mirror of
https://github.com/opencv/opencv.git
synced 2024-11-25 03:30:34 +08:00
7ec221e734
Improving DaSiamRPN tracker sample * changed layerBlobs in dnn.cpp and added DaSiamRPN tracker * Improving DaSiamRPN tracker sample * Docs fix * Removed outdated changes * Trying to reinitialize tracker without reloading models. Worked with LaSOT-based benchmark with reinit rate=250 frames * Trying to reverse changes * Moving the model in the constructor * Fixing some issues with names * Variable name changed * Reverse parser arguments changes
292 lines
12 KiB
Python
292 lines
12 KiB
Python
"""
|
||
DaSiamRPN tracker.
|
||
Original paper: https://arxiv.org/abs/1808.06048
|
||
Link to original repo: https://github.com/foolwood/DaSiamRPN
|
||
Links to onnx models:
|
||
network: https://www.dropbox.com/s/rr1lk9355vzolqv/dasiamrpn_model.onnx?dl=0
|
||
kernel_r1: https://www.dropbox.com/s/999cqx5zrfi7w4p/dasiamrpn_kernel_r1.onnx?dl=0
|
||
kernel_cls1: https://www.dropbox.com/s/qvmtszx5h339a0w/dasiamrpn_kernel_cls1.onnx?dl=0
|
||
"""
|
||
|
||
import numpy as np
|
||
import cv2 as cv
|
||
import argparse
|
||
import sys
|
||
|
||
class DaSiamRPNTracker:
|
||
# Initialization of used values, initial bounding box, used network
|
||
def __init__(self, net="dasiamrpn_model.onnx", kernel_r1="dasiamrpn_kernel_r1.onnx", kernel_cls1="dasiamrpn_kernel_cls1.onnx"):
|
||
self.windowing = "cosine"
|
||
self.exemplar_size = 127
|
||
self.instance_size = 271
|
||
self.total_stride = 8
|
||
self.score_size = (self.instance_size - self.exemplar_size) // self.total_stride + 1
|
||
self.context_amount = 0.5
|
||
self.ratios = [0.33, 0.5, 1, 2, 3]
|
||
self.scales = [8, ]
|
||
self.anchor_num = len(self.ratios) * len(self.scales)
|
||
self.penalty_k = 0.055
|
||
self.window_influence = 0.42
|
||
self.lr = 0.295
|
||
self.score = []
|
||
if self.windowing == "cosine":
|
||
self.window = np.outer(np.hanning(self.score_size), np.hanning(self.score_size))
|
||
elif self.windowing == "uniform":
|
||
self.window = np.ones((self.score_size, self.score_size))
|
||
self.window = np.tile(self.window.flatten(), self.anchor_num)
|
||
# Loading network`s and kernel`s models
|
||
self.net = cv.dnn.readNet(net)
|
||
self.kernel_r1 = cv.dnn.readNet(kernel_r1)
|
||
self.kernel_cls1 = cv.dnn.readNet(kernel_cls1)
|
||
|
||
def init(self, im, init_bb):
|
||
target_pos, target_sz = np.array([init_bb[0], init_bb[1]]), np.array([init_bb[2], init_bb[3]])
|
||
self.im_h = im.shape[0]
|
||
self.im_w = im.shape[1]
|
||
self.target_pos = target_pos
|
||
self.target_sz = target_sz
|
||
self.avg_chans = np.mean(im, axis=(0, 1))
|
||
|
||
# When we trying to generate ONNX model from the pre-trained .pth model
|
||
# we are using only one state of the network. In our case used state
|
||
# with big bounding box, so we were forced to add assertion for
|
||
# too small bounding boxes - current state of the network can not
|
||
# work properly with such small bounding boxes
|
||
if ((self.target_sz[0] * self.target_sz[1]) / float(self.im_h * self.im_w)) < 0.004:
|
||
raise AssertionError(
|
||
