size*board_size[0], cell_size*board_size[1]))
|
|
|
|
list_gold_corners = [(cell_size, cell_size), (2*cell_size, cell_size), (2*cell_size, 2*cell_size),
|
|
(cell_size, 2*cell_size)]
|
|
gold_corners = np.array(list_gold_corners, dtype=np.float32)
|
|
|
|
diamond_corners, diamond_ids, marker_corners, marker_ids = charuco_detector.detectDiamonds(image)
|
|
|
|
self.assertEqual(diamond_ids.size, 4)
|
|
self.assertEqual(marker_ids.size, 4)
|
|
for i in range(0, 4):
|
|
self.assertEqual(diamond_ids[0][0][i], i)
|
|
np.testing.assert_allclose(gold_corners, np.array(diamond_corners, dtype=np.float32).reshape(-1, 2), 0.01, 0.1)
|
|
|
|
# check no segfault when cameraMatrix or distCoeffs are not initialized
|
|
def test_charuco_no_segfault_params(self):
|
|
dictionary = cv.aruco.getPredefinedDictionary(cv.aruco.DICT_4X4_1000)
|
|
board = cv.aruco.CharucoBoard((10, 10), 0.019, 0.015, dictionary)
|
|
charuco_parameters = cv.aruco.CharucoParameters()
|
|
detector = cv.aruco.CharucoDetector(board)
|
|
detector.setCharucoParameters(charuco_parameters)
|
|
|
|
self.assertIsNone(detector.getCharucoParameters().cameraMatrix)
|
|
self.assertIsNone(detector.getCharucoParameters().distCoeffs)
|
|
|
|
def test_charuco_no_segfault_params_constructor(self):
|
|
dictionary = cv.aruco.getPredefinedDictionary(cv.aruco.DICT_4X4_1000)
|
|
board = cv.aruco.CharucoBoard((10, 10), 0.019, 0.015, dictionary)
|
|
charuco_parameters = cv.aruco.CharucoParameters()
|
|
detector = cv.aruco.CharucoDetector(board, charucoParams=charuco_parameters)
|
|
|
|
self.assertIsNone(detector.getCharucoParameters().cameraMatrix)
|
|
self.assertIsNone(detector.getCharucoParameters().distCoeffs)
|
|
|
|
# similar to C++ test CV_CharucoDetection.accuracy
|
|
def test_charuco_detector_accuracy(self):
|
|
iteration = 0
|
|
cameraMatrix = np.eye(3, 3, dtype=np.float64)
|
|
imgSize = (500, 500)
|
|
params = cv.aruco.DetectorParameters()
|
|
params.minDistanceToBorder = 3
|
|
|
|
board = cv.aruco.CharucoBoard((4, 4), 0.03, 0.015, cv.aruco.getPredefinedDictionary(cv.aruco.DICT_6X6_250))
|
|
detector = cv.aruco.CharucoDetector(board, detectorParams=params)
|
|
|
|
cameraMatrix[0, 0] = cameraMatrix[1, 1] = 600
|
|
cameraMatrix[0, 2] = imgSize[0] / 2
|
|
cameraMatrix[1, 2] = imgSize[1] / 2
|
|
|
|
# for different perspectives
|
|
distCoeffs = np.zeros((5, 1), dtype=np.float64)
|
|
for distance in [0.2, 0.4]:
|
|
for yaw in range(-55, 51, 25):
|
|
for pitch in range(-55, 51, 25):
|
|
markerBorder = iteration % 2 + 1
|
|
iteration += 1
|
|
|
|
# create synthetic image
|
|
img, rvec, tvec = projectCharucoBoard(board, cameraMatrix, yaw * pi / 180, pitch * pi / 180, distance, imgSize, markerBorder)
|
|
|
|
params.markerBorderBits = markerBorder
|
|
detector.setDetectorParameters(params)
|
|
|
|
if (iteration % 2 != 0):
|
|
charucoParameters = cv.aruco.CharucoParameters()
|
|
charucoParameters.cameraMatrix = cameraMatrix
|
|
charucoParameters.distCoeffs = distCoeffs
|
|
detector.setCharucoParameters(charucoParameters)
|
|
|
|
charucoCorners, charucoIds, corners, ids = detector.detectBoard(img)
|
|
|
|
self.assertGreater(len(ids), 0)
|
|
|
|
copyChessboardCorners = board.getChessboardCorners()
|
|
copyChessboardCorners -= np.array(board.getRightBottomCorner()) / 2
|
|
|
|
projectedCharucoCorners, _ = cv.projectPoints(copyChessboardCorners, rvec, tvec, cameraMatrix, distCoeffs)
|
|
|
|
if charucoIds is None:
|
|
self.assertEqual(iteration, 46)
|
|
continue
|
|
|
|
for i in range(len(charucoIds)):
|
|
currentId = charucoIds[i]
|
|
self.assertLess(currentId, len(board.getChessboardCorners()))
|
|
|
|
reprErr = cv.norm(charucoCorners[i] - projectedCharucoCorners[currentId])
|
|
self.assertLessEqual(reprErr, 5)
|
|
|
|
def test_aruco_match_image_points(self):
|
|
aruco_dict = cv.aruco.getPredefinedDictionary(cv.aruco.DICT_4X4_50)
|
|
board_size = (3, 4)
|
|
board = cv.aruco.GridBoard(board_size, 5.0, 1.0, aruco_dict)
|
|
aruco_corners = np.array(board.getObjPoints())[:, :, :2]
|
|
aruco_ids = board.getIds()
|
|
obj_points, img_points = board.matchImagePoints(aruco_corners, aruco_ids)
|
|
aruco_corners = aruco_corners.reshape(-1, 2)
|
|
|
|
self.assertEqual(aruco_corners.shape[0], obj_points.shape[0])
|
|
self.assertEqual(img_points.shape[0], obj_points.shape[0])
|
|
self.assertEqual(2, img_points.shape[2])
|
|
np.testing.assert_array_equal(aruco_corners, obj_points[:, :, :2].reshape(-1, 2))
|
|
|
|
def test_charuco_match_image_points(self):
|
|
aruco_dict = cv.aruco.getPredefinedDictionary(cv.aruco.DICT_4X4_50)
|
|
board_size = (3, 4)
|
|
board = cv.aruco.CharucoBoard(board_size, 5.0, 1.0, aruco_dict)
|
|
chessboard_corners = np.array(board.getChessboardCorners())[:, :2]
|
|
chessboard_ids = board.getIds()
|
|
obj_points, img_points = board.matchImagePoints(chessboard_corners, chessboard_ids)
|
|
|
|
self.assertEqual(chessboard_corners.shape[0], obj_points.shape[0])
|
|
self.assertEqual(img_points.shape[0], obj_points.shape[0])
|
|
self.assertEqual(2, img_points.shape[2])
|
|
np.testing.assert_array_equal(chessboard_corners, obj_points[:, :, :2].reshape(-1, 2))
|
|
|
|
if __name__ == '__main__':
|
|
NewOpenCVTests.bootstrap()
|