opencv/modules/contrib/src/bowmsctrainer.cpp

140 lines
4.9 KiB
C++

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
// This file originates from the openFABMAP project:
// [http://code.google.com/p/openfabmap/]
//
// For published work which uses all or part of OpenFABMAP, please cite:
// [http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6224843]
//
// Original Algorithm by Mark Cummins and Paul Newman:
// [http://ijr.sagepub.com/content/27/6/647.short]
// [http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5613942]
// [http://ijr.sagepub.com/content/30/9/1100.abstract]
//
// License Agreement
//
// Copyright (C) 2012 Arren Glover [aj.glover@qut.edu.au] and
// Will Maddern [w.maddern@qut.edu.au], all rights reserved.
//
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#include "opencv2/contrib/openfabmap.hpp"
namespace cv {
namespace of2 {
BOWMSCTrainer::BOWMSCTrainer(double _clusterSize) :
clusterSize(_clusterSize) {
}
BOWMSCTrainer::~BOWMSCTrainer() {
}
Mat BOWMSCTrainer::cluster() const {
CV_Assert(!descriptors.empty());
int descCount = 0;
for(size_t i = 0; i < descriptors.size(); i++)
descCount += descriptors[i].rows;
Mat mergedDescriptors(descCount, descriptors[0].cols,
descriptors[0].type());
for(size_t i = 0, start = 0; i < descriptors.size(); i++)
{
Mat submut = mergedDescriptors.rowRange((int)start,
(int)(start + descriptors[i].rows));
descriptors[i].copyTo(submut);
start += descriptors[i].rows;
}
return cluster(mergedDescriptors);
}
Mat BOWMSCTrainer::cluster(const Mat& descriptors) const {
CV_Assert(!descriptors.empty());
// TODO: sort the descriptors before clustering.
Mat icovar = Mat::eye(descriptors.cols,descriptors.cols,descriptors.type());
vector<Mat> initialCentres;
initialCentres.push_back(descriptors.row(0));
for (int i = 1; i < descriptors.rows; i++) {
double minDist = DBL_MAX;
for (size_t j = 0; j < initialCentres.size(); j++) {
minDist = std::min(minDist,
cv::Mahalanobis(descriptors.row(i),initialCentres[j],
icovar));
}
if (minDist > clusterSize)
initialCentres.push_back(descriptors.row(i));
}
std::vector<std::list<cv::Mat> > clusters;
clusters.resize(initialCentres.size());
for (int i = 0; i < descriptors.rows; i++) {
int index = 0; double dist = 0, minDist = DBL_MAX;
for (size_t j = 0; j < initialCentres.size(); j++) {
dist = cv::Mahalanobis(descriptors.row(i),initialCentres[j],icovar);
if (dist < minDist) {
minDist = dist;
index = (int)j;
}
}
clusters[index].push_back(descriptors.row(i));
}
// TODO: throw away small clusters.
Mat vocabulary;
Mat centre = Mat::zeros(1,descriptors.cols,descriptors.type());
for (size_t i = 0; i < clusters.size(); i++) {
centre.setTo(0);
for (std::list<cv::Mat>::iterator Ci = clusters[i].begin(); Ci != clusters[i].end(); Ci++) {
centre += *Ci;
}
centre /= (double)clusters[i].size();
vocabulary.push_back(centre);
}
return vocabulary;
}
}
}