"Initializing BB is too small-try to restart tracker with larger BB")
|
||
|
||
self.anchor = self.__generate_anchor()
|
||
wc_z = self.target_sz[0] + self.context_amount * sum(self.target_sz)
|
||
hc_z = self.target_sz[1] + self.context_amount * sum(self.target_sz)
|
||
s_z = round(np.sqrt(wc_z * hc_z))
|
||
z_crop = self.__get_subwindow_tracking(im, self.exemplar_size, s_z)
|
||
z_crop = z_crop.transpose(2, 0, 1).reshape(1, 3, 127, 127).astype(np.float32)
|
||
self.net.setInput(z_crop)
|
||
z_f = self.net.forward('63')
|
||
self.kernel_r1.setInput(z_f)
|
||
r1 = self.kernel_r1.forward()
|
||
self.kernel_cls1.setInput(z_f)
|
||
cls1 = self.kernel_cls1.forward()
|
||
r1 = r1.reshape(20, 256, 4, 4)
|
||
cls1 = cls1.reshape(10, 256 , 4, 4)
|
||
self.net.setParam(self.net.getLayerId('65'), 0, r1)
|
||
self.net.setParam(self.net.getLayerId('68'), 0, cls1)
|
||
|
||
# Сreating anchor for tracking bounding box
|
||
def __generate_anchor(self):
|
||
self.anchor = np.zeros((self.anchor_num, 4), dtype = np.float32)
|
||
size = self.total_stride * self.total_stride
|
||
count = 0
|
||
|
||
for ratio in self.ratios:
|
||
ws = int(np.sqrt(size / ratio))
|
||
hs = int(ws * ratio)
|
||
for scale in self.scales:
|
||
wws = ws * scale
|
||
hhs = hs * scale
|
||
self.anchor[count] = [0, 0, wws, hhs]
|
||
count += 1
|
||
|
||
score_sz = int(self.score_size)
|
||
self.anchor = np.tile(self.anchor, score_sz * score_sz).reshape((-1, 4))
|
||
ori = - (score_sz / 2) * self.total_stride
|
||
xx, yy = np.meshgrid([ori + self.total_stride * dx for dx in range(score_sz)], [ori + self.total_stride * dy for dy in range(score_sz)])
|
||
xx, yy = np.tile(xx.flatten(), (self.anchor_num, 1)).flatten(), np.tile(yy.flatten(), (self.anchor_num, 1)).flatten()
|
||
self.anchor[:, 0], self.anchor[:, 1] = xx.astype(np.float32), yy.astype(np.float32)
|
||
return self.anchor
|
||
|
||
# Function for updating tracker state
|
||
def update(self, im):
|
||
wc_z = self.target_sz[1] + self.context_amount * sum(self.target_sz)
|
||
hc_z = self.target_sz[0] + self.context_amount * sum(self.target_sz)
|
||
s_z = np.sqrt(wc_z * hc_z)
|
||
scale_z = self.exemplar_size / s_z
|
||
d_search = (self.instance_size - self.exemplar_size) / 2
|
||
pad = d_search / scale_z
|
||
s_x = round(s_z + 2 * pad)
|
||
|
||
# Region preprocessing part
|
||
x_crop = self.__get_subwindow_tracking(im, self.instance_size, s_x)
|
||
x_crop = x_crop.transpose(2, 0, 1).reshape(1, 3, 271, 271).astype(np.float32)
|
||
self.score = self.__tracker_eval(x_crop, scale_z)
|
||
self.target_pos[0] = max(0, min(self.im_w, self.target_pos[0]))
|
||
self.target_pos[1] = max(0, min(self.im_h, self.target_pos[1]))
|
||
self.target_sz[0] = max(10, min(self.im_w, self.target_sz[0]))
|
||
self.target_sz[1] = max(10, min(self.im_h, self.target_sz[1]))
|
||
|
||
cx, cy = self.target_pos
|
||
w, h = self.target_sz
|
||
updated_bb = (cx, cy, w, h)
|
||
return True, updated_bb
|
||
|
||
# Function for updating position of the bounding box
|
||
def __tracker_eval(self, x_crop, scale_z):
|
||
target_size = self.target_sz * scale_z
|
||
self.net.setInput(x_crop)
|
||
