opencv/modules/dnn/test/test_int.cpp
alexlyulkov 6af0394cd2
Merge pull request #25458 from alexlyulkov:al/dnn-openvino-int-support
Added int support for OpenVINO dnn backend #25458

Modified dnn OpenVINO integration to support type inference and int operations.

Added OpenVINO support to Cast, CumSum, Expand, Gather, GatherElements, Scatter, ScatterND, Tile layers.
I tried to add Reduce layer, but looks like OpenVINO uses float values inside Reduce operation so it can't pass our int tests.

OpenVINO uses int32 precision for int64 operations, so I've modified input values for int64 tests when backend is OpenVINO.

OpenVINO has a strange behavior with custom layers and int64 values. After model compilation OpenVINO may change types, so the model can have different output type. That's why these tests were disabled:
- Test_ArgMax_Int.random/0, where GetParam() = (4, NGRAPH/CPU)
- Test_ArgMax_Int.random/6, where GetParam() = (11, NGRAPH/CPU)
- Test_Reduce_Int.random/6, where GetParam() = (11, NGRAPH/CPU)
- Test_Reduce_Int.two_axes/6, where GetParam() = (11, NGRAPH/CPU)

Also these tests were temporary disabled, they didn't work on both 4.x and 5.x branches:
- Test_Caffe_layers.layer_prelu_fc/0, where GetParam() = NGRAPH/CPU
- Test_ONNX_layers.LSTM_Activations/0, where GetParam() = NGRAPH/CPU
- Test_ONNX_layers.Quantized_Convolution/0, where GetParam() = NGRAPH/CPU
- Test_ONNX_layers.Quantized_Eltwise_Scalar/0, where GetParam() = NGRAPH/CPU
- Test_TFLite.EfficientDet_int8/0, where GetParam() = NGRAPH/CPU


### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2024-05-15 11:51:59 +03:00

1225 lines
39 KiB
C++

// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2017, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
#include "test_precomp.hpp"
#include <opencv2/dnn/shape_utils.hpp>
namespace opencv_test { namespace {
int64_t getValueAt(const Mat &m, const int *indices)
{
if (m.type() == CV_32S)
return m.at<int32_t>(indices);
else if (m.type() == CV_64S)
return m.at<int64_t>(indices);
else
CV_Error(Error::BadDepth, "Unsupported type");
return -1;
}
typedef testing::TestWithParam<tuple<int, tuple<Backend, Target> > > Test_NaryEltwise_Int;
TEST_P(Test_NaryEltwise_Int, random)
{
int matType = get<0>(GetParam());
tuple<Backend, Target> backend_target= get<1>(GetParam());
Backend backend = get<0>(backend_target);
Target target = get<1>(backend_target);
std::vector<int> inShape{2, 3, 4, 5};
int64_t low = matType == CV_64S ? 1000000000000000ll : 1000000000;
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
low = 1000000000; // Looks like OpenVINO uses int32 internal values for int64 operations
Mat input1(inShape, matType);
cv::randu(input1, low, low + 100);
Mat input2(inShape, matType);
cv::randu(input2, low, low + 100);
Net net;
LayerParams lp;
lp.type = "NaryEltwise";
lp.name = "testLayer";
lp.set("operation", "add");
int id = net.addLayerToPrev(lp.name, lp.type, lp);
net.connect(0, 1, id, 1);
vector<String> inpNames(2);
inpNames[0] = "input1";
inpNames[1] = "input2";
net.setInputsNames(inpNames);
net.setInput(input1, inpNames[0]);
net.setInput(input2, inpNames[1]);
net.setPreferableBackend(backend);
net.setPreferableTarget(target);
Mat re;
re = net.forward();
EXPECT_EQ(re.depth(), matType);
EXPECT_EQ(re.size.dims(), 4);
EXPECT_EQ(re.size[0], input1.size[0]);
EXPECT_EQ(re.size[1], input1.size[1]);
EXPECT_EQ(re.size[2], input1.size[2]);
EXPECT_EQ(re.size[3], input1.size[3]);
std::vector<int> reIndices(4);
for (int i0 = 0; i0 < re.size[0]; ++i0)
{
reIndices[0] = i0;
for (int i1 = 0; i1 < re.size[1]; ++i1)
{
reIndices[1] = i1;
for (int i2 = 0; i2 < re.size[2]; ++i2)
{
reIndices[2] = i2;
for (int i3 = 0; i3 < re.size[3]; ++i3)
{
reIndices[3] = i3;
EXPECT_EQ(getValueAt(re, reIndices.data()), getValueAt(input1, reIndices.data()) + getValueAt(input2, reIndices.data()));
}
}
}
}
}
INSTANTIATE_TEST_CASE_P(/**/, Test_NaryEltwise_Int, Combine(
testing::Values(CV_32S, CV_64S),
dnnBackendsAndTargets()
));
typedef testing::TestWithParam<tuple<int, tuple<Backend, Target> > > Test_Const_Int;
TEST_P(Test_Const_Int, random)
{
int matType = get<0>(GetParam());
tuple<Backend, Target> backend_target= get<1>(GetParam());
Backend backend = get<0>(backend_target);
Target target = get<1>(backend_target);
