opencv/modules/gpu/src/element_operations.cpp
2013-04-01 14:15:06 +04:00

3361 lines
136 KiB
C++

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
using namespace cv;
using namespace cv::gpu;
#if !defined (HAVE_CUDA) || defined (CUDA_DISABLER)
void cv::gpu::add(const GpuMat&, const GpuMat&, GpuMat&, const GpuMat&, int, Stream&) { throw_nogpu(); }
void cv::gpu::add(const GpuMat&, const Scalar&, GpuMat&, const GpuMat&, int, Stream&) { throw_nogpu(); }
void cv::gpu::subtract(const GpuMat&, const GpuMat&, GpuMat&, const GpuMat&, int, Stream&) { throw_nogpu(); }
void cv::gpu::subtract(const GpuMat&, const Scalar&, GpuMat&, const GpuMat&, int, Stream&) { throw_nogpu(); }
void cv::gpu::multiply(const GpuMat&, const GpuMat&, GpuMat&, double, int, Stream&) { throw_nogpu(); }
void cv::gpu::multiply(const GpuMat&, const Scalar&, GpuMat&, double, int, Stream&) { throw_nogpu(); }
void cv::gpu::divide(const GpuMat&, const GpuMat&, GpuMat&, double, int, Stream&) { throw_nogpu(); }
void cv::gpu::divide(const GpuMat&, const Scalar&, GpuMat&, double, int, Stream&) { throw_nogpu(); }
void cv::gpu::divide(double, const GpuMat&, GpuMat&, int, Stream&) { throw_nogpu(); }
void cv::gpu::absdiff(const GpuMat&, const GpuMat&, GpuMat&, Stream&) { throw_nogpu(); }
void cv::gpu::absdiff(const GpuMat&, const Scalar&, GpuMat&, Stream&) { throw_nogpu(); }
void cv::gpu::abs(const GpuMat&, GpuMat&, Stream&) { throw_nogpu(); }
void cv::gpu::sqr(const GpuMat&, GpuMat&, Stream&) { throw_nogpu(); }
void cv::gpu::sqrt(const GpuMat&, GpuMat&, Stream&) { throw_nogpu(); }
void cv::gpu::exp(const GpuMat&, GpuMat&, Stream&) { throw_nogpu(); }
void cv::gpu::log(const GpuMat&, GpuMat&, Stream&) { throw_nogpu(); }
void cv::gpu::compare(const GpuMat&, const GpuMat&, GpuMat&, int, Stream&) { throw_nogpu(); }
void cv::gpu::compare(const GpuMat&, Scalar, GpuMat&, int, Stream&) { throw_nogpu(); }
void cv::gpu::bitwise_not(const GpuMat&, GpuMat&, const GpuMat&, Stream&) { throw_nogpu(); }
void cv::gpu::bitwise_or(const GpuMat&, const GpuMat&, GpuMat&, const GpuMat&, Stream&) { throw_nogpu(); }
void cv::gpu::bitwise_or(const GpuMat&, const Scalar&, GpuMat&, Stream&) { throw_nogpu(); }
void cv::gpu::bitwise_and(const GpuMat&, const GpuMat&, GpuMat&, const GpuMat&, Stream&) { throw_nogpu(); }
void cv::gpu::bitwise_and(const GpuMat&, const Scalar&, GpuMat&, Stream&) { throw_nogpu(); }
void cv::gpu::bitwise_xor(const GpuMat&, const GpuMat&, GpuMat&, const GpuMat&, Stream&) { throw_nogpu(); }
void cv::gpu::bitwise_xor(const GpuMat&, const Scalar&, GpuMat&, Stream&) { throw_nogpu(); }
void cv::gpu::rshift(const GpuMat&, Scalar_<int>, GpuMat&, Stream&) { throw_nogpu(); }
void cv::gpu::lshift(const GpuMat&, Scalar_<int>, GpuMat&, Stream&) { throw_nogpu(); }
void cv::gpu::min(const GpuMat&, const GpuMat&, GpuMat&, Stream&) { throw_nogpu(); }
void cv::gpu::min(const GpuMat&, double, GpuMat&, Stream&) { throw_nogpu(); }
void cv::gpu::max(const GpuMat&, const GpuMat&, GpuMat&, Stream&) { throw_nogpu(); }
void cv::gpu::max(const GpuMat&, double, GpuMat&, Stream&) { throw_nogpu(); }
double cv::gpu::threshold(const GpuMat&, GpuMat&, double, double, int, Stream&) {throw_nogpu(); return 0.0;}
void cv::gpu::pow(const GpuMat&, double, GpuMat&, Stream&) { throw_nogpu(); }
void cv::gpu::alphaComp(const GpuMat&, const GpuMat&, GpuMat&, int, Stream&) { throw_nogpu(); }
void cv::gpu::addWeighted(const GpuMat&, double, const GpuMat&, double, double, GpuMat&, int, Stream&) { throw_nogpu(); }
#else
////////////////////////////////////////////////////////////////////////
// Basic arithmetical operations (add subtract multiply divide)
namespace
{
template<int DEPTH> struct NppTypeTraits;
template<> struct NppTypeTraits<CV_8U> { typedef Npp8u npp_t; };
template<> struct NppTypeTraits<CV_8S> { typedef Npp8s npp_t; };
template<> struct NppTypeTraits<CV_16U> { typedef Npp16u npp_t; };
template<> struct NppTypeTraits<CV_16S> { typedef Npp16s npp_t; typedef Npp16sc npp_complex_type; };
template<> struct NppTypeTraits<CV_32S> { typedef Npp32s npp_t; typedef Npp32sc npp_complex_type; };
template<> struct NppTypeTraits<CV_32F> { typedef Npp32f npp_t; typedef Npp32fc npp_complex_type; };
template<> struct NppTypeTraits<CV_64F> { typedef Npp64f npp_t; typedef Npp64fc npp_complex_type; };
template<int DEPTH, int cn> struct NppArithmScalarFunc
{
typedef typename NppTypeTraits<DEPTH>::npp_t npp_t;
typedef NppStatus (*func_ptr)(const npp_t* pSrc1, int nSrc1Step, const npp_t* pConstants,
npp_t* pDst, int nDstStep, NppiSize oSizeROI, int nScaleFactor);
};
template<int DEPTH> struct NppArithmScalarFunc<DEPTH, 1>
{
typedef typename NppTypeTraits<DEPTH>::npp_t npp_t;
typedef NppStatus (*func_ptr)(const npp_t* pSrc1, int nSrc1Step, const npp_t pConstants,
npp_t* pDst, int nDstStep, NppiSize oSizeROI, int nScaleFactor);
};
template<int DEPTH> struct NppArithmScalarFunc<DEPTH, 2>
{
typedef typename NppTypeTraits<DEPTH>::npp_complex_type npp_complex_type;
typedef NppStatus (*func_ptr)(const npp_complex_type* pSrc1, int nSrc1Step, const npp_complex_type pConstants,
npp_complex_type* pDst, int nDstStep, NppiSize oSizeROI, int nScaleFactor);
};
template<int cn> struct NppArithmScalarFunc<CV_32F, cn>
{
typedef NppStatus (*func_ptr)(const Npp32f* pSrc1, int nSrc1Step, const Npp32f* pConstants, Npp32f* pDst, int nDstStep, NppiSize oSizeROI);
};
template<> struct NppArithmScalarFunc<CV_32F, 1>
{
typedef NppStatus (*func_ptr)(const Npp32f* pSrc1, int nSrc1Step, const Npp32f pConstants, Npp32f* pDst, int nDstStep, NppiSize oSizeROI);
};
template<> struct NppArithmScalarFunc<CV_32F, 2>
{
typedef NppStatus (*func_ptr)(const Npp32fc* pSrc1, int nSrc1Step, const Npp32fc pConstants, Npp32fc* pDst, int nDstStep, NppiSize oSizeROI);
};
template<int DEPTH, int cn, typename NppArithmScalarFunc<DEPTH, cn>::func_ptr func> struct NppArithmScalar
{
typedef typename NppTypeTraits<DEPTH>::npp_t npp_t;
static void call(const PtrStepSzb src, Scalar sc, PtrStepb dst, cudaStream_t stream)
{
NppStreamHandler h(stream);
NppiSize sz;
sz.width = src.cols;
sz.height = src.rows;
const npp_t pConstants[] = { saturate_cast<npp_t>(sc.val[0]), saturate_cast<npp_t>(sc.val[1]), saturate_cast<npp_t>(sc.val[2]), saturate_cast<npp_t>(sc.val[3]) };
nppSafeCall( func((const npp_t*)src.data, static_cast<int>(src.step), pConstants, (npp_t*)dst.data, static_cast<int>(dst.step), sz, 0) );
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
};
template<int DEPTH, typename NppArithmScalarFunc<DEPTH, 1>::func_ptr func> struct NppArithmScalar<DEPTH, 1, func>
{
typedef typename NppTypeTraits<DEPTH>::npp_t npp_t;
static void call(const PtrStepSzb src, Scalar sc, PtrStepb dst, cudaStream_t stream)
{
NppStreamHandler h(stream);
NppiSize sz;
sz.width = src.cols;
sz.height = src.rows;
nppSafeCall( func((const npp_t*)src.data, static_cast<int>(src.step), saturate_cast<npp_t>(sc.val[0]), (npp_t*)dst.data, static_cast<int>(dst.step), sz, 0) );
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
};
template<int DEPTH, typename NppArithmScalarFunc<DEPTH, 2>::func_ptr func> struct NppArithmScalar<DEPTH, 2, func>
{
typedef typename NppTypeTraits<DEPTH>::npp_t npp_t;
typedef typename NppTypeTraits<DEPTH>::npp_complex_type npp_complex_type;
static void call(const PtrStepSzb src, Scalar sc, PtrStepb dst, cudaStream_t stream)
{
NppStreamHandler h(stream);
NppiSize sz;
sz.width = src.cols;
sz.height = src.rows;
npp_complex_type nConstant;
nConstant.re = saturate_cast<npp_t>(sc.val[0]);
nConstant.im = saturate_cast<npp_t>(sc.val[1]);
nppSafeCall( func((const npp_complex_type*)src.data, static_cast<int>(src.step), nConstant,
(npp_complex_type*)dst.data, static_cast<int>(dst.step), sz, 0) );
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
};
template<int cn, typename NppArithmScalarFunc<CV_32F, cn>::func_ptr func> struct NppArithmScalar<CV_32F, cn, func>
{
typedef typename NppTypeTraits<CV_32F>::npp_t npp_t;
static void call(const PtrStepSzb src, Scalar sc, PtrStepb dst, cudaStream_t stream)
{
NppStreamHandler h(stream);
NppiSize sz;
sz.width = src.cols;
sz.height = src.rows;
const Npp32f pConstants[] = { saturate_cast<Npp32f>(sc.val[0]), saturate_cast<Npp32f>(sc.val[1]), saturate_cast<Npp32f>(sc.val[2]), saturate_cast<Npp32f>(sc.val[3]) };
nppSafeCall( func((const npp_t*)src.data, static_cast<int>(src.step), pConstants, (npp_t*)dst.data, static_cast<int>(dst.step), sz) );
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
};
template<typename NppArithmScalarFunc<CV_32F, 1>::func_ptr func> struct NppArithmScalar<CV_32F, 1, func>
{
typedef typename NppTypeTraits<CV_32F>::npp_t npp_t;
static void call(const PtrStepSzb src, Scalar sc, PtrStepb dst, cudaStream_t stream)
{
NppStreamHandler h(stream);
NppiSize sz;
sz.width = src.cols;
sz.height = src.rows;
nppSafeCall( func((const npp_t*)src.data, static_cast<int>(src.step), saturate_cast<Npp32f>(sc.val[0]), (npp_t*)dst.data, static_cast<int>(dst.step), sz) );
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
};
template<typename NppArithmScalarFunc<CV_32F, 2>::func_ptr func> struct NppArithmScalar<CV_32F, 2, func>
{
typedef typename NppTypeTraits<CV_32F>::npp_t npp_t;
typedef typename NppTypeTraits<CV_32F>::npp_complex_type npp_complex_type;
static void call(const PtrStepSzb src, Scalar sc, PtrStepb dst, cudaStream_t stream)
{
NppStreamHandler h(stream);
NppiSize sz;
sz.width = src.cols;
sz.height = src.rows;
Npp32fc nConstant;
nConstant.re = saturate_cast<Npp32f>(sc.val[0]);
nConstant.im = saturate_cast<Npp32f>(sc.val[1]);
nppSafeCall( func((const npp_complex_type*)src.data, static_cast<int>(src.step), nConstant, (npp_complex_type*)dst.data, static_cast<int>(dst.step), sz) );
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
};
}