outNames = self.net.getUnconnectedOutLayersNames()
|
||
outNames = ['66', '68']
|
||
delta, score = self.net.forward(outNames)
|
||
delta = np.transpose(delta, (1, 2, 3, 0))
|
||
delta = np.ascontiguousarray(delta, dtype = np.float32)
|
||
delta = np.reshape(delta, (4, -1))
|
||
score = np.transpose(score, (1, 2, 3, 0))
|
||
score = np.ascontiguousarray(score, dtype = np.float32)
|
||
score = np.reshape(score, (2, -1))
|
||
score = self.__softmax(score)[1, :]
|
||
delta[0, :] = delta[0, :] * self.anchor[:, 2] + self.anchor[:, 0]
|
||
delta[1, :] = delta[1, :] * self.anchor[:, 3] + self.anchor[:, 1]
|
||
delta[2, :] = np.exp(delta[2, :]) * self.anchor[:, 2]
|
||
delta[3, :] = np.exp(delta[3, :]) * self.anchor[:, 3]
|
||
|
||
def __change(r):
|
||
return np.maximum(r, 1./r)
|
||
|
||
def __sz(w, h):
|
||
pad = (w + h) * 0.5
|
||
sz2 = (w + pad) * (h + pad)
|
||
return np.sqrt(sz2)
|
||
|
||
def __sz_wh(wh):
|
||
pad = (wh[0] + wh[1]) * 0.5
|
||
sz2 = (wh[0] + pad) * (wh[1] + pad)
|
||
return np.sqrt(sz2)
|
||
|
||
s_c = __change(__sz(delta[2, :], delta[3, :]) / (__sz_wh(target_size)))
|
||
r_c = __change((target_size[0] / target_size[1]) / (delta[2, :] / delta[3, :]))
|
||
penalty = np.exp(-(r_c * s_c - 1.) * self.penalty_k)
|
||
pscore = penalty * score
|
||
pscore = pscore * (1 - self.window_influence) + self.window * self.window_influence
|
||
best_pscore_id = np.argmax(pscore)
|
||
target = delta[:, best_pscore_id] / scale_z
|
||
target_size /= scale_z
|
||
lr = penalty[best_pscore_id] * score[best_pscore_id] * self.lr
|
||
res_x = target[0] + self.target_pos[0]
|
||
res_y = target[1] + self.target_pos[1]
|
||
res_w = target_size[0] * (1 - lr) + target[2] * lr
|
||
res_h = target_size[1] * (1 - lr) + target[3] * lr
|
||
self.target_pos = np.array([res_x, res_y])
|
||
self.target_sz = np.array([res_w, res_h])
|
||
return score[best_pscore_id]
|
||
|
||
def __softmax(self, x):
|
||
x_max = x.max(0)
|
||
e_x = np.exp(x - x_max)
|
||
y = e_x / e_x.sum(axis = 0)
|
||
return y
|
||
|
||
# Reshaping cropped image for using in the model
|
||
def __get_subwindow_tracking(self, im, model_size, original_sz):
|
||
im_sz = im.shape
|
||
c = (original_sz + 1) / 2
|
||
context_xmin = round(self.target_pos[0] - c)
|
||
context_xmax = context_xmin + original_sz - 1
|
||
context_ymin = round(self.target_pos[1] - c)
|
||
context_ymax = context_ymin + original_sz - 1
|
||
left_pad = int(max(0., -context_xmin))
|
||
top_pad = int(max(0., -context_ymin))
|
||
right_pad = int(max(0., context_xmax - im_sz[1] + 1))
|
||
bot_pad = int(max(0., context_ymax - im_sz[0] + 1))
|
||
context_xmin += left_pad
|
||
context_xmax += left_pad
|
||
context_ymin += top_pad
|
||
context_ymax += top_pad
|
||
r, c, k = im.shape
|
||
|
||
if any([top_pad, bot_pad, left_pad, right_pad]):
|
||
te_im = np.zeros((
|
||
r + top_pad + bot_pad, c + left_pad + right_pad, k), np.uint8)
|
||
te_im[top_pad:top_pad + r, left_pad:left_pad + c, :] = im
|
||
if top_pad:
|
||
te_im[0:top_pad, left_pad:left_pad + c, :] = self.avg_chans
|
||
if bot_pad:
|
||
te_im[r + top_pad:, left_pad:left_pad + c, :] = self.avg_chans
|
||
