mirror of
https://github.com/opencv/opencv.git
synced 2024-12-12 23:49:36 +08:00
e0f426f78b
At the moment tests requre samples/data copied to source location from master branch.
70 lines
1.8 KiB
Python
70 lines
1.8 KiB
Python
#!/usr/bin/env python
|
|
|
|
'''
|
|
K-means clusterization test
|
|
'''
|
|
|
|
# Python 2/3 compatibility
|
|
from __future__ import print_function
|
|
|
|
import numpy as np
|
|
import cv2
|
|
from numpy import random
|
|
import sys
|
|
PY3 = sys.version_info[0] == 3
|
|
if PY3:
|
|
xrange = range
|
|
|
|
from tests_common import NewOpenCVTests
|
|
|
|
def make_gaussians(cluster_n, img_size):
|
|
points = []
|
|
ref_distrs = []
|
|
sizes = []
|
|
for i in xrange(cluster_n):
|
|
mean = (0.1 + 0.8*random.rand(2)) * img_size
|
|
a = (random.rand(2, 2)-0.5)*img_size*0.1
|
|
cov = np.dot(a.T, a) + img_size*0.05*np.eye(2)
|
|
n = 100 + random.randint(900)
|
|
pts = random.multivariate_normal(mean, cov, n)
|
|
points.append( pts )
|
|
ref_distrs.append( (mean, cov) )
|
|
sizes.append(n)
|
|
points = np.float32( np.vstack(points) )
|
|
return points, ref_distrs, sizes
|
|
|
|
def getMainLabelConfidence(labels, nLabels):
|
|
|
|
n = len(labels)
|
|
labelsDict = dict.fromkeys(range(nLabels), 0)
|
|
labelsConfDict = dict.fromkeys(range(nLabels))
|
|
|
|
for i in range(n):
|
|
labelsDict[labels[i][0]] += 1
|
|
|
|
for i in range(nLabels):
|
|
labelsConfDict[i] = float(labelsDict[i]) / n
|
|
|
|
return max(labelsConfDict.values())
|
|
|
|
class kmeans_test(NewOpenCVTests):
|
|
|
|
def test_kmeans(self):
|
|
|
|
np.random.seed(10)
|
|
|
|
cluster_n = 5
|
|
img_size = 512
|
|
|
|
points, _, clusterSizes = make_gaussians(cluster_n, img_size)
|
|
|
|
term_crit = (cv2.TERM_CRITERIA_EPS, 30, 0.1)
|
|
ret, labels, centers = cv2.kmeans(points, cluster_n, term_crit, 10, 0)
|
|
|
|
self.assertEqual(len(centers), cluster_n)
|
|
|
|
offset = 0
|
|
for i in range(cluster_n):
|
|
confidence = getMainLabelConfidence(labels[offset : (offset + clusterSizes[i])], cluster_n)
|
|
offset += clusterSizes[i]
|
|
self.assertGreater(confidence, 0.9) |