////////////////////////////////////////////////////////////////////////
// add
namespace arithm
{
void addMat_v4(PtrStepSz<unsigned int> src1, PtrStepSz<unsigned int> src2, PtrStepSz<unsigned int> dst, cudaStream_t stream);
void addMat_v2(PtrStepSz<unsigned int> src1, PtrStepSz<unsigned int> src2, PtrStepSz<unsigned int> dst, cudaStream_t stream);
template <typename T, typename D>
void addMat(PtrStepSzb src1, PtrStepSzb src2, PtrStepSzb dst, PtrStepb mask, cudaStream_t stream);
}
void cv::gpu::add(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, const GpuMat& mask, int dtype, Stream& s)
{
using namespace arithm;
typedef void (*func_t)(PtrStepSzb src1, PtrStepSzb src2, PtrStepSzb dst, PtrStepb mask, cudaStream_t stream);
static const func_t funcs[7][7] =
{
{
addMat<unsigned char, unsigned char>,
addMat<unsigned char, signed char>,
addMat<unsigned char, unsigned short>,
addMat<unsigned char, short>,
addMat<unsigned char, int>,
addMat<unsigned char, float>,
addMat<unsigned char, double>
},
{
addMat<signed char, unsigned char>,
addMat<signed char, signed char>,
addMat<signed char, unsigned short>,
addMat<signed char, short>,
addMat<signed char, int>,
addMat<signed char, float>,
addMat<signed char, double>
},
{
0 /*addMat<unsigned short, unsigned char>*/,
0 /*addMat<unsigned short, signed char>*/,
addMat<unsigned short, unsigned short>,
addMat<unsigned short, short>,
addMat<unsigned short, int>,
addMat<unsigned short, float>,
addMat<unsigned short, double>
},
{
0 /*addMat<short, unsigned char>*/,
0 /*addMat<short, signed char>*/,
addMat<short, unsigned short>,
addMat<short, short>,
addMat<short, int>,
addMat<short, float>,
addMat<short, double>
},
{
0 /*addMat<int, unsigned char>*/,
0 /*addMat<int, signed char>*/,
0 /*addMat<int, unsigned short>*/,
0 /*addMat<int, short>*/,
addMat<int, int>,
addMat<int, float>,
addMat<int, double>
},
{
0 /*addMat<float, unsigned char>*/,
0 /*addMat<float, signed char>*/,
0 /*addMat<float, unsigned short>*/,
0 /*addMat<float, short>*/,
0 /*addMat<float, int>*/,
addMat<float, float>,
addMat<float, double>
},
{
0 /*addMat<double, unsigned char>*/,
0 /*addMat<double, signed char>*/,
0 /*addMat<double, unsigned short>*/,
0 /*addMat<double, short>*/,
0 /*addMat<double, int>*/,
0 /*addMat<double, float>*/,
addMat<double, double>
}
};
if (dtype < 0)
dtype = src1.depth();
const int sdepth = src1.depth();
const int ddepth = CV_MAT_DEPTH(dtype);
const int cn = src1.channels();
CV_Assert( sdepth <= CV_64F && ddepth <= CV_64F );
CV_Assert( src2.type() == src1.type() && src2.size() == src1.size() );
CV_Assert( mask.empty() || (cn == 1 && mask.size() == src1.size() && mask.type() == CV_8U) );
if (sdepth == CV_64F || ddepth == CV_64F)
{
if (!deviceSupports(NATIVE_DOUBLE))
CV_Error(CV_StsUnsupportedFormat, "The device doesn't support double");
}
dst.create(src1.size(), CV_MAKE_TYPE(ddepth, cn));
cudaStream_t stream = StreamAccessor::getStream(s);
PtrStepSzb src1_(src1.rows, src1.cols * cn, src1.data, src1.step);
PtrStepSzb src2_(src1.rows, src1.cols * cn, src2.data, src2.step);
PtrStepSzb dst_(src1.rows, src1.cols * cn, dst.data, dst.step);
if (mask.empty() && (sdepth == CV_8U || sdepth == CV_16U) && ddepth == sdepth)
{
const intptr_t src1ptr = reinterpret_cast<intptr_t>(src1_.data);
const intptr_t src2ptr = reinterpret_cast<intptr_t>(src2_.data);
const intptr_t dstptr = reinterpret_cast<intptr_t>(dst_.data);
const bool isAllAligned = (src1ptr & 31) == 0 && (src2ptr & 31) == 0 && (dstptr & 31) == 0;
if (isAllAligned)
{
if (sdepth == CV_8U && (src1_.cols & 3) == 0)
{
const int vcols = src1_.cols >> 2;
addMat_v4(PtrStepSz<unsigned int>(src1_.rows, vcols, (unsigned int*) src1_.data, src1_.step),
PtrStepSz<unsigned int>(src1_.rows, vcols, (unsigned int*) src2_.data, src2_.step),
PtrStepSz<unsigned int>(src1_.rows, vcols, (unsigned int*) dst_.data, dst_.step),
stream);
return;
}
else if (sdepth == CV_16U && (src1_.cols & 1) == 0)
{
const int vcols = src1_.cols >> 1;
addMat_v2(PtrStepSz<unsigned int>(src1_.rows, vcols, (unsigned int*) src1_.data, src1_.step),
PtrStepSz<unsigned int>(src1_.rows, vcols, (unsigned int*) src2_.data, src2_.step),
PtrStepSz<unsigned int>(src1_.rows, vcols, (unsigned int*) dst_.data, dst_.step),
stream);
return;
}
}
}
const func_t func = funcs[sdepth][ddepth];
if (!func)
CV_Error(CV_StsUnsupportedFormat, "Unsupported combination of source and destination types");
func(src1_, src2_, dst_, mask, stream);
}
namespace arithm
{
template <typename T, typename S, typename D>
void addScalar(PtrStepSzb src1, double val, PtrStepSzb dst, PtrStepb mask, cudaStream_t stream);
}
void cv::gpu::add(const GpuMat& src, const Scalar& sc, GpuMat& dst, const GpuMat& mask, int dtype, Stream& s)
{
using namespace arithm;
typedef void (*func_t)(PtrStepSzb src1, double val, PtrStepSzb dst, PtrStepb mask, cudaStream_t stream);
static const func_t funcs[7][7] =
{
{
addScalar<unsigned char, float, unsigned char>,
addScalar<unsigned char, float, signed char>,
addScalar<unsigned char, float, unsigned short>,
addScalar<unsigned char, float, short>,
addScalar<unsigned char, float, int>,
addScalar<unsigned char, float, float>,
addScalar<unsigned char, double, double>
},
{
addScalar<signed char, float, unsigned char>,
addScalar<signed char, float, signed char>,
addScalar<signed char, float, unsigned short>,
addScalar<signed char, float, short>,
addScalar<signed char, float, int>,
addScalar<signed char, float, float>,
addScalar<signed char, double, double>
},
{
0 /*addScalar<unsigned short, float, unsigned char>*/,
0 /*addScalar<unsigned short, float, signed char>*/,
addScalar<unsigned short, float, unsigned short>,
addScalar<unsigned short, float, short>,
addScalar<unsigned short, float, int>,
addScalar<unsigned short, float, float>,
addScalar<unsigned short, double, double>
},
{
0 /*addScalar<short, float, unsigned char>*/,
0 /*addScalar<short, float, signed char>*/,
addScalar<short, float, unsigned short>,
addScalar<short, float, short>,
addScalar<short, float, int>,
addScalar<short, float, float>,
addScalar<short, double, double>
},
{
0 /*addScalar<int, float, unsigned char>*/,
0 /*addScalar<int, float, signed char>*/,
0 /*addScalar<int, float, unsigned short>*/,
0 /*addScalar<int, float, short>*/,
addScalar<int, float, int>,
addScalar<int, float, float>,
addScalar<int, double, double>
},
{
0 /*addScalar<float, float, unsigned char>*/,
0 /*addScalar<float, float, signed char>*/,
0 /*addScalar<float, float, unsigned short>*/,
0 /*addScalar<float, float, short>*/,
0 /*addScalar<float, float, int>*/,
addScalar<float, float, float>,
addScalar<float, double, double>
},
{
0 /*addScalar<double, double, unsigned char>*/,
0 /*addScalar<double, double, signed char>*/,
0 /*addScalar<double, double, unsigned short>*/,
0 /*addScalar<double, double, short>*/,
0 /*addScalar<double, double, int>*/,
0 /*addScalar<double, double, float>*/,
addScalar<double, double, double>
}
};
typedef void (*npp_func_t)(const PtrStepSzb src, Scalar sc, PtrStepb dst, cudaStream_t stream);
static const npp_func_t npp_funcs[7][4] =
{
{NppArithmScalar<CV_8U , 1, nppiAddC_8u_C1RSfs >::call, 0 , NppArithmScalar<CV_8U , 3, nppiAddC_8u_C3RSfs >::call, NppArithmScalar<CV_8U , 4, nppiAddC_8u_C4RSfs >::call},
{0 , 0 , 0 , 0 },
{NppArithmScalar<CV_16U, 1, nppiAddC_16u_C1RSfs>::call, 0 , NppArithmScalar<CV_16U, 3, nppiAddC_16u_C3RSfs>::call, NppArithmScalar<CV_16U, 4, nppiAddC_16u_C4RSfs>::call},
{NppArithmScalar<CV_16S, 1, nppiAddC_16s_C1RSfs>::call, NppArithmScalar<CV_16S, 2, nppiAddC_16sc_C1RSfs>::call, NppArithmScalar<CV_16S, 3, nppiAddC_16s_C3RSfs>::call, NppArithmScalar<CV_16S, 4, nppiAddC_16s_C4RSfs>::call},
{NppArithmScalar<CV_32S, 1, nppiAddC_32s_C1RSfs>::call, NppArithmScalar<CV_32S, 2, nppiAddC_32sc_C1RSfs>::call, NppArithmScalar<CV_32S, 3, nppiAddC_32s_C3RSfs>::call, 0 },
{NppArithmScalar<CV_32F, 1, nppiAddC_32f_C1R >::call, NppArithmScalar<CV_32F, 2, nppiAddC_32fc_C1R >::call, NppArithmScalar<CV_32F, 3, nppiAddC_32f_C3R >::call, NppArithmScalar<CV_32F, 4, nppiAddC_32f_C4R >::call},
{0 , 0 , 0 , 0 }
};
if (dtype < 0)
dtype = src.depth();
const int sdepth = src.depth();
const int ddepth = CV_MAT_DEPTH(dtype);
const int cn = src.channels();
CV_Assert( sdepth <= CV_64F && ddepth <= CV_64F );
CV_Assert( cn <= 4 );
CV_Assert( mask.empty() || (cn == 1 && mask.size() == src.size() && mask.type() == CV_8U) );
if (sdepth == CV_64F || ddepth == CV_64F)
{
if (!deviceSupports(NATIVE_DOUBLE))
CV_Error(CV_StsUnsupportedFormat, "The device doesn't support double");
}
dst.create(src.size(), CV_MAKE_TYPE(ddepth, cn));
cudaStream_t stream = StreamAccessor::getStream(s);
const npp_func_t npp_func = npp_funcs[sdepth][cn - 1];
if (ddepth == sdepth && cn > 1 && npp_func != 0)
{
npp_func(src, sc, dst, stream);
return;
}
CV_Assert( cn == 1 );
const func_t func = funcs[sdepth][ddepth];
if (!func)
CV_Error(CV_StsUnsupportedFormat, "Unsupported combination of source and destination types");
func(src, sc.val[0], dst, mask, stream);
}
////////////////////////////////////////////////////////////////////////
// subtract
namespace arithm
{
void subMat_v4(PtrStepSz<unsigned int> src1, PtrStepSz<unsigned int> src2, PtrStepSz<unsigned int> dst, cudaStream_t stream);
void subMat_v2(PtrStepSz<unsigned int> src1, PtrStepSz<unsigned int> src2, PtrStepSz<unsigned int> dst, cudaStream_t stream);
template <typename T, typename D>
void subMat(PtrStepSzb src1, PtrStepSzb src2, PtrStepSzb dst, PtrStepb mask, cudaStream_t stream);
}
void cv::gpu::subtract(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, const GpuMat& mask, int dtype, Stream& s)
{
using namespace arithm;
typedef void (*func_t)(PtrStepSzb src1, PtrStepSzb src2, PtrStepSzb dst, PtrStepb mask, cudaStream_t stream);
