opencv/3rdparty/lapack/sormlq.c

335 lines
9.1 KiB
C

/* sormlq.f -- translated by f2c (version 20061008).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#include "clapack.h"
/* Table of constant values */
static integer c__1 = 1;
static integer c_n1 = -1;
static integer c__2 = 2;
static integer c__65 = 65;
/* Subroutine */ int sormlq_(char *side, char *trans, integer *m, integer *n,
integer *k, real *a, integer *lda, real *tau, real *c__, integer *ldc,
real *work, integer *lwork, integer *info)
{
/* System generated locals */
address a__1[2];
integer a_dim1, a_offset, c_dim1, c_offset, i__1, i__2, i__3[2], i__4,
i__5;
char ch__1[2];
/* Builtin functions */
/* Subroutine */ int s_cat(char *, char **, integer *, integer *, ftnlen);
/* Local variables */
integer i__;
real t[4160] /* was [65][64] */;
integer i1, i2, i3, ib, ic, jc, nb, mi, ni, nq, nw, iws;
logical left;
extern logical lsame_(char *, char *);
integer nbmin, iinfo;
extern /* Subroutine */ int sorml2_(char *, char *, integer *, integer *,
integer *, real *, integer *, real *, real *, integer *, real *,
integer *), slarfb_(char *, char *, char *, char *
, integer *, integer *, integer *, real *, integer *, real *,
integer *, real *, integer *, real *, integer *), xerbla_(char *, integer *);
extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
integer *, integer *);
extern /* Subroutine */ int slarft_(char *, char *, integer *, integer *,
real *, integer *, real *, real *, integer *);
logical notran;
integer ldwork;
char transt[1];
integer lwkopt;
logical lquery;
/* -- LAPACK routine (version 3.2) -- */
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/* November 2006 */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* SORMLQ overwrites the general real M-by-N matrix C with */
/* SIDE = 'L' SIDE = 'R' */
/* TRANS = 'N': Q * C C * Q */
/* TRANS = 'T': Q**T * C C * Q**T */
/* where Q is a real orthogonal matrix defined as the product of k */
/* elementary reflectors */
/* Q = H(k) . . . H(2) H(1) */
/* as returned by SGELQF. Q is of order M if SIDE = 'L' and of order N */
/* if SIDE = 'R'. */
/* Arguments */
/* ========= */
/* SIDE (input) CHARACTER*1 */
/* = 'L': apply Q or Q**T from the Left; */
/* = 'R': apply Q or Q**T from the Right. */
/* TRANS (input) CHARACTER*1 */
/* = 'N': No transpose, apply Q; */
/* = 'T': Transpose, apply Q**T. */
/* M (input) INTEGER */
/* The number of rows of the matrix C. M >= 0. */
/* N (input) INTEGER */
/* The number of columns of the matrix C. N >= 0. */
/* K (input) INTEGER */
/* The number of elementary reflectors whose product defines */
/* the matrix Q. */
/* If SIDE = 'L', M >= K >= 0; */
/* if SIDE = 'R', N >= K >= 0. */
/* A (input) REAL array, dimension */
/* (LDA,M) if SIDE = 'L', */
/* (LDA,N) if SIDE = 'R' */
/* The i-th row must contain the vector which defines the */
/* elementary reflector H(i), for i = 1,2,...,k, as returned by */
/* SGELQF in the first k rows of its array argument A. */
/* A is modified by the routine but restored on exit. */
/* LDA (input) INTEGER */
/* The leading dimension of the array A. LDA >= max(1,K). */
/* TAU (input) REAL array, dimension (K) */
/* TAU(i) must contain the scalar factor of the elementary */
/* reflector H(i), as returned by SGELQF. */
/* C (input/output) REAL array, dimension (LDC,N) */
/* On entry, the M-by-N matrix C. */
/* On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q. */
/* LDC (input) INTEGER */
/* The leading dimension of the array C. LDC >= max(1,M). */
/* WORK (workspace/output) REAL array, dimension (MAX(1,LWORK)) */
/* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
/* LWORK (input) INTEGER */
/* The dimension of the array WORK. */
/* If SIDE = 'L', LWORK >= max(1,N); */
/* if SIDE = 'R', LWORK >= max(1,M). */
