mirror of
https://github.com/opencv/opencv.git
synced 2025-01-05 18:05:31 +08:00
243 lines
6.9 KiB
C++
243 lines
6.9 KiB
C++
// This file is part of OpenCV project.
|
|
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
|
// of this distribution and at http://opencv.org/license.html
|
|
|
|
|
|
#include "precomp.hpp"
|
|
#include "opencl_kernels_core.hpp"
|
|
|
|
#include "split.simd.hpp"
|
|
#include "split.simd_declarations.hpp" // defines CV_CPU_DISPATCH_MODES_ALL=AVX2,...,BASELINE based on CMakeLists.txt content
|
|
|
|
namespace cv { namespace hal {
|
|
|
|
void split8u(const uchar* src, uchar** dst, int len, int cn )
|
|
{
|
|
CV_INSTRUMENT_REGION();
|
|
CALL_HAL(split8u, cv_hal_split8u, src,dst, len, cn)
|
|
CV_CPU_DISPATCH(split8u, (src, dst, len, cn),
|
|
CV_CPU_DISPATCH_MODES_ALL);
|
|
}
|
|
|
|
void split16u(const ushort* src, ushort** dst, int len, int cn )
|
|
{
|
|
CV_INSTRUMENT_REGION();
|
|
CALL_HAL(split16u, cv_hal_split16u, src,dst, len, cn)
|
|
CV_CPU_DISPATCH(split16u, (src, dst, len, cn),
|
|
CV_CPU_DISPATCH_MODES_ALL);
|
|
}
|
|
|
|
void split32s(const int* src, int** dst, int len, int cn )
|
|
{
|
|
CV_INSTRUMENT_REGION();
|
|
CALL_HAL(split32s, cv_hal_split32s, src,dst, len, cn)
|
|
CV_CPU_DISPATCH(split32s, (src, dst, len, cn),
|
|
CV_CPU_DISPATCH_MODES_ALL);
|
|
}
|
|
|
|
void split64s(const int64* src, int64** dst, int len, int cn )
|
|
{
|
|
CV_INSTRUMENT_REGION();
|
|
CALL_HAL(split64s, cv_hal_split64s, src,dst, len, cn)
|
|
CV_CPU_DISPATCH(split64s, (src, dst, len, cn),
|
|
CV_CPU_DISPATCH_MODES_ALL);
|
|
}
|
|
|
|
} // namespace cv::hal::
|
|
|
|
/****************************************************************************************\
|
|
* split & merge *
|
|
\****************************************************************************************/
|
|
|
|
typedef void (*SplitFunc)(const uchar* src, uchar** dst, int len, int cn);
|
|
|
|
static SplitFunc getSplitFunc(int depth)
|
|
{
|
|
static SplitFunc splitTab[] =
|
|
{
|
|
(SplitFunc)GET_OPTIMIZED(cv::hal::split8u), (SplitFunc)GET_OPTIMIZED(cv::hal::split8u),
|
|
(SplitFunc)GET_OPTIMIZED(cv::hal::split16u), (SplitFunc)GET_OPTIMIZED(cv::hal::split16u),
|
|
(SplitFunc)GET_OPTIMIZED(cv::hal::split32s), (SplitFunc)GET_OPTIMIZED(cv::hal::split32s),
|
|
(SplitFunc)GET_OPTIMIZED(cv::hal::split64s), (SplitFunc)GET_OPTIMIZED(cv::hal::split16u)
|
|
};
|
|
|
|
return splitTab[depth];
|
|
}
|
|
|
|
#ifdef HAVE_IPP
|
|
|
|
static bool ipp_split(const Mat& src, Mat* mv, int channels)
|
|
{
|
|
#ifdef HAVE_IPP_IW_LL
|
|
CV_INSTRUMENT_REGION_IPP();
|
|
|
|
if(channels != 3 && channels != 4)
|
|
return false;
|
|
|
|
if(src.dims <= 2)
|
|
{
|
|
IppiSize size = ippiSize(src.size());
|
|
void *dstPtrs[4] = {NULL};
|
|
size_t dstStep = mv[0].step;
|
|
for(int i = 0; i < channels; i++)
|
|
{
|
|
dstPtrs[i] = mv[i].ptr();
|
|
if(dstStep != mv[i].step)
|
|
return false;
|
|
}
|
|
|
|
return CV_INSTRUMENT_FUN_IPP(llwiCopySplit, src.ptr(), (int)src.step, dstPtrs, (int)dstStep, size, (int)src.elemSize1(), channels, 0) >= 0;
|
|
}
|
|
else
|
|
{
|
|
const Mat *arrays[5] = {NULL};
|
|
uchar *ptrs[5] = {NULL};
|
|
arrays[0] = &src;
|
|
|
|
for(int i = 1; i < channels; i++)
|
|
{
|
|
arrays[i] = &mv[i-1];
|
|
}
|
|
|
|
NAryMatIterator it(arrays, ptrs);
|
|
IppiSize size = { (int)it.size, 1 };
|
|
|
|
for( size_t i = 0; i < it.nplanes; i++, ++it )
|
|
{
|
|
if(CV_INSTRUMENT_FUN_IPP(llwiCopySplit, ptrs[0], 0, (void**)&ptrs[1], 0, size, (int)src.elemSize1(), channels, 0) < 0)
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