static const func_t funcs[7][7] =
{
{
subMat<unsigned char, unsigned char>,
subMat<unsigned char, signed char>,
subMat<unsigned char, unsigned short>,
subMat<unsigned char, short>,
subMat<unsigned char, int>,
subMat<unsigned char, float>,
subMat<unsigned char, double>
},
{
subMat<signed char, unsigned char>,
subMat<signed char, signed char>,
subMat<signed char, unsigned short>,
subMat<signed char, short>,
subMat<signed char, int>,
subMat<signed char, float>,
subMat<signed char, double>
},
{
0 /*subMat<unsigned short, unsigned char>*/,
0 /*subMat<unsigned short, signed char>*/,
subMat<unsigned short, unsigned short>,
subMat<unsigned short, short>,
subMat<unsigned short, int>,
subMat<unsigned short, float>,
subMat<unsigned short, double>
},
{
0 /*subMat<short, unsigned char>*/,
0 /*subMat<short, signed char>*/,
subMat<short, unsigned short>,
subMat<short, short>,
subMat<short, int>,
subMat<short, float>,
subMat<short, double>
},
{
0 /*subMat<int, unsigned char>*/,
0 /*subMat<int, signed char>*/,
0 /*subMat<int, unsigned short>*/,
0 /*subMat<int, short>*/,
subMat<int, int>,
subMat<int, float>,
subMat<int, double>
},
{
0 /*subMat<float, unsigned char>*/,
0 /*subMat<float, signed char>*/,
0 /*subMat<float, unsigned short>*/,
0 /*subMat<float, short>*/,
0 /*subMat<float, int>*/,
subMat<float, float>,
subMat<float, double>
},
{
0 /*subMat<double, unsigned char>*/,
0 /*subMat<double, signed char>*/,
0 /*subMat<double, unsigned short>*/,
0 /*subMat<double, short>*/,
0 /*subMat<double, int>*/,
0 /*subMat<double, float>*/,
subMat<double, double>
}
};
if (dtype < 0)
dtype = src1.depth();
const int sdepth = src1.depth();
const int ddepth = CV_MAT_DEPTH(dtype);
const int cn = src1.channels();
CV_Assert( sdepth <= CV_64F && ddepth <= CV_64F );
CV_Assert( src2.type() == src1.type() && src2.size() == src1.size() );
CV_Assert( mask.empty() || (cn == 1 && mask.size() == src1.size() && mask.type() == CV_8U) );
if (sdepth == CV_64F || ddepth == CV_64F)
{
if (!deviceSupports(NATIVE_DOUBLE))
CV_Error(CV_StsUnsupportedFormat, "The device doesn't support double");
}
dst.create(src1.size(), CV_MAKE_TYPE(ddepth, cn));
cudaStream_t stream = StreamAccessor::getStream(s);
PtrStepSzb src1_(src1.rows, src1.cols * cn, src1.data, src1.step);
PtrStepSzb src2_(src1.rows, src1.cols * cn, src2.data, src2.step);
PtrStepSzb dst_(src1.rows, src1.cols * cn, dst.data, dst.step);
if (mask.empty() && (sdepth == CV_8U || sdepth == CV_16U) && ddepth == sdepth)
{
const intptr_t src1ptr = reinterpret_cast<intptr_t>(src1_.data);
const intptr_t src2ptr = reinterpret_cast<intptr_t>(src2_.data);
const intptr_t dstptr = reinterpret_cast<intptr_t>(dst_.data);
const bool isAllAligned = (src1ptr & 31) == 0 && (src2ptr & 31) == 0 && (dstptr & 31) == 0;
if (isAllAligned)
{
if (sdepth == CV_8U && (src1_.cols & 3) == 0)
{
const int vcols = src1_.cols >> 2;
subMat_v4(PtrStepSz<unsigned int>(src1_.rows, vcols, (unsigned int*) src1_.data, src1_.step),
PtrStepSz<unsigned int>(src1_.rows, vcols, (unsigned int*) src2_.data, src2_.step),
PtrStepSz<unsigned int>(src1_.rows, vcols, (unsigned int*) dst_.data, dst_.step),
stream);
return;
}
else if (sdepth == CV_16U && (src1_.cols & 1) == 0)
{
const int vcols = src1_.cols >> 1;
subMat_v2(PtrStepSz<unsigned int>(src1_.rows, vcols, (unsigned int*) src1_.data, src1_.step),
PtrStepSz<unsigned int>(src1_.rows, vcols, (unsigned int*) src2_.data, src2_.step),
PtrStepSz<unsigned int>(src1_.rows, vcols, (unsigned int*) dst_.data, dst_.step),
stream);
return;
}
}
}
const func_t func = funcs[sdepth][ddepth];
if (!func)
CV_Error(CV_StsUnsupportedFormat, "Unsupported combination of source and destination types");
func(src1_, src2_, dst_, mask, stream);
}
namespace arithm
{
template <typename T, typename S, typename D>
void subScalar(PtrStepSzb src1, double val, PtrStepSzb dst, PtrStepb mask, cudaStream_t stream);
}
void cv::gpu::subtract(const GpuMat& src, const Scalar& sc, GpuMat& dst, const GpuMat& mask, int dtype, Stream& s)
{
using namespace arithm;
typedef void (*func_t)(PtrStepSzb src1, double val, PtrStepSzb dst, PtrStepb mask, cudaStream_t stream);
static const func_t funcs[7][7] =
{
{
subScalar<unsigned char, float, unsigned char>,
subScalar<unsigned char, float, signed char>,
subScalar<unsigned char, float, unsigned short>,
subScalar<unsigned char, float, short>,
subScalar<unsigned char, float, int>,
subScalar<unsigned char, float, float>,
subScalar<unsigned char, double, double>
},
{
subScalar<signed char, float, unsigned char>,
subScalar<signed char, float, signed char>,
subScalar<signed char, float, unsigned short>,
subScalar<signed char, float, short>,
subScalar<signed char, float, int>,
subScalar<signed char, float, float>,
subScalar<signed char, double, double>
},
{
0 /*subScalar<unsigned short, float, unsigned char>*/,
0 /*subScalar<unsigned short, float, signed char>*/,
subScalar<unsigned short, float, unsigned short>,
subScalar<unsigned short, float, short>,
subScalar<unsigned short, float, int>,
subScalar<unsigned short, float, float>,
subScalar<unsigned short, double, double>
},
{
0 /*subScalar<short, float, unsigned char>*/,
0 /*subScalar<short, float, signed char>*/,
subScalar<short, float, unsigned short>,
subScalar<short, float, short>,
subScalar<short, float, int>,
subScalar<short, float, float>,
subScalar<short, double, double>
},
{
0 /*subScalar<int, float, unsigned char>*/,
0 /*subScalar<int, float, signed char>*/,
0 /*subScalar<int, float, unsigned short>*/,
0 /*subScalar<int, float, short>*/,
subScalar<int, float, int>,
subScalar<int, float, float>,
subScalar<int, double, double>
},
{
0 /*subScalar<float, float, unsigned char>*/,
0 /*subScalar<float, float, signed char>*/,
0 /*subScalar<float, float, unsigned short>*/,
0 /*subScalar<float, float, short>*/,
0 /*subScalar<float, float, int>*/,
subScalar<float, float, float>,
subScalar<float, double, double>
},
{
0 /*subScalar<double, double, unsigned char>*/,
0 /*subScalar<double, double, signed char>*/,
0 /*subScalar<double, double, unsigned short>*/,
0 /*subScalar<double, double, short>*/,
0 /*subScalar<double, double, int>*/,
0 /*subScalar<double, double, float>*/,
subScalar<double, double, double>
}
};
typedef void (*npp_func_t)(const PtrStepSzb src, Scalar sc, PtrStepb dst, cudaStream_t stream);
static const npp_func_t npp_funcs[7][4] =
{
{NppArithmScalar<CV_8U , 1, nppiSubC_8u_C1RSfs >::call, 0 , NppArithmScalar<CV_8U , 3, nppiSubC_8u_C3RSfs >::call, NppArithmScalar<CV_8U , 4, nppiSubC_8u_C4RSfs >::call},
{0 , 0 , 0 , 0 },
{NppArithmScalar<CV_16U, 1, nppiSubC_16u_C1RSfs>::call, 0 , NppArithmScalar<CV_16U, 3, nppiSubC_16u_C3RSfs>::call, NppArithmScalar<CV_16U, 4, nppiSubC_16u_C4RSfs>::call},
{NppArithmScalar<CV_16S, 1, nppiSubC_16s_C1RSfs>::call, NppArithmScalar<CV_16S, 2, nppiSubC_16sc_C1RSfs>::call, NppArithmScalar<CV_16S, 3, nppiSubC_16s_C3RSfs>::call, NppArithmScalar<CV_16S, 4, nppiSubC_16s_C4RSfs>::call},
{NppArithmScalar<CV_32S, 1, nppiSubC_32s_C1RSfs>::call, NppArithmScalar<CV_32S, 2, nppiSubC_32sc_C1RSfs>::call, NppArithmScalar<CV_32S, 3, nppiSubC_32s_C3RSfs>::call, 0 },
{NppArithmScalar<CV_32F, 1, nppiSubC_32f_C1R >::call, NppArithmScalar<CV_32F, 2, nppiSubC_32fc_C1R >::call, NppArithmScalar<CV_32F, 3, nppiSubC_32f_C3R >::call, NppArithmScalar<CV_32F, 4, nppiSubC_32f_C4R >::call},
{0 , 0 , 0 , 0 }
};
if (dtype < 0)
dtype = src.depth();
const int sdepth = src.depth();
const int ddepth = CV_MAT_DEPTH(dtype);
const int cn = src.channels();
CV_Assert( sdepth <= CV_64F && ddepth <= CV_64F );
CV_Assert( cn <= 4 );
CV_Assert( mask.empty() || (cn == 1 && mask.size() == src.size() && mask.type() == CV_8U) );
if (sdepth == CV_64F || ddepth == CV_64F)
{
if (!deviceSupports(NATIVE_DOUBLE))
CV_Error(CV_StsUnsupportedFormat, "The device doesn't support double");
}
dst.create(src.size(), CV_MAKE_TYPE(ddepth, cn));
cudaStream_t stream = StreamAccessor::getStream(s);
const npp_func_t npp_func = npp_funcs[sdepth][cn - 1];
if (ddepth == sdepth && cn > 1 && npp_func != 0)
{
npp_func(src, sc, dst, stream);
return;
}
CV_Assert( cn == 1 );
const func_t func = funcs[sdepth][ddepth];
if (!func)
CV_Error(CV_StsUnsupportedFormat, "Unsupported combination of source and destination types");
func(src, sc.val[0], dst, mask, stream);
}
////////////////////////////////////////////////////////////////////////
// multiply
namespace arithm
{
void mulMat_8uc4_32f(PtrStepSz<unsigned int> src1, PtrStepSzf src2, PtrStepSz<unsigned int> dst, cudaStream_t stream);
void mulMat_16sc4_32f(PtrStepSz<short4> src1, PtrStepSzf src2, PtrStepSz<short4> dst, cudaStream_t stream);
template <typename T, typename S, typename D>
void mulMat(PtrStepSzb src1, PtrStepSzb src2, PtrStepSzb dst, double scale, cudaStream_t stream);
}
void cv::gpu::multiply(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, double scale, int dtype, Stream& s)
{
using namespace arithm;
cudaStream_t stream = StreamAccessor::getStream(s);
if (src1.type() == CV_8UC4 && src2.type() == CV_32FC1)
{
CV_Assert( src1.size() == src2.size() );
dst.create(src1.size(), src1.type());
mulMat_8uc4_32f(src1, src2, dst, stream);
}
else if (src1.type() == CV_16SC4 && src2.type() == CV_32FC1)
{
CV_Assert( src1.size() == src2.size() );
dst.create(src1.size(), src1.type());
mulMat_16sc4_32f(src1, src2, dst, stream);
}
else
{
typedef void (*func_t)(PtrStepSzb src1, PtrStepSzb src2, PtrStepSzb dst, double scale, cudaStream_t stream);
static const func_t funcs[7][7] =
{
{
mulMat<unsigned char, float, unsigned char>,
mulMat<unsigned char, float, signed char>,
mulMat<unsigned char, float, unsigned short>,
mulMat<unsigned char, float, short>,
mulMat<unsigned char, float, int>,
mulMat<unsigned char, float, float>,
mulMat<unsigned char, double, double>
},
{
mulMat<signed char, float, unsigned char>,