std::vector<int> inShape{2, 3, 4, 5};
int64_t low = matType == CV_64S ? 1000000000000000ll : 1000000000;
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
low = 1000000000; // Looks like OpenVINO uses int32 internal values for int64 operations
Mat input1(inShape, matType);
cv::randu(input1, low, low + 100);
Mat inputConst(inShape, matType);
cv::randu(inputConst, low, low + 100);
Net net;
LayerParams lpConst;
lpConst.type = "Const";
lpConst.name = "constLayer";
lpConst.blobs.push_back(inputConst);
int idConst = net.addLayer(lpConst.name, lpConst.type, lpConst);
LayerParams lp;
lp.type = "NaryEltwise";
lp.name = "testLayer";
lp.set("operation", "add");
int idSum = net.addLayer(lp.name, lp.type, lp);
net.connect(0, 0, idSum, 0);
net.connect(idConst, 0, idSum, 1);
net.setInput(input1);
net.setPreferableBackend(backend);
net.setPreferableTarget(target);
Mat re;
re = net.forward();
EXPECT_EQ(re.depth(), matType);
EXPECT_EQ(re.size.dims(), 4);
EXPECT_EQ(re.size[0], input1.size[0]);
EXPECT_EQ(re.size[1], input1.size[1]);
EXPECT_EQ(re.size[2], input1.size[2]);
EXPECT_EQ(re.size[3], input1.size[3]);
std::vector<int> reIndices(4);
for (int i0 = 0; i0 < re.size[0]; ++i0)
{
reIndices[0] = i0;
for (int i1 = 0; i1 < re.size[1]; ++i1)
{
reIndices[1] = i1;
for (int i2 = 0; i2 < re.size[2]; ++i2)
{
reIndices[2] = i2;
for (int i3 = 0; i3 < re.size[3]; ++i3)
{
reIndices[3] = i3;
EXPECT_EQ(getValueAt(re, reIndices.data()), getValueAt(input1, reIndices.data()) + getValueAt(inputConst, reIndices.data()));
}
}
}
}
}
INSTANTIATE_TEST_CASE_P(/**/, Test_Const_Int, Combine(
testing::Values(CV_32S, CV_64S),
dnnBackendsAndTargets()
));
typedef testing::TestWithParam<tuple<int, int, tuple<Backend, Target> > > Test_ScatterND_Int;
TEST_P(Test_ScatterND_Int, random)
{
int matType = get<0>(GetParam());
int indicesType = get<1>(GetParam());
tuple<Backend, Target> backend_target= get<2>(GetParam());
Backend backend = get<0>(backend_target);
Target target = get<1>(backend_target);
std::vector<int> inShape{2, 3, 4, 5};
int64_t low = matType == CV_64S ? 1000000000000000ll : 1000000000;
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
low = 1000000000; // Looks like OpenVINO uses int32 internal values for int64 operations
Mat input(inShape, matType);
cv::randu(input, low, low + 100);
std::vector<int64_t> indicesValues{0, 1, 2, 3,
1, 2, 3, 4};
std::vector<int64_t> updatesValues{25, 35};
Mat indices(2, 4, indicesType);
std::vector<int> updatesShape{2};
Mat updates(updatesShape, matType);
for (int i = 0; i < indicesValues.size(); ++i)
{
if (indicesType == CV_32S)
indices.ptr<int32_t>()[i] = indicesValues[i];
else
indices.ptr<int64_t>()[i] = indicesValues[i];
}
for (int i = 0; i < updatesValues.size(); ++i)
{
if (matType == CV_32S)
updates.ptr<int32_t>()[i] = updatesValues[i];
else
updates.ptr<int64_t>()[i] = updatesValues[i];
}
Net net;
LayerParams lp;
lp.type = "ScatterND";
lp.name = "testLayer";
int id = net.addLayerToPrev(lp.name, lp.type, lp);
net.connect(0, 1, id, 1);
net.connect(0, 2, id, 2);
std::vector<String> inpNames(3);
inpNames[0] = "scattedND_input";
inpNames[1] = "scatterND_indices";
inpNames[2] = "scatterND_updates";
net.setInputsNames(inpNames);
net.setInput(input, inpNames[0]);
net.setInput(indices, inpNames[1]);
net.setInput(updates, inpNames[2]);
net.setPreferableBackend(backend);
net.setPreferableTarget(target);
Mat re;
re = net.forward();
EXPECT_EQ(re.depth(), matType);
EXPECT_EQ(re.size.dims(), 4);
ASSERT_EQ(shape(input), shape(re));
std::vector<int> reIndices(4);
for (int i0 = 0; i0 < input.size[0]; ++i0)
{
reIndices[0] = i0;
for (int i1 = 0; i1 < input.size[1]; ++i1)
{
reIndices[1] = i1;
for (int i2 = 0; i2 < input.size[2]; ++i2)
{
reIndices[2] = i2;
for (int i3 = 0; i3 < input.size[3]; ++i3)
{
reIndices[3] = i3;
if (reIndices[0] == indicesValues[0] &&
reIndices[1] == indicesValues[1] &&
reIndices[2] == indicesValues[2] &&
reIndices[3] == indicesValues[3])
{
EXPECT_EQ(getValueAt(re, reIndices.data()), updatesValues[0]);
}
else if (reIndices[0] == indicesValues[4] &&
reIndices[1] == indicesValues[5] &&
reIndices[2] == indicesValues[6] &&
reIndices[3] == indicesValues[7])
{
EXPECT_EQ(getValueAt(re, reIndices.data()), updatesValues[1]);
}
else
{
EXPECT_EQ(getValueAt(re, reIndices.data()), getValueAt(input, reIndices.data()));