#else
|
|
CV_UNUSED(src); CV_UNUSED(mv); CV_UNUSED(channels);
|
|
return false;
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
void split(const Mat& src, Mat* mv)
|
|
{
|
|
CV_INSTRUMENT_REGION();
|
|
|
|
int k, depth = src.depth(), cn = src.channels();
|
|
if( cn == 1 )
|
|
{
|
|
src.copyTo(mv[0]);
|
|
return;
|
|
}
|
|
|
|
for( k = 0; k < cn; k++ )
|
|
{
|
|
mv[k].create(src.dims, src.size, depth);
|
|
}
|
|
|
|
CV_IPP_RUN_FAST(ipp_split(src, mv, cn));
|
|
|
|
SplitFunc func = getSplitFunc(depth);
|
|
CV_Assert( func != 0 );
|
|
|
|
size_t esz = src.elemSize(), esz1 = src.elemSize1();
|
|
size_t blocksize0 = (BLOCK_SIZE + esz-1)/esz;
|
|
AutoBuffer<uchar> _buf((cn+1)*(sizeof(Mat*) + sizeof(uchar*)) + 16);
|
|
const Mat** arrays = (const Mat**)_buf.data();
|
|
uchar** ptrs = (uchar**)alignPtr(arrays + cn + 1, 16);
|
|
|
|
arrays[0] = &src;
|
|
for( k = 0; k < cn; k++ )
|
|
{
|
|
arrays[k+1] = &mv[k];
|
|
}
|
|
|
|
NAryMatIterator it(arrays, ptrs, cn+1);
|
|
size_t total = it.size;
|
|
size_t blocksize = std::min((size_t)CV_SPLIT_MERGE_MAX_BLOCK_SIZE(cn), cn <= 4 ? total : std::min(total, blocksize0));
|
|
|
|
for( size_t i = 0; i < it.nplanes; i++, ++it )
|
|
{
|
|
for( size_t j = 0; j < total; j += blocksize )
|
|
{
|
|
size_t bsz = std::min(total - j, blocksize);
|
|
func( ptrs[0], &ptrs[1], (int)bsz, cn );
|
|
|
|
if( j + blocksize < total )
|
|
{
|
|
ptrs[0] += bsz*esz;
|
|
for( k = 0; k < cn; k++ )
|
|
ptrs[k+1] += bsz*esz1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifdef HAVE_OPENCL
|
|
|
|
static bool ocl_split( InputArray _m, OutputArrayOfArrays _mv )
|
|
{
|
|
int type = _m.type(), depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type),
|
|
rowsPerWI = ocl::Device::getDefault().isIntel() ? 4 : 1;
|
|
|
|
String dstargs, processelem, indexdecl;
|
|
for (int i = 0; i < cn; ++i)
|
|
{
|
|
dstargs += format("DECLARE_DST_PARAM(%d)", i);
|
|
indexdecl += format("DECLARE_INDEX(%d)", i);
|
|
processelem += format("PROCESS_ELEM(%d)", i);
|
|
}
|
|
|
|
ocl::Kernel k("split", ocl::core::split_merge_oclsrc,
|
|
format("-D T=%s -D OP_SPLIT -D cn=%d -D DECLARE_DST_PARAMS=%s"
|
|
" -D PROCESS_ELEMS_N=%s -D DECLARE_INDEX_N=%s",
|
|
ocl::memopTypeToStr(depth), cn, dstargs.c_str(),
|
|
processelem.c_str(), indexdecl.c_str()));
|
|
if (k.empty())
|
|
return false;
|
|
|
|
Size size = _m.size();
|
|
_mv.create(cn, 1, depth);
|
|
for (int i = 0; i < cn; ++i)
|
|
_mv.create(size, depth, i);
|
|
|
|
std::vector<UMat> dst;
|
|
_mv.getUMatVector(dst);
|
|
|
|
int argidx = k.set(0, ocl::KernelArg::ReadOnly(_m.getUMat()));
|
|
for (int i = 0; i < cn; ++i)
|
|
argidx = k.set(argidx, ocl::KernelArg::WriteOnlyNoSize(dst[i]));
|
|
k.set(argidx, rowsPerWI);
|
|
|
|
size_t globalsize[2] = { (size_t)size.width, ((size_t)size.height + rowsPerWI - 1) / rowsPerWI };
|
|
return k.run(2, globalsize, NULL, false);
|
|
}
|
|
|
|
#endif
|
|
|
|
void split(InputArray _m, OutputArrayOfArrays _mv)
|
|
{
|
|
CV_INSTRUMENT_REGION();
|
|
|
|
CV_OCL_RUN(_m.dims() <= 2 && _mv.isUMatVector(),
|
|
ocl_split(_m, _mv))
|
|
|
|
Mat m = _m.getMat();
|
|
if( m.empty() )
|
|
{
|
|
_mv.release();
|
|
return;
|
|
}
|
|
|
|
CV_Assert( !_mv.fixedType() || _mv.empty() || _mv.type() == m.depth() );
|
|
|
|
int depth = m.depth(), cn = m.channels();
|
|
_mv.create(cn, 1, depth);
|
|
for (int i = 0; i < cn; ++i)
|
|
_mv.create(m.dims, m.size.p, depth, i);
|
|
|
|
std::vector<Mat> dst;
|
|
_mv.getMatVector(dst);
|
|
|
|
split(m, &dst[0]);
|
|
}
|
|
|
|
} // namespace
|