mulMat<signed char, float, signed char>,
mulMat<signed char, float, unsigned short>,
mulMat<signed char, float, short>,
mulMat<signed char, float, int>,
mulMat<signed char, float, float>,
mulMat<signed char, double, double>
},
{
0 /*mulMat<unsigned short, float, unsigned char>*/,
0 /*mulMat<unsigned short, float, signed char>*/,
mulMat<unsigned short, float, unsigned short>,
mulMat<unsigned short, float, short>,
mulMat<unsigned short, float, int>,
mulMat<unsigned short, float, float>,
mulMat<unsigned short, double, double>
},
{
0 /*mulMat<short, float, unsigned char>*/,
0 /*mulMat<short, float, signed char>*/,
mulMat<short, float, unsigned short>,
mulMat<short, float, short>,
mulMat<short, float, int>,
mulMat<short, float, float>,
mulMat<short, double, double>
},
{
0 /*mulMat<int, float, unsigned char>*/,
0 /*mulMat<int, float, signed char>*/,
0 /*mulMat<int, float, unsigned short>*/,
0 /*mulMat<int, float, short>*/,
mulMat<int, float, int>,
mulMat<int, float, float>,
mulMat<int, double, double>
},
{
0 /*mulMat<float, float, unsigned char>*/,
0 /*mulMat<float, float, signed char>*/,
0 /*mulMat<float, float, unsigned short>*/,
0 /*mulMat<float, float, short>*/,
0 /*mulMat<float, float, int>*/,
mulMat<float, float, float>,
mulMat<float, double, double>
},
{
0 /*mulMat<double, double, unsigned char>*/,
0 /*mulMat<double, double, signed char>*/,
0 /*mulMat<double, double, unsigned short>*/,
0 /*mulMat<double, double, short>*/,
0 /*mulMat<double, double, int>*/,
0 /*mulMat<double, double, float>*/,
mulMat<double, double, double>
}
};
if (dtype < 0)
dtype = src1.depth();
const int sdepth = src1.depth();
const int ddepth = CV_MAT_DEPTH(dtype);
const int cn = src1.channels();
CV_Assert( sdepth <= CV_64F && ddepth <= CV_64F );
CV_Assert( src2.type() == src1.type() && src2.size() == src1.size() );
if (sdepth == CV_64F || ddepth == CV_64F)
{
if (!deviceSupports(NATIVE_DOUBLE))
CV_Error(CV_StsUnsupportedFormat, "The device doesn't support double");
}
dst.create(src1.size(), CV_MAKE_TYPE(ddepth, cn));
PtrStepSzb src1_(src1.rows, src1.cols * cn, src1.data, src1.step);
PtrStepSzb src2_(src1.rows, src1.cols * cn, src2.data, src2.step);
PtrStepSzb dst_(src1.rows, src1.cols * cn, dst.data, dst.step);
const func_t func = funcs[sdepth][ddepth];
if (!func)
CV_Error(CV_StsUnsupportedFormat, "Unsupported combination of source and destination types");
func(src1_, src2_, dst_, scale, stream);
}
}
namespace arithm
{
template <typename T, typename S, typename D>
void mulScalar(PtrStepSzb src1, double val, PtrStepSzb dst, cudaStream_t stream);
}
void cv::gpu::multiply(const GpuMat& src, const Scalar& sc, GpuMat& dst, double scale, int dtype, Stream& s)
{
using namespace arithm;
typedef void (*func_t)(PtrStepSzb src1, double val, PtrStepSzb dst, cudaStream_t stream);
static const func_t funcs[7][7] =
{
{
mulScalar<unsigned char, float, unsigned char>,
mulScalar<unsigned char, float, signed char>,
mulScalar<unsigned char, float, unsigned short>,
mulScalar<unsigned char, float, short>,
mulScalar<unsigned char, float, int>,
mulScalar<unsigned char, float, float>,
mulScalar<unsigned char, double, double>
},
{
mulScalar<signed char, float, unsigned char>,
mulScalar<signed char, float, signed char>,
mulScalar<signed char, float, unsigned short>,
mulScalar<signed char, float, short>,
mulScalar<signed char, float, int>,
mulScalar<signed char, float, float>,
mulScalar<signed char, double, double>
},
{
0 /*mulScalar<unsigned short, float, unsigned char>*/,
0 /*mulScalar<unsigned short, float, signed char>*/,
mulScalar<unsigned short, float, unsigned short>,
mulScalar<unsigned short, float, short>,
mulScalar<unsigned short, float, int>,
mulScalar<unsigned short, float, float>,
mulScalar<unsigned short, double, double>
},
{
0 /*mulScalar<short, float, unsigned char>*/,
0 /*mulScalar<short, float, signed char>*/,
mulScalar<short, float, unsigned short>,
mulScalar<short, float, short>,
mulScalar<short, float, int>,
mulScalar<short, float, float>,
mulScalar<short, double, double>
},
{
0 /*mulScalar<int, float, unsigned char>*/,
0 /*mulScalar<int, float, signed char>*/,
0 /*mulScalar<int, float, unsigned short>*/,
0 /*mulScalar<int, float, short>*/,
mulScalar<int, float, int>,
mulScalar<int, float, float>,
mulScalar<int, double, double>
},
{
0 /*mulScalar<float, float, unsigned char>*/,
0 /*mulScalar<float, float, signed char>*/,
0 /*mulScalar<float, float, unsigned short>*/,
0 /*mulScalar<float, float, short>*/,
0 /*mulScalar<float, float, int>*/,
mulScalar<float, float, float>,
mulScalar<float, double, double>
},
{
0 /*mulScalar<double, double, unsigned char>*/,
0 /*mulScalar<double, double, signed char>*/,
0 /*mulScalar<double, double, unsigned short>*/,
0 /*mulScalar<double, double, short>*/,
0 /*mulScalar<double, double, int>*/,
0 /*mulScalar<double, double, float>*/,
mulScalar<double, double, double>
}
};
typedef void (*npp_func_t)(const PtrStepSzb src, Scalar sc, PtrStepb dst, cudaStream_t stream);
static const npp_func_t npp_funcs[7][4] =
{
{NppArithmScalar<CV_8U , 1, nppiMulC_8u_C1RSfs >::call, 0, NppArithmScalar<CV_8U , 3, nppiMulC_8u_C3RSfs >::call, NppArithmScalar<CV_8U , 4, nppiMulC_8u_C4RSfs >::call},
{0 , 0, 0 , 0 },
{NppArithmScalar<CV_16U, 1, nppiMulC_16u_C1RSfs>::call, 0, NppArithmScalar<CV_16U, 3, nppiMulC_16u_C3RSfs>::call, NppArithmScalar<CV_16U, 4, nppiMulC_16u_C4RSfs>::call},
{NppArithmScalar<CV_16S, 1, nppiMulC_16s_C1RSfs>::call, 0, NppArithmScalar<CV_16S, 3, nppiMulC_16s_C3RSfs>::call, NppArithmScalar<CV_16S, 4, nppiMulC_16s_C4RSfs>::call},
{NppArithmScalar<CV_32S, 1, nppiMulC_32s_C1RSfs>::call, 0, NppArithmScalar<CV_32S, 3, nppiMulC_32s_C3RSfs>::call, 0 },
{NppArithmScalar<CV_32F, 1, nppiMulC_32f_C1R >::call, 0, NppArithmScalar<CV_32F, 3, nppiMulC_32f_C3R >::call, NppArithmScalar<CV_32F, 4, nppiMulC_32f_C4R >::call},
{0 , 0, 0 , 0 }
};
if (dtype < 0)
dtype = src.depth();
const int sdepth = src.depth();
const int ddepth = CV_MAT_DEPTH(dtype);
const int cn = src.channels();
CV_Assert( sdepth <= CV_64F && ddepth <= CV_64F );
CV_Assert( cn <= 4 );
if (sdepth == CV_64F || ddepth == CV_64F)
{
if (!deviceSupports(NATIVE_DOUBLE))
CV_Error(CV_StsUnsupportedFormat, "The device doesn't support double");
}
dst.create(src.size(), CV_MAKE_TYPE(ddepth, cn));
cudaStream_t stream = StreamAccessor::getStream(s);
const Scalar nsc(sc.val[0] * scale, sc.val[1] * scale, sc.val[2] * scale, sc.val[3] * scale);
const npp_func_t npp_func = npp_funcs[sdepth][cn - 1];
if (ddepth == sdepth && cn > 1 && npp_func != 0)
{
npp_func(src, nsc, dst, stream);
return;
}
CV_Assert( cn == 1 );
const func_t func = funcs[sdepth][ddepth];
if (!func)
CV_Error(CV_StsUnsupportedFormat, "Unsupported combination of source and destination types");
func(src, nsc.val[0], dst, stream);
}
////////////////////////////////////////////////////////////////////////
// divide
namespace arithm
{
void divMat_8uc4_32f(PtrStepSz<unsigned int> src1, PtrStepSzf src2, PtrStepSz<unsigned int> dst, cudaStream_t stream);
void divMat_16sc4_32f(PtrStepSz<short4> src1, PtrStepSzf src2, PtrStepSz<short4> dst, cudaStream_t stream);
template <typename T, typename S, typename D>
void divMat(PtrStepSzb src1, PtrStepSzb src2, PtrStepSzb dst, double scale, cudaStream_t stream);
}
void cv::gpu::divide(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, double scale, int dtype, Stream& s)
{
using namespace arithm;
cudaStream_t stream = StreamAccessor::getStream(s);
if (src1.type() == CV_8UC4 && src2.type() == CV_32FC1)
{
CV_Assert( src1.size() == src2.size() );
dst.create(src1.size(), src1.type());
divMat_8uc4_32f(src1, src2, dst, stream);
}
else if (src1.type() == CV_16SC4 && src2.type() == CV_32FC1)
{
CV_Assert( src1.size() == src2.size() );
dst.create(src1.size(), src1.type());
divMat_16sc4_32f(src1, src2, dst, stream);
}
else
{
typedef void (*func_t)(PtrStepSzb src1, PtrStepSzb src2, PtrStepSzb dst, double scale, cudaStream_t stream);
static const func_t funcs[7][7] =
{
{
divMat<unsigned char, float, unsigned char>,
divMat<unsigned char, float, signed char>,
divMat<unsigned char, float, unsigned short>,
divMat<unsigned char, float, short>,
divMat<unsigned char, float, int>,
divMat<unsigned char, float, float>,
divMat<unsigned char, double, double>
},
{
divMat<signed char, float, unsigned char>,
divMat<signed char, float, signed char>,
divMat<signed char, float, unsigned short>,
divMat<signed char, float, short>,
divMat<signed char, float, int>,
divMat<signed char, float, float>,
divMat<signed char, double, double>
},
{
0 /*divMat<unsigned short, float, unsigned char>*/,
0 /*divMat<unsigned short, float, signed char>*/,
divMat<unsigned short, float, unsigned short>,
divMat<unsigned short, float, short>,
divMat<unsigned short, float, int>,
divMat<unsigned short, float, float>,
divMat<unsigned short, double, double>
},
{
0 /*divMat<short, float, unsigned char>*/,
0 /*divMat<short, float, signed char>*/,
divMat<short, float, unsigned short>,
divMat<short, float, short>,
divMat<short, float, int>,
divMat<short, float, float>,
divMat<short, double, double>
},
{
0 /*divMat<int, float, unsigned char>*/,
0 /*divMat<int, float, signed char>*/,
0 /*divMat<int, float, unsigned short>*/,
0 /*divMat<int, float, short>*/,
divMat<int, float, int>,
divMat<int, float, float>,
divMat<int, double, double>
},
{
0 /*divMat<float, float, unsigned char>*/,
0 /*divMat<float, float, signed char>*/,
0 /*divMat<float, float, unsigned short>*/,
0 /*divMat<float, float, short>*/,
0 /*divMat<float, float, int>*/,
divMat<float, float, float>,
divMat<float, double, double>
},
{
0 /*divMat<double, double, unsigned char>*/,
0 /*divMat<double, double, signed char>*/,
0 /*divMat<double, double, unsigned short>*/,
0 /*divMat<double, double, short>*/,