/* For optimum performance LWORK >= N*NB if SIDE = 'L', and */
/* LWORK >= M*NB if SIDE = 'R', where NB is the optimal */
/* blocksize. */
/* If LWORK = -1, then a workspace query is assumed; the routine */
/* only calculates the optimal size of the WORK array, returns */
/* this value as the first entry of the WORK array, and no error */
/* message related to LWORK is issued by XERBLA. */
/* INFO (output) INTEGER */
/* = 0: successful exit */
/* < 0: if INFO = -i, the i-th argument had an illegal value */
/* ===================================================================== */
/* .. Parameters .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. Local Arrays .. */
/* .. */
/* .. External Functions .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. Executable Statements .. */
/* Test the input arguments */
/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1;
a -= a_offset;
--tau;
c_dim1 = *ldc;
c_offset = 1 + c_dim1;
c__ -= c_offset;
--work;
/* Function Body */
*info = 0;
left = lsame_(side, "L");
notran = lsame_(trans, "N");
lquery = *lwork == -1;
/* NQ is the order of Q and NW is the minimum dimension of WORK */
if (left) {
nq = *m;
nw = *n;
} else {
nq = *n;
nw = *m;
}
if (! left && ! lsame_(side, "R")) {
*info = -1;
} else if (! notran && ! lsame_(trans, "T")) {
*info = -2;
} else if (*m < 0) {
*info = -3;
} else if (*n < 0) {
*info = -4;
} else if (*k < 0 || *k > nq) {
*info = -5;
} else if (*lda < max(1,*k)) {
*info = -7;
} else if (*ldc < max(1,*m)) {
*info = -10;
} else if (*lwork < max(1,nw) && ! lquery) {
*info = -12;
}
if (*info == 0) {
/* Determine the block size. NB may be at most NBMAX, where NBMAX */
/* is used to define the local array T. */
/* Computing MIN */
/* Writing concatenation */
i__3[0] = 1, a__1[0] = side;
i__3[1] = 1, a__1[1] = trans;
s_cat(ch__1, a__1, i__3, &c__2, (ftnlen)2);
i__1 = 64, i__2 = ilaenv_(&c__1, "SORMLQ", ch__1, m, n, k, &c_n1);
nb = min(i__1,i__2);
lwkopt = max(1,nw) * nb;
work[1] = (real) lwkopt;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("SORMLQ", &i__1);
return 0;
} else if (lquery) {
return 0;
}
/* Quick return if possible */
if (*m == 0 || *n == 0 || *k == 0) {
work[1] = 1.f;
return 0;
}
nbmin = 2;
ldwork = nw;
if (nb > 1 && nb < *k) {
iws = nw * nb;
if (*lwork < iws) {
nb = *lwork / ldwork;
/* Computing MAX */
/* Writing concatenation */
i__3[0] = 1, a__1[0] = side;
i__3[1] = 1, a__1[1] = trans;
s_cat(ch__1, a__1, i__3, &c__2, (ftnlen)2);
i__1 = 2, i__2 = ilaenv_(&c__2, "SORMLQ", ch__1, m, n, k, &c_n1);
nbmin = max(i__1,i__2);
}
} else {
iws = nw;
}
if (nb < nbmin || nb >= *k) {
/* Use unblocked code */
sorml2_(side, trans, m, n, k, &a[a_offset], lda, &tau[1], &c__[
c_offset], ldc, &work[1], &iinfo);
} else {
/* Use blocked code */
if (left && notran || ! left && ! notran) {
i1 = 1;
i2 = *k;
i3 = nb;
} else {
i1 = (*k - 1) / nb * nb + 1;
i2 = 1;
i3 = -nb;
}
if (left) {
ni = *n;
jc = 1;
} else {
mi = *m;
ic = 1;
}
if (notran) {
*(unsigned char *)transt = 'T';
} else {
*(unsigned char *)transt = 'N';
}
i__1 = i2;
i__2 = i3;
for (i__ = i1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) {
/* Computing MIN */
i__4 = nb, i__5 = *k - i__ + 1;
ib = min(i__4,i__5);
/* Form the triangular factor of the block reflector */
/* H = H(i) H(i+1) . . . H(i+ib-1) */
i__4 = nq - i__ + 1;
slarft_("Forward", "Rowwise", &i__4, &ib, &a[i__ + i__ * a_dim1],
lda, &tau[i__], t, &c__65);
if (left) {
/* H or H' is applied to C(i:m,1:n) */
mi = *m - i__ + 1;
ic = i__;
} else {
/* H or H' is applied to C(1:m,i:n) */
ni = *n - i__ + 1;
jc = i__;
}
/* Apply H or H' */
slarfb_(side, transt, "Forward", "Rowwise", &mi, &ni, &ib, &a[i__
+ i__ * a_dim1], lda, t, &c__65, &c__[ic + jc * c_dim1],
ldc, &work[1], &ldwork);
/* L10: */
}
}
work[1] = (real) lwkopt;
return 0;
/* End of SORMLQ */
} /* sormlq_ */