}
}
}
}
}
}
INSTANTIATE_TEST_CASE_P(/**/, Test_ScatterND_Int, Combine(
testing::Values(CV_32S, CV_64S),
testing::Values(CV_32S, CV_64S),
dnnBackendsAndTargets()
));
typedef testing::TestWithParam<tuple<int, tuple<Backend, Target> > > Test_Concat_Int;
TEST_P(Test_Concat_Int, random)
{
int matType = get<0>(GetParam());
tuple<Backend, Target> backend_target= get<1>(GetParam());
Backend backend = get<0>(backend_target);
Target target = get<1>(backend_target);
int64_t low = matType == CV_64S ? 1000000000000000ll : 1000000000;
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
low = 1000000000; // Looks like OpenVINO uses int32 internal values for int64 operations
std::vector<int> inShape1{2, 3, 4, 5};
Mat input1(inShape1, matType);
cv::randu(input1, low, low + 100);
std::vector<int> inShape2{2, 2, 4, 5};
Mat input2(inShape2, matType);
cv::randu(input2, low, low + 100);
Net net;
LayerParams lp;
lp.type = "Concat";
lp.name = "testLayer";
lp.set<int>("axis", 1);
int id = net.addLayerToPrev(lp.name, lp.type, lp);
net.connect(0, 1, id, 1);
vector<String> inpNames(2);
inpNames[0] = "input1";
inpNames[1] = "input2";
net.setInputsNames(inpNames);
net.setInput(input1, inpNames[0]);
net.setInput(input2, inpNames[1]);
net.setPreferableBackend(backend);
net.setPreferableTarget(target);
Mat re;
re = net.forward();
EXPECT_EQ(re.depth(), matType);
EXPECT_EQ(re.size.dims(), 4);
EXPECT_EQ(re.size[0], input1.size[0]);
EXPECT_EQ(re.size[1], input1.size[1] + input2.size[1]);
EXPECT_EQ(re.size[2], input1.size[2]);
EXPECT_EQ(re.size[3], input1.size[3]);
std::vector<int> inIndices(4);
std::vector<int> reIndices(4);
for (int i0 = 0; i0 < re.size[0]; ++i0)
{
reIndices[0] = i0;
inIndices[0] = i0;
for (int i1 = 0; i1 < re.size[1]; ++i1)
{
reIndices[1] = i1;
if (i1 < input1.size[1])
inIndices[1] = i1;
else
inIndices[1] = i1 - input1.size[1];
for (int i2 = 0; i2 < re.size[2]; ++i2)
{
reIndices[2] = i2;
inIndices[2] = i2;
for (int i3 = 0; i3 < re.size[3]; ++i3)
{
reIndices[3] = i3;
inIndices[3] = i3;
if (i1 < input1.size[1])
{
EXPECT_EQ(getValueAt(re, reIndices.data()), getValueAt(input1, inIndices.data()));
}
else
{
EXPECT_EQ(getValueAt(re, reIndices.data()), getValueAt(input2, inIndices.data()));
}
}
}
}
}
}
INSTANTIATE_TEST_CASE_P(/**/, Test_Concat_Int, Combine(
testing::Values(CV_32S, CV_64S),
dnnBackendsAndTargets()
));
typedef testing::TestWithParam<tuple<int, tuple<Backend, Target> > > Test_ArgMax_Int;
TEST_P(Test_ArgMax_Int, random)
{
int matType = get<0>(GetParam());
tuple<Backend, Target> backend_target= get<1>(GetParam());
Backend backend = get<0>(backend_target);
Target target = get<1>(backend_target);
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH); // There is a problem with OpenVINO and custom int64 layers. After model compilation the output tensor type changes from int64 to int32
std::vector<int> inShape{5, 4, 3, 2};
int64_t low = matType == CV_64S ? 1000000000000000ll : 100000000;
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
low = 1000000000; // Looks like OpenVINO uses int32 internal values for int64 operations
Mat input(inShape, matType);
cv::randu(input, low, low + 100);
Net net;
LayerParams lp;
lp.type = "Arg";
lp.name = "testLayer";
lp.set("op", "max");
lp.set<int>("keepdims", 0);
lp.set<int>("axis", 1);
net.addLayerToPrev(lp.name, lp.type, lp);
net.setInput(input);
net.setPreferableBackend(backend);
net.setPreferableTarget(target);
Mat re;
re = net.forward();
EXPECT_EQ(re.depth(), CV_64S);
EXPECT_EQ(re.size.dims(), 3);
EXPECT_EQ(re.size[0], inShape[0]);
EXPECT_EQ(re.size[1], inShape[2]);
EXPECT_EQ(re.size[2], inShape[3]);
std::vector<int> inIndices(4);
std::vector<int> reIndices(3);
for (int i0 = 0; i0 < re.size[0]; ++i0)
{
inIndices[0] = i0;
reIndices[0] = i0;
for (int i1 = 0; i1 < re.size[1]; ++i1)
{
inIndices[2] = i1;
reIndices[1] = i1;
for (int i2 = 0; i2 < re.size[2]; ++i2)
{
inIndices[3] = i2;
reIndices[2] = i2;
int64_t max_value = 0;
int64_t index = 0;
for (int j = 0; j < input.size[1]; ++j)
{
inIndices[1] = j;
int64_t cur_value = getValueAt(input, inIndices.data());
if (cur_value > max_value)
{
max_value = cur_value;
index = j;
}
}
EXPECT_EQ(getValueAt(re, reIndices.data()), index);
}
}
}
}
INSTANTIATE_TEST_CASE_P(/**/, Test_ArgMax_Int, Combine(