0 /*divMat<double, double, int>*/,
0 /*divMat<double, double, float>*/,
divMat<double, double, double>
}
};
if (dtype < 0)
dtype = src1.depth();
const int sdepth = src1.depth();
const int ddepth = CV_MAT_DEPTH(dtype);
const int cn = src1.channels();
CV_Assert( sdepth <= CV_64F && ddepth <= CV_64F );
CV_Assert( src2.type() == src1.type() && src2.size() == src1.size() );
if (sdepth == CV_64F || ddepth == CV_64F)
{
if (!deviceSupports(NATIVE_DOUBLE))
CV_Error(CV_StsUnsupportedFormat, "The device doesn't support double");
}
dst.create(src1.size(), CV_MAKE_TYPE(ddepth, cn));
PtrStepSzb src1_(src1.rows, src1.cols * cn, src1.data, src1.step);
PtrStepSzb src2_(src1.rows, src1.cols * cn, src2.data, src2.step);
PtrStepSzb dst_(src1.rows, src1.cols * cn, dst.data, dst.step);
const func_t func = funcs[sdepth][ddepth];
if (!func)
CV_Error(CV_StsUnsupportedFormat, "Unsupported combination of source and destination types");
func(src1_, src2_, dst_, scale, stream);
}
}
namespace arithm
{
template <typename T, typename S, typename D>
void divScalar(PtrStepSzb src1, double val, PtrStepSzb dst, cudaStream_t stream);
}
void cv::gpu::divide(const GpuMat& src, const Scalar& sc, GpuMat& dst, double scale, int dtype, Stream& s)
{
using namespace arithm;
typedef void (*func_t)(PtrStepSzb src1, double val, PtrStepSzb dst, cudaStream_t stream);
static const func_t funcs[7][7] =
{
{
divScalar<unsigned char, float, unsigned char>,
divScalar<unsigned char, float, signed char>,
divScalar<unsigned char, float, unsigned short>,
divScalar<unsigned char, float, short>,
divScalar<unsigned char, float, int>,
divScalar<unsigned char, float, float>,
divScalar<unsigned char, double, double>
},
{
divScalar<signed char, float, unsigned char>,
divScalar<signed char, float, signed char>,
divScalar<signed char, float, unsigned short>,
divScalar<signed char, float, short>,
divScalar<signed char, float, int>,
divScalar<signed char, float, float>,
divScalar<signed char, double, double>
},
{
0 /*divScalar<unsigned short, float, unsigned char>*/,
0 /*divScalar<unsigned short, float, signed char>*/,
divScalar<unsigned short, float, unsigned short>,
divScalar<unsigned short, float, short>,
divScalar<unsigned short, float, int>,
divScalar<unsigned short, float, float>,
divScalar<unsigned short, double, double>
},
{
0 /*divScalar<short, float, unsigned char>*/,
0 /*divScalar<short, float, signed char>*/,
divScalar<short, float, unsigned short>,
divScalar<short, float, short>,
divScalar<short, float, int>,
divScalar<short, float, float>,
divScalar<short, double, double>
},
{
0 /*divScalar<int, float, unsigned char>*/,
0 /*divScalar<int, float, signed char>*/,
0 /*divScalar<int, float, unsigned short>*/,
0 /*divScalar<int, float, short>*/,
divScalar<int, float, int>,
divScalar<int, float, float>,
divScalar<int, double, double>
},
{
0 /*divScalar<float, float, unsigned char>*/,
0 /*divScalar<float, float, signed char>*/,
0 /*divScalar<float, float, unsigned short>*/,
0 /*divScalar<float, float, short>*/,
0 /*divScalar<float, float, int>*/,
divScalar<float, float, float>,
divScalar<float, double, double>
},
{
0 /*divScalar<double, double, unsigned char>*/,
0 /*divScalar<double, double, signed char>*/,
0 /*divScalar<double, double, unsigned short>*/,
0 /*divScalar<double, double, short>*/,
0 /*divScalar<double, double, int>*/,
0 /*divScalar<double, double, float>*/,
divScalar<double, double, double>
}
};
typedef void (*npp_func_t)(const PtrStepSzb src, Scalar sc, PtrStepb dst, cudaStream_t stream);
static const npp_func_t npp_funcs[7][4] =
{
{NppArithmScalar<CV_8U , 1, nppiDivC_8u_C1RSfs >::call, 0, NppArithmScalar<CV_8U , 3, nppiDivC_8u_C3RSfs >::call, NppArithmScalar<CV_8U , 4, nppiDivC_8u_C4RSfs >::call},
{0 , 0, 0 , 0 },
{NppArithmScalar<CV_16U, 1, nppiDivC_16u_C1RSfs>::call, 0, NppArithmScalar<CV_16U, 3, nppiDivC_16u_C3RSfs>::call, NppArithmScalar<CV_16U, 4, nppiDivC_16u_C4RSfs>::call},
{NppArithmScalar<CV_16S, 1, nppiDivC_16s_C1RSfs>::call, 0, NppArithmScalar<CV_16S, 3, nppiDivC_16s_C3RSfs>::call, NppArithmScalar<CV_16S, 4, nppiDivC_16s_C4RSfs>::call},
{NppArithmScalar<CV_32S, 1, nppiDivC_32s_C1RSfs>::call, 0, NppArithmScalar<CV_32S, 3, nppiDivC_32s_C3RSfs>::call, 0 },
{NppArithmScalar<CV_32F, 1, nppiDivC_32f_C1R >::call, 0, NppArithmScalar<CV_32F, 3, nppiDivC_32f_C3R >::call, NppArithmScalar<CV_32F, 4, nppiDivC_32f_C4R >::call},
{0 , 0, 0 , 0 }
};
if (dtype < 0)
dtype = src.depth();
const int sdepth = src.depth();
const int ddepth = CV_MAT_DEPTH(dtype);
const int cn = src.channels();
CV_Assert( sdepth <= CV_64F && ddepth <= CV_64F );
CV_Assert( cn <= 4 );
if (sdepth == CV_64F || ddepth == CV_64F)
{
if (!deviceSupports(NATIVE_DOUBLE))
CV_Error(CV_StsUnsupportedFormat, "The device doesn't support double");
}
dst.create(src.size(), CV_MAKE_TYPE(ddepth, cn));
cudaStream_t stream = StreamAccessor::getStream(s);
const Scalar nsc(sc.val[0] / scale, sc.val[1] / scale, sc.val[2] / scale, sc.val[3] / scale);
const npp_func_t npp_func = npp_funcs[sdepth][cn - 1];
if (ddepth == sdepth && cn > 1 && npp_func != 0)
{
npp_func(src, nsc, dst, stream);
return;
}
CV_Assert( cn == 1 );
const func_t func = funcs[sdepth][ddepth];
if (!func)
CV_Error(CV_StsUnsupportedFormat, "Unsupported combination of source and destination types");
func(src, nsc.val[0], dst, stream);
}
namespace arithm
{
template <typename T, typename S, typename D>
void divInv(PtrStepSzb src1, double val, PtrStepSzb dst, cudaStream_t stream);
}
void cv::gpu::divide(double scale, const GpuMat& src, GpuMat& dst, int dtype, Stream& s)
{
using namespace arithm;
typedef void (*func_t)(PtrStepSzb src1, double val, PtrStepSzb dst, cudaStream_t stream);
static const func_t funcs[7][7] =
{
{
divInv<unsigned char, float, unsigned char>,
divInv<unsigned char, float, signed char>,
divInv<unsigned char, float, unsigned short>,
divInv<unsigned char, float, short>,
divInv<unsigned char, float, int>,
divInv<unsigned char, float, float>,
divInv<unsigned char, double, double>
},
{
divInv<signed char, float, unsigned char>,
divInv<signed char, float, signed char>,
divInv<signed char, float, unsigned short>,
divInv<signed char, float, short>,
divInv<signed char, float, int>,
divInv<signed char, float, float>,
divInv<signed char, double, double>
},
{
0 /*divInv<unsigned short, float, unsigned char>*/,
0 /*divInv<unsigned short, float, signed char>*/,
divInv<unsigned short, float, unsigned short>,
divInv<unsigned short, float, short>,
divInv<unsigned short, float, int>,
divInv<unsigned short, float, float>,
divInv<unsigned short, double, double>
},
{
0 /*divInv<short, float, unsigned char>*/,
0 /*divInv<short, float, signed char>*/,
divInv<short, float, unsigned short>,
divInv<short, float, short>,
divInv<short, float, int>,
divInv<short, float, float>,
divInv<short, double, double>
},
{
0 /*divInv<int, float, unsigned char>*/,
0 /*divInv<int, float, signed char>*/,
0 /*divInv<int, float, unsigned short>*/,
0 /*divInv<int, float, short>*/,
divInv<int, float, int>,
divInv<int, float, float>,
divInv<int, double, double>
},
{
0 /*divInv<float, float, unsigned char>*/,
0 /*divInv<float, float, signed char>*/,
0 /*divInv<float, float, unsigned short>*/,
0 /*divInv<float, float, short>*/,
0 /*divInv<float, float, int>*/,
divInv<float, float, float>,
divInv<float, double, double>
},
{
0 /*divInv<double, double, unsigned char>*/,
0 /*divInv<double, double, signed char>*/,
0 /*divInv<double, double, unsigned short>*/,
0 /*divInv<double, double, short>*/,
0 /*divInv<double, double, int>*/,
0 /*divInv<double, double, float>*/,
divInv<double, double, double>
}
};
if (dtype < 0)
dtype = src.depth();
const int sdepth = src.depth();
const int ddepth = CV_MAT_DEPTH(dtype);
const int cn = src.channels();
CV_Assert( sdepth <= CV_64F && ddepth <= CV_64F );
CV_Assert( cn == 1 );
if (sdepth == CV_64F || ddepth == CV_64F)
{
if (!deviceSupports(NATIVE_DOUBLE))
CV_Error(CV_StsUnsupportedFormat, "The device doesn't support double");
}
dst.create(src.size(), CV_MAKE_TYPE(ddepth, cn));
cudaStream_t stream = StreamAccessor::getStream(s);
const func_t func = funcs[sdepth][ddepth];
if (!func)
CV_Error(CV_StsUnsupportedFormat, "Unsupported combination of source and destination types");
func(src, scale, dst, stream);
}
//////////////////////////////////////////////////////////////////////////////
// absdiff
namespace arithm
{
void absDiffMat_v4(PtrStepSz<unsigned int> src1, PtrStepSz<unsigned int> src2, PtrStepSz<unsigned int> dst, cudaStream_t stream);
void absDiffMat_v2(PtrStepSz<unsigned int> src1, PtrStepSz<unsigned int> src2, PtrStepSz<unsigned int> dst, cudaStream_t stream);
template <typename T>
void absDiffMat(PtrStepSzb src1, PtrStepSzb src2, PtrStepSzb dst, cudaStream_t stream);
}
void cv::gpu::absdiff(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, Stream& s)
{
using namespace arithm;
typedef void (*func_t)(PtrStepSzb src1, PtrStepSzb src2, PtrStepSzb dst, cudaStream_t stream);
static const func_t funcs[] =
{
absDiffMat<unsigned char>,
absDiffMat<signed char>,
absDiffMat<unsigned short>,
absDiffMat<short>,
absDiffMat<int>,
absDiffMat<float>,
absDiffMat<double>
};
const int depth = src1.depth();
const int cn = src1.channels();
CV_Assert( depth <= CV_64F );
CV_Assert( src2.type() == src1.type() && src2.size() == src1.size() );
if (depth == CV_64F)
{
if (!deviceSupports(NATIVE_DOUBLE))
CV_Error(CV_StsUnsupportedFormat, "The device doesn't support double");
}
dst.create(src1.size(), src1.type());
cudaStream_t stream = StreamAccessor::getStream(s);
PtrStepSzb src1_(src1.rows, src1.cols * cn, src1.data, src1.step);
PtrStepSzb src2_(src1.rows, src1.cols * cn, src2.data, src2.step);
PtrStepSzb dst_(src1.rows, src1.cols * cn, dst.data, dst.step);