if left_pad:
|
||
te_im[:, 0:left_pad, :] = self.avg_chans
|
||
if right_pad:
|
||
te_im[:, c + left_pad:, :] = self.avg_chans
|
||
im_patch_original = te_im[int(context_ymin):int(context_ymax + 1), int(context_xmin):int(context_xmax + 1), :]
|
||
else:
|
||
im_patch_original = im[int(context_ymin):int(context_ymax + 1), int(context_xmin):int(context_xmax + 1), :]
|
||
|
||
if not np.array_equal(model_size, original_sz):
|
||
im_patch_original = cv.resize(im_patch_original, (model_size, model_size))
|
||
return im_patch_original
|
||
|
||
# Sample for using DaSiamRPN tracker
|
||
def main():
|
||
parser = argparse.ArgumentParser(description="Run tracker")
|
||
parser.add_argument("--input", type=str, help="Full path to input (empty for camera)")
|
||
parser.add_argument("--net", type=str, default="dasiamrpn_model.onnx", help="Full path to onnx model of net")
|
||
parser.add_argument("--kernel_r1", type=str, default="dasiamrpn_kernel_r1.onnx", help="Full path to onnx model of kernel_r1")
|
||
parser.add_argument("--kernel_cls1", type=str, default="dasiamrpn_kernel_cls1.onnx", help="Full path to onnx model of kernel_cls1")
|
||
args = parser.parse_args()
|
||
point1 = ()
|
||
point2 = ()
|
||
mark = True
|
||
drawing = False
|
||
cx, cy, w, h = 0.0, 0.0, 0, 0
|
||
# Fucntion for drawing during videostream
|
||
def get_bb(event, x, y, flag, param):
|
||
nonlocal point1, point2, cx, cy, w, h, drawing, mark
|
||
|
||
if event == cv.EVENT_LBUTTONDOWN:
|
||
if not drawing:
|
||
drawing = True
|
||
point1 = (x, y)
|
||
else:
|
||
drawing = False
|
||
|
||
elif event == cv.EVENT_MOUSEMOVE:
|
||
if drawing:
|
||
point2 = (x, y)
|
||
|
||
elif event == cv.EVENT_LBUTTONUP:
|
||
cx = point1[0] - (point1[0] - point2[0]) / 2
|
||
cy = point1[1] - (point1[1] - point2[1]) / 2
|
||
w = abs(point1[0] - point2[0])
|
||
h = abs(point1[1] - point2[1])
|
||
mark = False
|
||
|
||
# Creating window for visualization
|
||
cap = cv.VideoCapture(args.input if args.input else 0)
|
||
cv.namedWindow("DaSiamRPN")
|
||
cv.setMouseCallback("DaSiamRPN", get_bb)
|
||
|
||
whitespace_key = 32
|
||
while cv.waitKey(40) != whitespace_key:
|
||
has_frame, frame = cap.read()
|
||
if not has_frame:
|
||
sys.exit(0)
|
||
cv.imshow("DaSiamRPN", frame)
|
||
|
||
while mark:
|
||
twin = np.copy(frame)
|
||
if point1 and point2:
|
||
cv.rectangle(twin, point1, point2, (0, 255, 255), 3)
|
||
cv.imshow("DaSiamRPN", twin)
|
||
cv.waitKey(40)
|
||
|
||
init_bb = (cx, cy, w, h)
|
||
tracker = DaSiamRPNTracker(args.net, args.kernel_r1, args.kernel_cls1)
|
||
tracker.init(frame, init_bb)
|
||
|
||
# Tracking loop
|
||
while cap.isOpened():
|
||
has_frame, frame = cap.read()
|
||
if not has_frame:
|
||
sys.exit(0)
|
||
_, new_bb = tracker.update(frame)
|
||
cx, cy, w, h = new_bb
|
||
cv.rectangle(frame, (int(cx - w // 2), int(cy - h // 2)), (int(cx - w // 2) + int(w), int(cy - h // 2) + int(h)),(0, 255, 255), 3)
|
||
cv.imshow("DaSiamRPN", frame)
|
||
key = cv.waitKey(1)
|
||
if key == ord("q"):
|
||
break
|
||
|
||
cap.release()
|
||
cv.destroyAllWindows()
|
||
|
||
if __name__ == "__main__":
|
||
main()
|