testing::Values(CV_32S, CV_64S),
dnnBackendsAndTargets()
));
typedef testing::TestWithParam<tuple<int, tuple<Backend, Target> > > Test_Blank_Int;
TEST_P(Test_Blank_Int, random)
{
int matType = get<0>(GetParam());
tuple<Backend, Target> backend_target= get<1>(GetParam());
Backend backend = get<0>(backend_target);
Target target = get<1>(backend_target);
std::vector<int> inShape{2, 3, 4, 5};
int64_t low = matType == CV_64S ? 1000000000000000ll : 1000000000;
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
low = 1000000000; // Looks like OpenVINO uses int32 internal values for int64 operations
Mat input(inShape, matType);
cv::randu(input, low, low + 100);
Net net;
LayerParams lp;
lp.type = "Identity";
lp.name = "testLayer";
net.addLayerToPrev(lp.name, lp.type, lp);
net.setInput(input);
net.setPreferableBackend(backend);
net.setPreferableTarget(target);
Mat re;
re = net.forward();
EXPECT_EQ(re.depth(), matType);
EXPECT_EQ(re.size.dims(), 4);
EXPECT_EQ(re.size[0], 2);
EXPECT_EQ(re.size[1], 3);
EXPECT_EQ(re.size[2], 4);
EXPECT_EQ(re.size[3], 5);
std::vector<int> reIndices(4);
for (int i0 = 0; i0 < re.size[0]; ++i0)
{
reIndices[0] = i0;
for (int i1 = 0; i1 < re.size[1]; ++i1)
{
reIndices[1] = i1;
for (int i2 = 0; i2 < re.size[2]; ++i2)
{
reIndices[2] = i2;
for (int i3 = 0; i3 < re.size[3]; ++i3)
{
reIndices[3] = i3;
EXPECT_EQ(getValueAt(re, reIndices.data()), getValueAt(input, reIndices.data()));
}
}
}
}
}
INSTANTIATE_TEST_CASE_P(/**/, Test_Blank_Int, Combine(
testing::Values(CV_32S, CV_64S),
dnnBackendsAndTargets()
));
typedef testing::TestWithParam<tuple<int, tuple<Backend, Target> > > Test_Expand_Int;
TEST_P(Test_Expand_Int, random)
{
int matType = get<0>(GetParam());
tuple<Backend, Target> backend_target= get<1>(GetParam());
Backend backend = get<0>(backend_target);
Target target = get<1>(backend_target);
std::vector<int> inShape{2, 3, 1, 5};
int64_t low = matType == CV_64S ? 1000000000000000ll : 1000000000;
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
low = 1000000000; // Looks like OpenVINO uses int32 internal values for int64 operations
Mat input(inShape, matType);
cv::randu(input, low, low + 100);
std::vector<int> outShape{2, 1, 4, 5};
Net net;
LayerParams lp;
lp.type = "Expand";
lp.name = "testLayer";
lp.set("shape", DictValue::arrayInt<int*>(&outShape[0], outShape.size()));
net.addLayerToPrev(lp.name, lp.type, lp);
net.setInput(input);
net.setPreferableBackend(backend);
net.setPreferableTarget(target);
Mat re;
re = net.forward();
EXPECT_EQ(re.depth(), matType);
EXPECT_EQ(re.size.dims(), 4);
EXPECT_EQ(re.size[0], 2);
EXPECT_EQ(re.size[1], 3);
EXPECT_EQ(re.size[2], 4);
EXPECT_EQ(re.size[3], 5);
std::vector<int> inIndices(4);
std::vector<int> reIndices(4);
for (int i0 = 0; i0 < re.size[0]; ++i0)
{
inIndices[0] = i0 % inShape[0];
reIndices[0] = i0;
for (int i1 = 0; i1 < re.size[1]; ++i1)
{
inIndices[1] = i1 % inShape[1];
reIndices[1] = i1;
for (int i2 = 0; i2 < re.size[2]; ++i2)
{
inIndices[2] = i2 % inShape[2];
reIndices[2] = i2;
for (int i3 = 0; i3 < re.size[3]; ++i3)
{
inIndices[3] = i3 % inShape[3];
reIndices[3] = i3;
EXPECT_EQ(getValueAt(re, reIndices.data()), getValueAt(input, inIndices.data()));
}
}
}
}
}
INSTANTIATE_TEST_CASE_P(/**/, Test_Expand_Int, Combine(
testing::Values(CV_32S, CV_64S),
dnnBackendsAndTargets()
));
typedef testing::TestWithParam<tuple<int, tuple<Backend, Target> > > Test_Permute_Int;
TEST_P(Test_Permute_Int, random)
{
int matType = get<0>(GetParam());
tuple<Backend, Target> backend_target= get<1>(GetParam());
Backend backend = get<0>(backend_target);
Target target = get<1>(backend_target);
std::vector<int> inShape{2, 3, 4, 5};
int64_t low = matType == CV_64S ? 1000000000000000ll : 1000000000;
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
low = 1000000000; // Looks like OpenVINO uses int32 internal values for int64 operations
Mat input(inShape, matType);
cv::randu(input, low, low + 100);
std::vector<int> order{0, 2, 3, 1};
Net net;
LayerParams lp;
lp.type = "Permute";
lp.name = "testLayer";
lp.set("order", DictValue::arrayInt<int*>(&order[0], order.size()));
net.addLayerToPrev(lp.name, lp.type, lp);
net.setInput(input);
net.setPreferableBackend(backend);
net.setPreferableTarget(target);
Mat re;
re = net.forward();
EXPECT_EQ(re.depth(), matType);