if (depth == CV_8U || depth == CV_16U)
{
const intptr_t src1ptr = reinterpret_cast<intptr_t>(src1_.data);
const intptr_t src2ptr = reinterpret_cast<intptr_t>(src2_.data);
const intptr_t dstptr = reinterpret_cast<intptr_t>(dst_.data);
const bool isAllAligned = (src1ptr & 31) == 0 && (src2ptr & 31) == 0 && (dstptr & 31) == 0;
if (isAllAligned)
{
if (depth == CV_8U && (src1_.cols & 3) == 0)
{
const int vcols = src1_.cols >> 2;
absDiffMat_v4(PtrStepSz<unsigned int>(src1_.rows, vcols, (unsigned int*) src1_.data, src1_.step),
PtrStepSz<unsigned int>(src1_.rows, vcols, (unsigned int*) src2_.data, src2_.step),
PtrStepSz<unsigned int>(src1_.rows, vcols, (unsigned int*) dst_.data, dst_.step),
stream);
return;
}
else if (depth == CV_16U && (src1_.cols & 1) == 0)
{
const int vcols = src1_.cols >> 1;
absDiffMat_v2(PtrStepSz<unsigned int>(src1_.rows, vcols, (unsigned int*) src1_.data, src1_.step),
PtrStepSz<unsigned int>(src1_.rows, vcols, (unsigned int*) src2_.data, src2_.step),
PtrStepSz<unsigned int>(src1_.rows, vcols, (unsigned int*) dst_.data, dst_.step),
stream);
return;
}
}
}
const func_t func = funcs[depth];
if (!func)
CV_Error(CV_StsUnsupportedFormat, "Unsupported combination of source and destination types");
func(src1_, src2_, dst_, stream);
}
namespace arithm
{
template <typename T, typename S>
void absDiffScalar(PtrStepSzb src1, double val, PtrStepSzb dst, cudaStream_t stream);
}
void cv::gpu::absdiff(const GpuMat& src1, const Scalar& src2, GpuMat& dst, Stream& stream)
{
using namespace arithm;
typedef void (*func_t)(PtrStepSzb src1, double val, PtrStepSzb dst, cudaStream_t stream);
static const func_t funcs[] =
{
absDiffScalar<unsigned char, float>,
absDiffScalar<signed char, float>,
absDiffScalar<unsigned short, float>,
absDiffScalar<short, float>,
absDiffScalar<int, float>,
absDiffScalar<float, float>,
absDiffScalar<double, double>
};
const int depth = src1.depth();
CV_Assert( depth <= CV_64F );
CV_Assert( src1.channels() == 1 );
if (depth == CV_64F)
{
if (!deviceSupports(NATIVE_DOUBLE))
CV_Error(CV_StsUnsupportedFormat, "The device doesn't support double");
}
dst.create(src1.size(), src1.type());
funcs[depth](src1, src2.val[0], dst, StreamAccessor::getStream(stream));
}
//////////////////////////////////////////////////////////////////////////////
// abs
namespace arithm
{
template <typename T>
void absMat(PtrStepSzb src, PtrStepSzb dst, cudaStream_t stream);
}
void cv::gpu::abs(const GpuMat& src, GpuMat& dst, Stream& stream)
{
using namespace arithm;
typedef void (*func_t)(PtrStepSzb src, PtrStepSzb dst, cudaStream_t stream);
static const func_t funcs[] =
{
absMat<unsigned char>,
absMat<signed char>,
absMat<unsigned short>,
absMat<short>,
absMat<int>,
absMat<float>,
absMat<double>
};
const int depth = src.depth();
CV_Assert( depth <= CV_64F );
CV_Assert( src.channels() == 1 );
if (depth == CV_64F)
{
if (!deviceSupports(NATIVE_DOUBLE))
CV_Error(CV_StsUnsupportedFormat, "The device doesn't support double");
}
dst.create(src.size(), src.type());
funcs[depth](src, dst, StreamAccessor::getStream(stream));
}
//////////////////////////////////////////////////////////////////////////////
// sqr
namespace arithm
{
template <typename T>
void sqrMat(PtrStepSzb src, PtrStepSzb dst, cudaStream_t stream);
}
void cv::gpu::sqr(const GpuMat& src, GpuMat& dst, Stream& stream)
{
using namespace arithm;
typedef void (*func_t)(PtrStepSzb src, PtrStepSzb dst, cudaStream_t stream);
static const func_t funcs[] =
{
sqrMat<unsigned char>,
sqrMat<signed char>,
sqrMat<unsigned short>,
sqrMat<short>,
sqrMat<int>,
sqrMat<float>,
sqrMat<double>
};
const int depth = src.depth();
CV_Assert( depth <= CV_64F );
CV_Assert( src.channels() == 1 );
if (depth == CV_64F)
{
if (!deviceSupports(NATIVE_DOUBLE))
CV_Error(CV_StsUnsupportedFormat, "The device doesn't support double");
}
dst.create(src.size(), src.type());
funcs[depth](src, dst, StreamAccessor::getStream(stream));
}
//////////////////////////////////////////////////////////////////////////////
// sqrt
namespace arithm
{
template <typename T>
void sqrtMat(PtrStepSzb src, PtrStepSzb dst, cudaStream_t stream);
}
void cv::gpu::sqrt(const GpuMat& src, GpuMat& dst, Stream& stream)
{
using namespace arithm;
typedef void (*func_t)(PtrStepSzb src, PtrStepSzb dst, cudaStream_t stream);
static const func_t funcs[] =
{
sqrtMat<unsigned char>,
sqrtMat<signed char>,
sqrtMat<unsigned short>,
sqrtMat<short>,
sqrtMat<int>,
sqrtMat<float>,
sqrtMat<double>
};
const int depth = src.depth();
CV_Assert( depth <= CV_64F );
CV_Assert( src.channels() == 1 );
if (depth == CV_64F)
{
if (!deviceSupports(NATIVE_DOUBLE))
CV_Error(CV_StsUnsupportedFormat, "The device doesn't support double");
}
dst.create(src.size(), src.type());
funcs[depth](src, dst, StreamAccessor::getStream(stream));
}
////////////////////////////////////////////////////////////////////////
// log
namespace arithm
{
template <typename T>
void logMat(PtrStepSzb src, PtrStepSzb dst, cudaStream_t stream);
}
void cv::gpu::log(const GpuMat& src, GpuMat& dst, Stream& stream)
{
using namespace arithm;
typedef void (*func_t)(PtrStepSzb src, PtrStepSzb dst, cudaStream_t stream);
static const func_t funcs[] =
{
logMat<unsigned char>,
logMat<signed char>,
logMat<unsigned short>,
logMat<short>,
logMat<int>,
logMat<float>,
logMat<double>
};
const int depth = src.depth();
CV_Assert( depth <= CV_64F );
CV_Assert( src.channels() == 1 );
if (depth == CV_64F)
{
if (!deviceSupports(NATIVE_DOUBLE))
CV_Error(CV_StsUnsupportedFormat, "The device doesn't support double");
}
dst.create(src.size(), src.type());
funcs[depth](src, dst, StreamAccessor::getStream(stream));
}
////////////////////////////////////////////////////////////////////////
// exp
namespace arithm
{
template <typename T>
void expMat(PtrStepSzb src, PtrStepSzb dst, cudaStream_t stream);
}
void cv::gpu::exp(const GpuMat& src, GpuMat& dst, Stream& stream)
{
using namespace arithm;
typedef void (*func_t)(PtrStepSzb src, PtrStepSzb dst, cudaStream_t stream);
static const func_t funcs[] =
{
expMat<unsigned char>,
expMat<signed char>,
expMat<unsigned short>,
expMat<short>,
expMat<int>,
expMat<float>,
expMat<double>
};
const int depth = src.depth();
CV_Assert( depth <= CV_64F );
CV_Assert( src.channels() == 1 );
if (depth == CV_64F)
{
if (!deviceSupports(NATIVE_DOUBLE))
CV_Error(CV_StsUnsupportedFormat, "The device doesn't support double");
}
dst.create(src.size(), src.type());
funcs[depth](src, dst, StreamAccessor::getStream(stream));
}
//////////////////////////////////////////////////////////////////////////////
// compare
namespace arithm
{
void cmpMatEq_v4(PtrStepSz<unsigned int> src1, PtrStepSz<unsigned int> src2, PtrStepSz<unsigned int> dst, cudaStream_t stream);
void cmpMatNe_v4(PtrStepSz<unsigned int> src1, PtrStepSz<unsigned int> src2, PtrStepSz<unsigned int> dst, cudaStream_t stream);
void cmpMatLt_v4(PtrStepSz<unsigned int> src1, PtrStepSz<unsigned int> src2, PtrStepSz<unsigned int> dst, cudaStream_t stream);
void cmpMatLe_v4(PtrStepSz<unsigned int> src1, PtrStepSz<unsigned int> src2, PtrStepSz<unsigned int> dst, cudaStream_t stream);
template <typename T> void cmpMatEq(PtrStepSzb src1, PtrStepSzb src2, PtrStepSzb dst, cudaStream_t stream);
template <typename T> void cmpMatNe(PtrStepSzb src1, PtrStepSzb src2, PtrStepSzb dst, cudaStream_t stream);
template <typename T> void cmpMatLt(PtrStepSzb src1, PtrStepSzb src2, PtrStepSzb dst, cudaStream_t stream);
template <typename T> void cmpMatLe(PtrStepSzb src1, PtrStepSzb src2, PtrStepSzb dst, cudaStream_t stream);
}
void cv::gpu::compare(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, int cmpop, Stream& s)
{
using namespace arithm;
typedef void (*func_t)(PtrStepSzb src1, PtrStepSzb src2, PtrStepSzb dst, cudaStream_t stream);
static const func_t funcs[7][4] =
{
{cmpMatEq<unsigned char> , cmpMatNe<unsigned char> , cmpMatLt<unsigned char> , cmpMatLe<unsigned char> },
{cmpMatEq<signed char> , cmpMatNe<signed char> , cmpMatLt<signed char> , cmpMatLe<signed char> },
{cmpMatEq<unsigned short>, cmpMatNe<unsigned short>, cmpMatLt<unsigned short>, cmpMatLe<unsigned short>},
{cmpMatEq<short> , cmpMatNe<short> , cmpMatLt<short> , cmpMatLe<short> },
{cmpMatEq<int> , cmpMatNe<int> , cmpMatLt<int> , cmpMatLe<int> },
{cmpMatEq<float> , cmpMatNe<float> , cmpMatLt<float> , cmpMatLe<float> },
{cmpMatEq<double> , cmpMatNe<double> , cmpMatLt<double> , cmpMatLe<double> }
};
typedef void (*func_v4_t)(PtrStepSz<unsigned int> src1, PtrStepSz<unsigned int> src2, PtrStepSz<unsigned int> dst, cudaStream_t stream);
static const func_v4_t funcs_v4[] =
{
cmpMatEq_v4, cmpMatNe_v4, cmpMatLt_v4, cmpMatLe_v4
};
const int depth = src1.depth();
const int cn = src1.channels();
CV_Assert( depth <= CV_64F );
CV_Assert( src2.size() == src1.size() && src2.type() == src1.type() );
CV_Assert( cmpop >= CMP_EQ && cmpop <= CMP_NE );
if (depth == CV_64F)
{
if (!deviceSupports(NATIVE_DOUBLE))
CV_Error(CV_StsUnsupportedFormat, "The device doesn't support double");
}
dst.create(src1.size(), CV_MAKE_TYPE(CV_8U, cn));
cudaStream_t stream = StreamAccessor::getStream(s);
static const int codes[] =
{
0, 2, 3, 2, 3, 1
};
const GpuMat* psrc1[] =
{
&src1, &src2, &src2, &src1, &src1, &src1
};
const GpuMat* psrc2[] =
{
&src2, &src1, &src1, &src2, &src2, &src2
};
const int code = codes[cmpop];
PtrStepSzb src1_(src1.rows, src1.cols * cn, psrc1[cmpop]->data, psrc1[cmpop]->step);
PtrStepSzb src2_(src1.rows, src1.cols * cn, psrc2[cmpop]->data, psrc2[cmpop]->step);
PtrStepSzb dst_(src1.rows, src1.cols * cn, dst.data, dst.step);
if (depth == CV_8U && (src1_.cols & 3) == 0)
{
const intptr_t src1ptr = reinterpret_cast<intptr_t>(src1_.data);
const intptr_t src2ptr = reinterpret_cast<intptr_t>(src2_.data);
const intptr_t dstptr = reinterpret_cast<intptr_t>(dst_.data);
