mirror of
https://github.com/opencv/opencv.git
synced 2025-01-01 22:24:06 +08:00
140 lines
4.9 KiB
C++
140 lines
4.9 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
// This file originates from the openFABMAP project:
|
|
// [http://code.google.com/p/openfabmap/]
|
|
//
|
|
// For published work which uses all or part of OpenFABMAP, please cite:
|
|
// [http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6224843]
|
|
//
|
|
// Original Algorithm by Mark Cummins and Paul Newman:
|
|
// [http://ijr.sagepub.com/content/27/6/647.short]
|
|
// [http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5613942]
|
|
// [http://ijr.sagepub.com/content/30/9/1100.abstract]
|
|
//
|
|
// License Agreement
|
|
//
|
|
// Copyright (C) 2012 Arren Glover [aj.glover@qut.edu.au] and
|
|
// Will Maddern [w.maddern@qut.edu.au], all rights reserved.
|
|
//
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#include "precomp.hpp"
|
|
#include "opencv2/contrib/openfabmap.hpp"
|
|
|
|
namespace cv {
|
|
|
|
namespace of2 {
|
|
|
|
BOWMSCTrainer::BOWMSCTrainer(double _clusterSize) :
|
|
clusterSize(_clusterSize) {
|
|
}
|
|
|
|
BOWMSCTrainer::~BOWMSCTrainer() {
|
|
}
|
|
|
|
Mat BOWMSCTrainer::cluster() const {
|
|
CV_Assert(!descriptors.empty());
|
|
int descCount = 0;
|
|
for(size_t i = 0; i < descriptors.size(); i++)
|
|
descCount += descriptors[i].rows;
|
|
|
|
Mat mergedDescriptors(descCount, descriptors[0].cols,
|
|
descriptors[0].type());
|
|
for(size_t i = 0, start = 0; i < descriptors.size(); i++)
|
|
{
|
|
Mat submut = mergedDescriptors.rowRange((int)start,
|
|
(int)(start + descriptors[i].rows));
|
|
descriptors[i].copyTo(submut);
|
|
start += descriptors[i].rows;
|
|
}
|
|
return cluster(mergedDescriptors);
|
|
}
|
|
|
|
Mat BOWMSCTrainer::cluster(const Mat& descriptors) const {
|
|
|
|
CV_Assert(!descriptors.empty());
|
|
|
|
// TODO: sort the descriptors before clustering.
|
|
|
|
|
|
Mat icovar = Mat::eye(descriptors.cols,descriptors.cols,descriptors.type());
|
|
|
|
vector<Mat> initialCentres;
|
|
initialCentres.push_back(descriptors.row(0));
|
|
for (int i = 1; i < descriptors.rows; i++) {
|
|
double minDist = DBL_MAX;
|
|
for (size_t j = 0; j < initialCentres.size(); j++) {
|
|
minDist = std::min(minDist,
|
|
cv::Mahalanobis(descriptors.row(i),initialCentres[j],
|
|
icovar));
|
|
}
|
|
if (minDist > clusterSize)
|
|
initialCentres.push_back(descriptors.row(i));
|
|
}
|
|
|
|
std::vector<std::list<cv::Mat> > clusters;
|
|
clusters.resize(initialCentres.size());
|
|
for (int i = 0; i < descriptors.rows; i++) {
|
|
int index = 0; double dist = 0, minDist = DBL_MAX;
|
|
for (size_t j = 0; j < initialCentres.size(); j++) {
|
|
dist = cv::Mahalanobis(descriptors.row(i),initialCentres[j],icovar);
|
|
if (dist < minDist) {
|
|
minDist = dist;
|
|
index = (int)j;
|
|
}
|
|
}
|
|
clusters[index].push_back(descriptors.row(i));
|
|
}
|
|
|
|
// TODO: throw away small clusters.
|
|
|
|
Mat vocabulary;
|
|
Mat centre = Mat::zeros(1,descriptors.cols,descriptors.type());
|
|
for (size_t i = 0; i < clusters.size(); i++) {
|
|
centre.setTo(0);
|
|
for (std::list<cv::Mat>::iterator Ci = clusters[i].begin(); Ci != clusters[i].end(); Ci++) {
|
|
centre += *Ci;
|
|
}
|
|
centre /= (double)clusters[i].size();
|
|
vocabulary.push_back(centre);
|
|
}
|
|
|
|
return vocabulary;
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|