EXPECT_EQ(re.size.dims(), 4);
EXPECT_EQ(re.size[0], 2);
EXPECT_EQ(re.size[1], 4);
EXPECT_EQ(re.size[2], 5);
EXPECT_EQ(re.size[3], 3);
std::vector<int> inIndices(4);
std::vector<int> reIndices(4);
for (int i0 = 0; i0 < input.size[0]; ++i0)
{
inIndices[0] = i0;
reIndices[0] = i0;
for (int i1 = 0; i1 < input.size[1]; ++i1)
{
inIndices[1] = i1;
reIndices[3] = i1;
for (int i2 = 0; i2 < input.size[2]; ++i2)
{
inIndices[2] = i2;
reIndices[1] = i2;
for (int i3 = 0; i3 < input.size[3]; ++i3)
{
inIndices[3] = i3;
reIndices[2] = i3;
EXPECT_EQ(getValueAt(re, reIndices.data()), getValueAt(input, inIndices.data()));
}
}
}
}
}
INSTANTIATE_TEST_CASE_P(/**/, Test_Permute_Int, Combine(
testing::Values(CV_32S, CV_64S),
dnnBackendsAndTargets()
));
typedef testing::TestWithParam<tuple<int, int, tuple<Backend, Target> > > Test_GatherElements_Int;
TEST_P(Test_GatherElements_Int, random)
{
int matType = get<0>(GetParam());
int indicesType = get<1>(GetParam());
tuple<Backend, Target> backend_target= get<2>(GetParam());
Backend backend = get<0>(backend_target);
Target target = get<1>(backend_target);
std::vector<int> inShape{2, 3, 4, 5};
int64_t low = matType == CV_64S ? 1000000000000000ll : 1000000000;
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
low = 1000000000; // Looks like OpenVINO uses int32 internal values for int64 operations
Mat input(inShape, matType);
cv::randu(input, low, low + 100);
std::vector<int> indicesShape{2, 3, 10, 5};
Mat indicesMat(indicesShape, indicesType);
cv::randu(indicesMat, 0, 4);
Net net;
LayerParams lp;
lp.type = "GatherElements";
lp.name = "testLayer";
lp.set("axis", 2);
int id = net.addLayerToPrev(lp.name, lp.type, lp);
net.connect(0, 1, id, 1);
std::vector<String> inpNames(2);
inpNames[0] = "gather_input";
inpNames[1] = "gather_indices";
net.setInputsNames(inpNames);
net.setInput(input, inpNames[0]);
net.setInput(indicesMat, inpNames[1]);
net.setPreferableBackend(backend);
net.setPreferableTarget(target);
Mat re;
re = net.forward();
EXPECT_EQ(re.depth(), matType);
EXPECT_EQ(re.size.dims(), 4);
ASSERT_EQ(shape(indicesMat), shape(re));
std::vector<int> inIndices(4);
std::vector<int> reIndices(4);
for (int i0 = 0; i0 < input.size[0]; ++i0)
{
inIndices[0] = i0;
reIndices[0] = i0;
for (int i1 = 0; i1 < input.size[1]; ++i1)
{
inIndices[1] = i1;
reIndices[1] = i1;
for (int i2 = 0; i2 < indicesMat.size[2]; ++i2)
{
reIndices[2] = i2;
for (int i3 = 0; i3 < input.size[3]; ++i3)
{
inIndices[3] = i3;
reIndices[3] = i3;
inIndices[2] = getValueAt(indicesMat, reIndices.data());
EXPECT_EQ(getValueAt(re, reIndices.data()), getValueAt(input, inIndices.data()));
}
}
}
}
}
INSTANTIATE_TEST_CASE_P(/**/, Test_GatherElements_Int, Combine(
testing::Values(CV_32S, CV_64S),
testing::Values(CV_32S, CV_64S),
dnnBackendsAndTargets()
));
typedef testing::TestWithParam<tuple<int, int, tuple<Backend, Target> > > Test_Gather_Int;
TEST_P(Test_Gather_Int, random)
{
int matType = get<0>(GetParam());
int indicesType = get<1>(GetParam());
tuple<Backend, Target> backend_target= get<2>(GetParam());
Backend backend = get<0>(backend_target);
Target target = get<1>(backend_target);
std::vector<int> inShape{5, 1};
int64_t low = matType == CV_64S ? 1000000000000000ll : 1000000000;
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
low = 1000000000; // Looks like OpenVINO uses int32 internal values for int64 operations
Mat input(inShape, matType);
cv::randu(input, low, low + 100);
std::vector<int> indices_shape = {1, 1};
Mat indicesMat = cv::Mat(indices_shape, indicesType, 0.0);
std::vector<int> output_shape = {5, 1};
cv::Mat outputRef = cv::Mat(output_shape, matType, input(cv::Range::all(), cv::Range(0, 1)).data);
Net net;
LayerParams lp;
lp.type = "Gather";
lp.name = "testLayer";
lp.set("axis", 1);
lp.set("real_ndims", 1);
int id = net.addLayerToPrev(lp.name, lp.type, lp);
net.connect(0, 1, id, 1);
std::vector<String> inpNames(2);
inpNames[0] = "gather_input";
inpNames[1] = "gather_indices";
net.setInputsNames(inpNames);
net.setInput(input, inpNames[0]);
net.setInput(indicesMat, inpNames[1]);
net.setPreferableBackend(backend);
net.setPreferableTarget(target);
Mat re;
re = net.forward();
EXPECT_EQ(re.depth(), matType);
ASSERT_EQ(shape(outputRef), shape(re));
normAssert(outputRef, re);
}
INSTANTIATE_TEST_CASE_P(/**/, Test_Gather_Int, Combine(