const bool isAllAligned = (src1ptr & 31) == 0 && (src2ptr & 31) == 0 && (dstptr & 31) == 0;
if (isAllAligned)
{
const int vcols = src1_.cols >> 2;
funcs_v4[code](PtrStepSz<unsigned int>(src1_.rows, vcols, (unsigned int*) src1_.data, src1_.step),
PtrStepSz<unsigned int>(src1_.rows, vcols, (unsigned int*) src2_.data, src2_.step),
PtrStepSz<unsigned int>(src1_.rows, vcols, (unsigned int*) dst_.data, dst_.step),
stream);
return;
}
}
const func_t func = funcs[depth][code];
func(src1_, src2_, dst_, stream);
}
namespace arithm
{
template <typename T> void cmpScalarEq(PtrStepSzb src, int cn, double val[4], PtrStepSzb dst, cudaStream_t stream);
template <typename T> void cmpScalarNe(PtrStepSzb src, int cn, double val[4], PtrStepSzb dst, cudaStream_t stream);
template <typename T> void cmpScalarLt(PtrStepSzb src, int cn, double val[4], PtrStepSzb dst, cudaStream_t stream);
template <typename T> void cmpScalarLe(PtrStepSzb src, int cn, double val[4], PtrStepSzb dst, cudaStream_t stream);
template <typename T> void cmpScalarGt(PtrStepSzb src, int cn, double val[4], PtrStepSzb dst, cudaStream_t stream);
template <typename T> void cmpScalarGe(PtrStepSzb src, int cn, double val[4], PtrStepSzb dst, cudaStream_t stream);
}
namespace
{
template <typename T> void castScalar(Scalar& sc)
{
sc.val[0] = saturate_cast<T>(sc.val[0]);
sc.val[1] = saturate_cast<T>(sc.val[1]);
sc.val[2] = saturate_cast<T>(sc.val[2]);
sc.val[3] = saturate_cast<T>(sc.val[3]);
}
}
void cv::gpu::compare(const GpuMat& src, Scalar sc, GpuMat& dst, int cmpop, Stream& stream)
{
using namespace arithm;
typedef void (*func_t)(PtrStepSzb src, int cn, double val[4], PtrStepSzb dst, cudaStream_t stream);
static const func_t funcs[7][6] =
{
{cmpScalarEq<unsigned char> , cmpScalarGt<unsigned char> , cmpScalarGe<unsigned char> , cmpScalarLt<unsigned char> , cmpScalarLe<unsigned char> , cmpScalarNe<unsigned char> },
{cmpScalarEq<signed char> , cmpScalarGt<signed char> , cmpScalarGe<signed char> , cmpScalarLt<signed char> , cmpScalarLe<signed char> , cmpScalarNe<signed char> },
{cmpScalarEq<unsigned short>, cmpScalarGt<unsigned short>, cmpScalarGe<unsigned short>, cmpScalarLt<unsigned short>, cmpScalarLe<unsigned short>, cmpScalarNe<unsigned short>},
{cmpScalarEq<short> , cmpScalarGt<short> , cmpScalarGe<short> , cmpScalarLt<short> , cmpScalarLe<short> , cmpScalarNe<short> },
{cmpScalarEq<int> , cmpScalarGt<int> , cmpScalarGe<int> , cmpScalarLt<int> , cmpScalarLe<int> , cmpScalarNe<int> },
{cmpScalarEq<float> , cmpScalarGt<float> , cmpScalarGe<float> , cmpScalarLt<float> , cmpScalarLe<float> , cmpScalarNe<float> },
{cmpScalarEq<double> , cmpScalarGt<double> , cmpScalarGe<double> , cmpScalarLt<double> , cmpScalarLe<double> , cmpScalarNe<double> }
};
typedef void (*cast_func_t)(Scalar& sc);
static const cast_func_t cast_func[] =
{
castScalar<unsigned char>, castScalar<signed char>, castScalar<unsigned short>, castScalar<short>, castScalar<int>, castScalar<float>, castScalar<double>
};
const int depth = src.depth();
const int cn = src.channels();
CV_Assert( depth <= CV_64F );
CV_Assert( cn <= 4 );
CV_Assert( cmpop >= CMP_EQ && cmpop <= CMP_NE );
if (depth == CV_64F)
{
if (!deviceSupports(NATIVE_DOUBLE))
CV_Error(CV_StsUnsupportedFormat, "The device doesn't support double");
}
dst.create(src.size(), CV_MAKE_TYPE(CV_8U, cn));
cast_func[depth](sc);
funcs[depth][cmpop](src, cn, sc.val, dst, StreamAccessor::getStream(stream));
}
//////////////////////////////////////////////////////////////////////////////
// Unary bitwise logical operations
namespace arithm
{
template <typename T> void bitMatNot(PtrStepSzb src, PtrStepSzb dst, PtrStepb mask, cudaStream_t stream);
}
void cv::gpu::bitwise_not(const GpuMat& src, GpuMat& dst, const GpuMat& mask, Stream& s)
{
using namespace arithm;
const int depth = src.depth();
CV_Assert( depth <= CV_64F );
CV_Assert( mask.empty() || (mask.type() == CV_8UC1 && mask.size() == src.size()) );
dst.create(src.size(), src.type());
cudaStream_t stream = StreamAccessor::getStream(s);
const int bcols = (int) (src.cols * src.elemSize());
if ((bcols & 3) == 0)
{
const int vcols = bcols >> 2;
bitMatNot<unsigned int>(
PtrStepSzb(src.rows, vcols, src.data, src.step),
PtrStepSzb(src.rows, vcols, dst.data, dst.step),
mask, stream);
}
else if ((bcols & 1) == 0)
{
const int vcols = bcols >> 1;
bitMatNot<unsigned short>(
PtrStepSzb(src.rows, vcols, src.data, src.step),
PtrStepSzb(src.rows, vcols, dst.data, dst.step),
mask, stream);
}
else
{
bitMatNot<unsigned short>(
PtrStepSzb(src.rows, bcols, src.data, src.step),
PtrStepSzb(src.rows, bcols, dst.data, dst.step),
mask, stream);
}
}
//////////////////////////////////////////////////////////////////////////////
// Binary bitwise logical operations
namespace arithm
{
template <typename T> void bitMatAnd(PtrStepSzb src1, PtrStepSzb src2, PtrStepSzb dst, PtrStepb mask, cudaStream_t stream);
template <typename T> void bitMatOr(PtrStepSzb src1, PtrStepSzb src2, PtrStepSzb dst, PtrStepb mask, cudaStream_t stream);
template <typename T> void bitMatXor(PtrStepSzb src1, PtrStepSzb src2, PtrStepSzb dst, PtrStepb mask, cudaStream_t stream);
}
void cv::gpu::bitwise_and(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, const GpuMat& mask, Stream& s)
{
using namespace arithm;
const int depth = src1.depth();
CV_Assert( depth <= CV_64F );
CV_Assert( src2.size() == src1.size() && src2.type() == src1.type() );
CV_Assert( mask.empty() || (mask.type() == CV_8UC1 && mask.size() == src1.size()) );
dst.create(src1.size(), src1.type());
cudaStream_t stream = StreamAccessor::getStream(s);
const int bcols = (int) (src1.cols * src1.elemSize());
if ((bcols & 3) == 0)
{
const int vcols = bcols >> 2;
bitMatAnd<unsigned int>(
PtrStepSzb(src1.rows, vcols, src1.data, src1.step),
PtrStepSzb(src1.rows, vcols, src2.data, src2.step),
PtrStepSzb(src1.rows, vcols, dst.data, dst.step),
mask, stream);
}
else if ((bcols & 1) == 0)
{
const int vcols = bcols >> 1;
bitMatAnd<unsigned int>(
PtrStepSzb(src1.rows, vcols, src1.data, src1.step),
PtrStepSzb(src1.rows, vcols, src2.data, src2.step),
PtrStepSzb(src1.rows, vcols, dst.data, dst.step),
mask, stream);
}
else
{
bitMatAnd<unsigned int>(
PtrStepSzb(src1.rows, bcols, src1.data, src1.step),
PtrStepSzb(src1.rows, bcols, src2.data, src2.step),
PtrStepSzb(src1.rows, bcols, dst.data, dst.step),
mask, stream);
}
}
void cv::gpu::bitwise_or(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, const GpuMat& mask, Stream& s)
{
using namespace arithm;
const int depth = src1.depth();
CV_Assert( depth <= CV_64F );
CV_Assert( src2.size() == src1.size() && src2.type() == src1.type() );
CV_Assert( mask.empty() || (mask.type() == CV_8UC1 && mask.size() == src1.size()) );
dst.create(src1.size(), src1.type());
cudaStream_t stream = StreamAccessor::getStream(s);
const int bcols = (int) (src1.cols * src1.elemSize());
if ((bcols & 3) == 0)
{
const int vcols = bcols >> 2;
bitMatOr<unsigned int>(
PtrStepSzb(src1.rows, vcols, src1.data, src1.step),
PtrStepSzb(src1.rows, vcols, src2.data, src2.step),
PtrStepSzb(src1.rows, vcols, dst.data, dst.step),
mask, stream);
}
else if ((bcols & 1) == 0)
{
const int vcols = bcols >> 1;
bitMatOr<unsigned int>(
PtrStepSzb(src1.rows, vcols, src1.data, src1.step),
PtrStepSzb(src1.rows, vcols, src2.data, src2.step),
PtrStepSzb(src1.rows, vcols, dst.data, dst.step),
mask, stream);
}
else
{
bitMatOr<unsigned int>(
PtrStepSzb(src1.rows, bcols, src1.data, src1.step),
PtrStepSzb(src1.rows, bcols, src2.data, src2.step),
PtrStepSzb(src1.rows, bcols, dst.data, dst.step),
mask, stream);
}
}
void cv::gpu::bitwise_xor(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, const GpuMat& mask, Stream& s)
{
using namespace arithm;
const int depth = src1.depth();
CV_Assert( depth <= CV_64F );
CV_Assert( src2.size() == src1.size() && src2.type() == src1.type() );
CV_Assert( mask.empty() || (mask.type() == CV_8UC1 && mask.size() == src1.size()) );
dst.create(src1.size(), src1.type());
cudaStream_t stream = StreamAccessor::getStream(s);
const int bcols = (int) (src1.cols * src1.elemSize());
if ((bcols & 3) == 0)
{
const int vcols = bcols >> 2;
bitMatXor<unsigned int>(
PtrStepSzb(src1.rows, vcols, src1.data, src1.step),
PtrStepSzb(src1.rows, vcols, src2.data, src2.step),
PtrStepSzb(src1.rows, vcols, dst.data, dst.step),
mask, stream);
}
else if ((bcols & 1) == 0)
{
const int vcols = bcols >> 1;
bitMatXor<unsigned int>(
PtrStepSzb(src1.rows, vcols, src1.data, src1.step),
PtrStepSzb(src1.rows, vcols, src2.data, src2.step),
PtrStepSzb(src1.rows, vcols, dst.data, dst.step),
mask, stream);
}
else
{
bitMatXor<unsigned int>(
PtrStepSzb(src1.rows, bcols, src1.data, src1.step),
PtrStepSzb(src1.rows, bcols, src2.data, src2.step),
PtrStepSzb(src1.rows, bcols, dst.data, dst.step),
mask, stream);
}
}
//////////////////////////////////////////////////////////////////////////////
// Binary bitwise logical operations with scalars
namespace arithm
{
template <typename T> void bitScalarAnd(PtrStepSzb src1, unsigned int src2, PtrStepSzb dst, cudaStream_t stream);
template <typename T> void bitScalarOr(PtrStepSzb src1, unsigned int src2, PtrStepSzb dst, cudaStream_t stream);
template <typename T> void bitScalarXor(PtrStepSzb src1, unsigned int src2, PtrStepSzb dst, cudaStream_t stream);
}
namespace
{
typedef void (*bit_scalar_func_t)(PtrStepSzb src1, unsigned int src2, PtrStepSzb dst, cudaStream_t stream);
template <typename T, bit_scalar_func_t func> struct BitScalar
{
static void call(const GpuMat& src, Scalar sc, GpuMat& dst, cudaStream_t stream)
{
func(src, saturate_cast<T>(sc.val[0]), dst, stream);
}
};
template <bit_scalar_func_t func> struct BitScalar4
{
static void call(const GpuMat& src, Scalar sc, GpuMat& dst, cudaStream_t stream)