testing::Values(CV_32S, CV_64S),
testing::Values(CV_32S, CV_64S),
dnnBackendsAndTargets()
));
typedef testing::TestWithParam<tuple<int, int, tuple<Backend, Target> > > Test_Cast_Int;
TEST_P(Test_Cast_Int, random)
{
int inMatType = get<0>(GetParam());
int outMatType = get<1>(GetParam());
tuple<Backend, Target> backend_target= get<2>(GetParam());
Backend backend = get<0>(backend_target);
Target target = get<1>(backend_target);
std::vector<int> inShape{2, 3, 4, 5};
Mat input(inShape, inMatType);
cv::randu(input, 200, 300);
Mat outputRef;
input.convertTo(outputRef, outMatType);
Net net;
LayerParams lp;
lp.type = "Cast";
lp.name = "testLayer";
lp.set("outputType", outMatType);
net.addLayerToPrev(lp.name, lp.type, lp);
net.setInput(input);
net.setPreferableBackend(backend);
net.setPreferableTarget(target);
Mat re;
re = net.forward();
EXPECT_EQ(re.depth(), outMatType);
EXPECT_EQ(re.size.dims(), 4);
ASSERT_EQ(shape(input), shape(re));
normAssert(outputRef, re);
}
INSTANTIATE_TEST_CASE_P(/**/, Test_Cast_Int, Combine(
testing::Values(CV_32S, CV_64S),
testing::Values(CV_32S, CV_64S),
dnnBackendsAndTargets()
));
typedef testing::TestWithParam<tuple<int, tuple<Backend, Target> > > Test_Pad_Int;
TEST_P(Test_Pad_Int, random)
{
int matType = get<0>(GetParam());
tuple<Backend, Target> backend_target= get<1>(GetParam());
Backend backend = get<0>(backend_target);
Target target = get<1>(backend_target);
std::vector<int> inShape{2, 3, 4, 5};
int64_t low = matType == CV_64S ? 1000000000000000ll : 1000000000;
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
low = 1000000000; // Looks like OpenVINO uses int32 internal values for int64 operations
Mat input(inShape, matType);
cv::randu(input, low, low + 100);
std::vector<int> paddings{0, 0, 0, 0, 1, 0, 0, 1};
Net net;
LayerParams lp;
lp.type = "Padding";
lp.name = "testLayer";
lp.set("paddings", DictValue::arrayInt<int*>(&paddings[0], paddings.size()));
lp.set<double>("value", 25);
net.addLayerToPrev(lp.name, lp.type, lp);
net.setInput(input);
net.setPreferableBackend(backend);
net.setPreferableTarget(target);
Mat re;
re = net.forward();
EXPECT_EQ(re.depth(), matType);
EXPECT_EQ(re.size.dims(), 4);
EXPECT_EQ(re.size[0], 2);
EXPECT_EQ(re.size[1], 3);
EXPECT_EQ(re.size[2], 5);
EXPECT_EQ(re.size[3], 6);
std::vector<int> reIndices(4);
std::vector<int> inIndices(4);
for (int i0 = 0; i0 < re.size[0]; ++i0)
{
reIndices[0] = i0;
inIndices[0] = i0;
for (int i1 = 0; i1 < re.size[1]; ++i1)
{
reIndices[1] = i1;
inIndices[1] = i1;
for (int i2 = 0; i2 < re.size[2]; ++i2)
{
reIndices[2] = i2;
inIndices[2] = i2 - 1;
for (int i3 = 0; i3 < re.size[3]; ++i3)
{
reIndices[3] = i3;
inIndices[3] = i3;
if (i2 < 1 || i3 >= input.size[3])
{
EXPECT_EQ(getValueAt(re, reIndices.data()), 25l);
}
else
{
EXPECT_EQ(getValueAt(re, reIndices.data()), getValueAt(input, inIndices.data()));
}
}
}
}
}
}
INSTANTIATE_TEST_CASE_P(/**/, Test_Pad_Int, Combine(
testing::Values(CV_32S, CV_64S),
dnnBackendsAndTargets()
));
typedef testing::TestWithParam<tuple<int, tuple<Backend, Target> > > Test_Slice_Int;
TEST_P(Test_Slice_Int, random)
{
int matType = get<0>(GetParam());
tuple<Backend, Target> backend_target= get<1>(GetParam());
Backend backend = get<0>(backend_target);
Target target = get<1>(backend_target);
std::vector<int> inputShape{1, 16, 6, 8};
std::vector<int> begin{0, 4, 0, 0};
std::vector<int> end{1, 8, 6, 8};
int64_t low = matType == CV_64S ? 1000000000000000ll : 1000000000;
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
low = 1000000000; // Looks like OpenVINO uses int32 internal values for int64 operations
Mat input(inputShape, matType);
cv::randu(input, low, low + 100);
std::vector<Range> range(4);
for (int i = 0; i < 4; ++i)
range[i] = Range(begin[i], end[i]);
Net net;
LayerParams lp;
lp.type = "Slice";
lp.name = "testLayer";
lp.set("begin", DictValue::arrayInt<int*>(&(begin[0]), 4));
lp.set("end", DictValue::arrayInt<int*>(&(end[0]), 4));
net.addLayerToPrev(lp.name, lp.type, lp);
net.setInput(input);
net.setPreferableBackend(backend);
net.setPreferableTarget(target);
Mat out = net.forward();
EXPECT_GT(cv::norm(out, NORM_INF), 0);
normAssert(out, input(range));
}
INSTANTIATE_TEST_CASE_P(/**/, Test_Slice_Int, Combine(
testing::Values(CV_32S, CV_64S),
dnnBackendsAndTargets()
));
typedef testing::TestWithParam<tuple<int, tuple<Backend, Target> > > Test_Reshape_Int;
TEST_P(Test_Reshape_Int, random)
{
int matType = get<0>(GetParam());
tuple<Backend, Target> backend_target= get<1>(GetParam());
Backend backend = get<0>(backend_target);
Target target = get<1>(backend_target);
std::vector<int> inShape{2, 3, 4, 5};
std::vector<int> outShape{2, 3, 2, 10};
int64_t low = matType == CV_64S ? 1000000000000000ll : 1000000000;
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
low = 1000000000; // Looks like OpenVINO uses int32 internal values for int64 operations
Mat input(inShape, matType);
cv::randu(input, low, low + 100);
Net net;
LayerParams lp;
lp.type = "Reshape";
lp.name = "testLayer";
lp.set("dim", DictValue::arrayInt<int*>(&outShape[0], outShape.size()));
net.addLayerToPrev(lp.name, lp.type, lp);
net.setInput(input);
net.setPreferableBackend(backend);
net.setPreferableTarget(target);
Mat re;
re = net.forward();
EXPECT_EQ(re.depth(), matType);
EXPECT_EQ(re.size.dims(), 4);
EXPECT_EQ(re.size[0], outShape[0]);
EXPECT_EQ(re.size[1], outShape[1]);
EXPECT_EQ(re.size[2], outShape[2]);
EXPECT_EQ(re.size[3], outShape[3]);
for (int i = 0; i < input.total(); ++i)
{
if (matType == CV_32S) {
EXPECT_EQ(re.ptr<int32_t>()[i], input.ptr<int32_t>()[i]);
} else {
EXPECT_EQ(re.ptr<int64_t>()[i], input.ptr<int64_t>()[i]);
}
}
}
INSTANTIATE_TEST_CASE_P(/**/, Test_Reshape_Int, Combine(
testing::Values(CV_32S, CV_64S),
dnnBackendsAndTargets()
));
typedef testing::TestWithParam<tuple<int, tuple<Backend, Target> > > Test_Flatten_Int;
TEST_P(Test_Flatten_Int, random)
{
int matType = get<0>(GetParam());
tuple<Backend, Target> backend_target= get<1>(GetParam());
Backend backend = get<0>(backend_target);
Target target = get<1>(backend_target);
std::vector<int> inShape{2, 3, 4, 5};
int64_t low = matType == CV_64S ? 1000000000000000ll : 1000000000;
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
low = 1000000000; // Looks like OpenVINO uses int32 internal values for int64 operations
Mat input(inShape, matType);
cv::randu(input, low, low + 100);
Net net;
LayerParams lp;
lp.type = "Flatten";
lp.name = "testLayer";
lp.set("axis", 1);
net.addLayerToPrev(lp.name, lp.type, lp);
net.setInput(input);
net.setPreferableBackend(backend);
net.setPreferableTarget(target);
Mat re;
re = net.forward();
EXPECT_EQ(re.depth(), matType);
EXPECT_EQ(re.size.dims(), 2);
EXPECT_EQ(re.size[0], inShape[0]);
EXPECT_EQ(re.size[1], inShape[1] * inShape[2] * inShape[3]);
for (int i = 0; i < input.total(); ++i)
{
if (matType == CV_32S) {
EXPECT_EQ(re.ptr<int32_t>()[i], input.ptr<int32_t>()[i]);
} else {
EXPECT_EQ(re.ptr<int64_t>()[i], input.ptr<int64_t>()[i]);
}
}
}
INSTANTIATE_TEST_CASE_P(/**/, Test_Flatten_Int, Combine(
testing::Values(CV_32S, CV_64S),
dnnBackendsAndTargets()
));
typedef testing::TestWithParam<tuple<int, tuple<Backend, Target> > > Test_Tile_Int;
TEST_P(Test_Tile_Int, random)
{
int matType = get<0>(GetParam());
tuple<Backend, Target> backend_target= get<1>(GetParam());
Backend backend = get<0>(backend_target);
Target target = get<1>(backend_target);
std::vector<int> inShape{2, 3, 4, 5};
int64_t low = matType == CV_64S ? 1000000000000000ll : 1000000000;
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
low = 1000000000; // Looks like OpenVINO uses int32 internal values for int64 operations
Mat input(inShape, matType);
cv::randu(input, low, low + 100);
std::vector<int> repeats{1, 1, 2, 3};
Net net;
LayerParams lp;
lp.type = "Tile";
lp.name = "testLayer";
lp.set("repeats", DictValue::arrayInt<int*>(repeats.data(), repeats.size()));
net.addLayerToPrev(lp.name, lp.type, lp);
net.setInput(input);
net.setPreferableBackend(backend);
net.setPreferableTarget(target);
Mat re;
re = net.forward();
EXPECT_EQ(re.depth(), matType);
EXPECT_EQ(re.size.dims(), 4);
EXPECT_EQ(re.size[0], inShape[0] * repeats[0]);
EXPECT_EQ(re.size[1], inShape[1] * repeats[1]);
EXPECT_EQ(re.size[2], inShape[2] * repeats[2]);
EXPECT_EQ(re.size[3], inShape[3] * repeats[3]);
std::vector<int> inIndices(4);
std::vector<int> reIndices(4);
for (int i0 = 0; i0 < re.size[0]; ++i0)
{
inIndices[0] = i0 % inShape[0];
reIndices[0] = i0;
for (int i1 = 0; i1 < re.size[1]; ++i1)
{
inIndices[1] = i1 % inShape[1];
reIndices[1] = i1;
for (int i2 = 0; i2 < re.size[2]; ++i2)
{
inIndices[2] = i2 % inShape[2];
reIndices[2] = i2;
for (int i3 = 0; i3 < re.size[3]; ++i3)
{
inIndices[3] = i3 % inShape[3];
reIndices[3] = i3;
EXPECT_EQ(getValueAt(re, reIndices.data()), getValueAt(input, inIndices.data()));
}
}
}
}
}
INSTANTIATE_TEST_CASE_P(/**/, Test_Tile_Int, Combine(
testing::Values(CV_32S, CV_64S),
dnnBackendsAndTargets()
));
typedef testing::TestWithParam<tuple<int, tuple<Backend, Target> > > Test_Reduce_Int;
TEST_P(Test_Reduce_Int, random)
{
int matType = get<0>(GetParam());
tuple<Backend, Target> backend_target= get<1>(GetParam());
Backend backend = get<0>(backend_target);
Target target = get<1>(backend_target);
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && matType == CV_64S)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH); // There is a problem with OpenVINO and custom int64 layers. After model compilation the output tensor type changes from int64 to int32
std::vector<int> inShape{5, 4, 3, 2};
int64_t low = matType == CV_64S ? 1000000000000000ll : 100000000;
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
low = 100000000; // Looks like OpenVINO uses int32 internal values for int64 operations
Mat input(inShape, matType);
cv::randu(input, low, low + 100);
std::vector<int> axes{1};
Net net;
LayerParams lp;
lp.type = "Reduce";
lp.name = "testLayer";
lp.set("reduce", "SUM");
lp.set("keepdims", false);
lp.set("axes", DictValue::arrayInt<int*>(axes.data(), axes.size()));
net.addLayerToPrev(lp.name, lp.type, lp);
net.setInput(input);
net.setPreferableBackend(backend);
net.setPreferableTarget(target);
Mat re;
re = net.forward();
EXPECT_EQ(re.depth(), matType);
EXPECT_EQ(re.size.dims(), 3);
EXPECT_EQ(re.size[0], inShape[0]);
EXPECT_EQ(re.size[1], inShape[2]);
EXPECT_EQ(re.size[2], inShape[3]);
std::vector<int> inIndices(4);
std::vector<int> reIndices(3);
for (int i0 = 0; i0 < re.size[0]; ++i0)
{
inIndices[0] = i0;
reIndices[0] = i0;
for (int i1 = 0; i1 < re.size[1]; ++i1)
{
inIndices[2] = i1;
reIndices[1] = i1;
for (int i2 = 0; i2 < re.size[2]; ++i2)
{
inIndices[3] = i2;
reIndices[2] = i2;
int64_t value = 0;
for (int j = 0; j < input.size[1]; ++j)
{
inIndices[1] = j;
value += getValueAt(input, inIndices.data());
}
EXPECT_EQ(getValueAt(re, reIndices.data()), value);
}
}
}
}
typedef testing::TestWithParam<tuple<int, tuple<Backend, Target> > > Test_Reduce_Int;
TEST_P(Test_Reduce_Int, two_axes)
{
int matType = get<0>(GetParam());
tuple<Backend, Target> backend_target= get<1>(GetParam());
Backend backend = get<0>(backend_target);
Target target = get<1>(backend_target);
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && matType == CV_64S)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH); // There is a problem with OpenVINO and custom int64 layers. After model compilation the output tensor type changes from int64 to int32
std::vector<int> inShape{5, 4, 3, 2};
int64_t low = matType == CV_64S ? 100000000000000ll : 10000000;
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
low = 10000000; // Looks like OpenVINO uses int32 internal values for int64 operations
Mat input(inShape, matType);
cv::randu(input, low, low + 100);
std::vector<int> axes{1, 3};
Net net;
LayerParams lp;
lp.type = "Reduce";
lp.name = "testLayer";
lp.set("reduce", "SUM");
lp.set("keepdims", false);
lp.set("axes", DictValue::arrayInt<int*>(axes.data(), axes.size()));
net.addLayerToPrev(lp.name, lp.type, lp);
net.setInput(input);
net.setPreferableBackend(backend);
net.setPreferableTarget(target);
Mat re;
re = net.forward();
EXPECT_EQ(re.depth(), matType);
EXPECT_EQ(re.size.dims(), 2);
EXPECT_EQ(re.size[0], inShape[0]);
EXPECT_EQ(re.size[1], inShape[2]);
std::vector<int> inIndices(4);
std::vector<int> reIndices(2);
for (int i0 = 0; i0 < re.size[0]; ++i0)
{
inIndices[0] = i0;
reIndices[0] = i0;
for (int i1 = 0; i1 < re.size[1]; ++i1)
{
inIndices[2] = i1;
reIndices[1] = i1;
int64_t value = 0;
for (int i2 = 0; i2 < input.size[3]; ++i2)
{
inIndices[3] = i2;
for (int j = 0; j < input.size[1]; ++j)
{
inIndices[1] = j;
value += getValueAt(input, inIndices.data());
}
}
EXPECT_EQ(getValueAt(re, reIndices.data()), value);
}
}
}
INSTANTIATE_TEST_CASE_P(/**/, Test_Reduce_Int, Combine(
testing::Values(CV_32S, CV_64S),
dnnBackendsAndTargets()
));
}} // namespace