{
unsigned int packedVal = 0;
packedVal |= (saturate_cast<unsigned char>(sc.val[0]) & 0xffff);
packedVal |= (saturate_cast<unsigned char>(sc.val[1]) & 0xffff) << 8;
packedVal |= (saturate_cast<unsigned char>(sc.val[2]) & 0xffff) << 16;
packedVal |= (saturate_cast<unsigned char>(sc.val[3]) & 0xffff) << 24;
func(src, packedVal, dst, stream);
}
};
template <int DEPTH, int cn> struct NppBitwiseCFunc
{
typedef typename NppTypeTraits<DEPTH>::npp_t npp_t;
typedef NppStatus (*func_t)(const npp_t* pSrc1, int nSrc1Step, const npp_t* pConstants, npp_t* pDst, int nDstStep, NppiSize oSizeROI);
};
template <int DEPTH> struct NppBitwiseCFunc<DEPTH, 1>
{
typedef typename NppTypeTraits<DEPTH>::npp_t npp_t;
typedef NppStatus (*func_t)(const npp_t* pSrc1, int nSrc1Step, const npp_t pConstant, npp_t* pDst, int nDstStep, NppiSize oSizeROI);
};
template <int DEPTH, int cn, typename NppBitwiseCFunc<DEPTH, cn>::func_t func> struct NppBitwiseC
{
typedef typename NppBitwiseCFunc<DEPTH, cn>::npp_t npp_t;
static void call(const GpuMat& src, Scalar sc, GpuMat& dst, cudaStream_t stream)
{
NppStreamHandler h(stream);
NppiSize oSizeROI;
oSizeROI.width = src.cols;
oSizeROI.height = src.rows;
const npp_t pConstants[] = {saturate_cast<npp_t>(sc.val[0]), saturate_cast<npp_t>(sc.val[1]), saturate_cast<npp_t>(sc.val[2]), saturate_cast<npp_t>(sc.val[3])};
nppSafeCall( func(src.ptr<npp_t>(), static_cast<int>(src.step), pConstants, dst.ptr<npp_t>(), static_cast<int>(dst.step), oSizeROI) );
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
};
template <int DEPTH, typename NppBitwiseCFunc<DEPTH, 1>::func_t func> struct NppBitwiseC<DEPTH, 1, func>
{
typedef typename NppBitwiseCFunc<DEPTH, 1>::npp_t npp_t;
static void call(const GpuMat& src, Scalar sc, GpuMat& dst, cudaStream_t stream)
{
NppStreamHandler h(stream);
NppiSize oSizeROI;
oSizeROI.width = src.cols;
oSizeROI.height = src.rows;
nppSafeCall( func(src.ptr<npp_t>(), static_cast<int>(src.step), saturate_cast<npp_t>(sc.val[0]), dst.ptr<npp_t>(), static_cast<int>(dst.step), oSizeROI) );
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
};
}
void cv::gpu::bitwise_and(const GpuMat& src, const Scalar& sc, GpuMat& dst, Stream& stream)
{
using namespace arithm;
typedef void (*func_t)(const GpuMat& src, Scalar sc, GpuMat& dst, cudaStream_t stream);
static const func_t funcs[5][4] =
{
{BitScalar<unsigned char, bitScalarAnd<unsigned char> >::call , 0, NppBitwiseC<CV_8U , 3, nppiAndC_8u_C3R >::call, BitScalar4< bitScalarAnd<unsigned int> >::call},
{0,0,0,0},
{BitScalar<unsigned short, bitScalarAnd<unsigned short> >::call, 0, NppBitwiseC<CV_16U, 3, nppiAndC_16u_C3R>::call, NppBitwiseC<CV_16U, 4, nppiAndC_16u_C4R>::call},
{0,0,0,0},
{BitScalar<int, bitScalarAnd<int> >::call , 0, NppBitwiseC<CV_32S, 3, nppiAndC_32s_C3R>::call, NppBitwiseC<CV_32S, 4, nppiAndC_32s_C4R>::call}
};
const int depth = src.depth();
const int cn = src.channels();
CV_Assert( depth == CV_8U || depth == CV_16U || depth == CV_32S );
CV_Assert( cn == 1 || cn == 3 || cn == 4 );
dst.create(src.size(), src.type());
funcs[depth][cn - 1](src, sc, dst, StreamAccessor::getStream(stream));
}
void cv::gpu::bitwise_or(const GpuMat& src, const Scalar& sc, GpuMat& dst, Stream& stream)
{
using namespace arithm;
typedef void (*func_t)(const GpuMat& src, Scalar sc, GpuMat& dst, cudaStream_t stream);
static const func_t funcs[5][4] =
{
{BitScalar<unsigned char, bitScalarOr<unsigned char> >::call , 0, NppBitwiseC<CV_8U , 3, nppiOrC_8u_C3R >::call, BitScalar4< bitScalarOr<unsigned int> >::call},
{0,0,0,0},
{BitScalar<unsigned short, bitScalarOr<unsigned short> >::call, 0, NppBitwiseC<CV_16U, 3, nppiOrC_16u_C3R>::call, NppBitwiseC<CV_16U, 4, nppiOrC_16u_C4R>::call},
{0,0,0,0},
{BitScalar<int, bitScalarOr<int> >::call , 0, NppBitwiseC<CV_32S, 3, nppiOrC_32s_C3R>::call, NppBitwiseC<CV_32S, 4, nppiOrC_32s_C4R>::call}
};
const int depth = src.depth();
const int cn = src.channels();
CV_Assert( depth == CV_8U || depth == CV_16U || depth == CV_32S );
CV_Assert( cn == 1 || cn == 3 || cn == 4 );
dst.create(src.size(), src.type());
funcs[depth][cn - 1](src, sc, dst, StreamAccessor::getStream(stream));
}
void cv::gpu::bitwise_xor(const GpuMat& src, const Scalar& sc, GpuMat& dst, Stream& stream)
{
using namespace arithm;
typedef void (*func_t)(const GpuMat& src, Scalar sc, GpuMat& dst, cudaStream_t stream);
static const func_t funcs[5][4] =
{
{BitScalar<unsigned char, bitScalarXor<unsigned char> >::call , 0, NppBitwiseC<CV_8U , 3, nppiXorC_8u_C3R >::call, BitScalar4< bitScalarXor<unsigned int> >::call},
{0,0,0,0},
{BitScalar<unsigned short, bitScalarXor<unsigned short> >::call, 0, NppBitwiseC<CV_16U, 3, nppiXorC_16u_C3R>::call, NppBitwiseC<CV_16U, 4, nppiXorC_16u_C4R>::call},
{0,0,0,0},
{BitScalar<int, bitScalarXor<int> >::call , 0, NppBitwiseC<CV_32S, 3, nppiXorC_32s_C3R>::call, NppBitwiseC<CV_32S, 4, nppiXorC_32s_C4R>::call}
};
const int depth = src.depth();
const int cn = src.channels();
CV_Assert( depth == CV_8U || depth == CV_16U || depth == CV_32S );
CV_Assert( cn == 1 || cn == 3 || cn == 4 );
dst.create(src.size(), src.type());
funcs[depth][cn - 1](src, sc, dst, StreamAccessor::getStream(stream));
}
//////////////////////////////////////////////////////////////////////////////
// shift
namespace
{
template <int DEPTH, int cn> struct NppShiftFunc
{
typedef typename NppTypeTraits<DEPTH>::npp_t npp_t;
typedef NppStatus (*func_t)(const npp_t* pSrc1, int nSrc1Step, const Npp32u* pConstants, npp_t* pDst, int nDstStep, NppiSize oSizeROI);
};
template <int DEPTH> struct NppShiftFunc<DEPTH, 1>
{
typedef typename NppTypeTraits<DEPTH>::npp_t npp_t;
typedef NppStatus (*func_t)(const npp_t* pSrc1, int nSrc1Step, const Npp32u pConstants, npp_t* pDst, int nDstStep, NppiSize oSizeROI);
};
template <int DEPTH, int cn, typename NppShiftFunc<DEPTH, cn>::func_t func> struct NppShift
{
typedef typename NppTypeTraits<DEPTH>::npp_t npp_t;
static void call(const GpuMat& src, Scalar_<Npp32u> sc, GpuMat& dst, cudaStream_t stream)
{
NppStreamHandler h(stream);
NppiSize oSizeROI;
oSizeROI.width = src.cols;
oSizeROI.height = src.rows;
nppSafeCall( func(src.ptr<npp_t>(), static_cast<int>(src.step), sc.val, dst.ptr<npp_t>(), static_cast<int>(dst.step), oSizeROI) );
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
};
template <int DEPTH, typename NppShiftFunc<DEPTH, 1>::func_t func> struct NppShift<DEPTH, 1, func>
{
typedef typename NppTypeTraits<DEPTH>::npp_t npp_t;
static void call(const GpuMat& src, Scalar_<Npp32u> sc, GpuMat& dst, cudaStream_t stream)
{
NppStreamHandler h(stream);
NppiSize oSizeROI;
oSizeROI.width = src.cols;
oSizeROI.height = src.rows;
nppSafeCall( func(src.ptr<npp_t>(), static_cast<int>(src.step), sc.val[0], dst.ptr<npp_t>(), static_cast<int>(dst.step), oSizeROI) );
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
};
}
void cv::gpu::rshift(const GpuMat& src, Scalar_<int> sc, GpuMat& dst, Stream& stream)
{
typedef void (*func_t)(const GpuMat& src, Scalar_<Npp32u> sc, GpuMat& dst, cudaStream_t stream);
static const func_t funcs[5][4] =
{
{NppShift<CV_8U , 1, nppiRShiftC_8u_C1R >::call, 0, NppShift<CV_8U , 3, nppiRShiftC_8u_C3R >::call, NppShift<CV_8U , 4, nppiRShiftC_8u_C4R>::call },
{NppShift<CV_8S , 1, nppiRShiftC_8s_C1R >::call, 0, NppShift<CV_8S , 3, nppiRShiftC_8s_C3R >::call, NppShift<CV_8S , 4, nppiRShiftC_8s_C4R>::call },
{NppShift<CV_16U, 1, nppiRShiftC_16u_C1R>::call, 0, NppShift<CV_16U, 3, nppiRShiftC_16u_C3R>::call, NppShift<CV_16U, 4, nppiRShiftC_16u_C4R>::call},
{NppShift<CV_16S, 1, nppiRShiftC_16s_C1R>::call, 0, NppShift<CV_16S, 3, nppiRShiftC_16s_C3R>::call, NppShift<CV_16S, 4, nppiRShiftC_16s_C4R>::call},
{NppShift<CV_32S, 1, nppiRShiftC_32s_C1R>::call, 0, NppShift<CV_32S, 3, nppiRShiftC_32s_C3R>::call, NppShift<CV_32S, 4, nppiRShiftC_32s_C4R>::call},
};
CV_Assert(src.depth() < CV_32F);
CV_Assert(src.channels() == 1 || src.channels() == 3 || src.channels() == 4);
dst.create(src.size(), src.type());
funcs[src.depth()][src.channels() - 1](src, sc, dst, StreamAccessor::getStream(stream));
}
void cv::gpu::lshift(const GpuMat& src, Scalar_<int> sc, GpuMat& dst, Stream& stream)
{
typedef void (*func_t)(const GpuMat& src, Scalar_<Npp32u> sc, GpuMat& dst, cudaStream_t stream);
static const func_t funcs[5][4] =
{
{NppShift<CV_8U , 1, nppiLShiftC_8u_C1R>::call , 0, NppShift<CV_8U , 3, nppiLShiftC_8u_C3R>::call , NppShift<CV_8U , 4, nppiLShiftC_8u_C4R>::call },
{0 , 0, 0 , 0 },
{NppShift<CV_16U, 1, nppiLShiftC_16u_C1R>::call, 0, NppShift<CV_16U, 3, nppiLShiftC_16u_C3R>::call, NppShift<CV_16U, 4, nppiLShiftC_16u_C4R>::call},
{0 , 0, 0 , 0 },
{NppShift<CV_32S, 1, nppiLShiftC_32s_C1R>::call, 0, NppShift<CV_32S, 3, nppiLShiftC_32s_C3R>::call, NppShift<CV_32S, 4, nppiLShiftC_32s_C4R>::call},
};
CV_Assert(src.depth() == CV_8U || src.depth() == CV_16U || src.depth() == CV_32S);
CV_Assert(src.channels() == 1 || src.channels() == 3 || src.channels() == 4);
dst.create(src.size(), src.type());
funcs[src.depth()][src.channels() - 1](src, sc, dst, StreamAccessor::getStream(stream));
}
//////////////////////////////////////////////////////////////////////////////
// Minimum and maximum operations
namespace arithm
{
void minMat_v4(PtrStepSz<unsigned int> src1, PtrStepSz<unsigned int> src2, PtrStepSz<unsigned int> dst, cudaStream_t stream);
void minMat_v2(PtrStepSz<unsigned int> src1, PtrStepSz<unsigned int> src2, PtrStepSz<unsigned int> dst, cudaStream_t stream);
template <typename T> void minMat(PtrStepSzb src1, PtrStepSzb src2, PtrStepSzb dst, cudaStream_t stream);
template <typename T> void minScalar(PtrStepSzb src1, double src2, PtrStepSzb dst, cudaStream_t stream);
void maxMat_v4(PtrStepSz<unsigned int> src1, PtrStepSz<unsigned int> src2, PtrStepSz<unsigned int> dst, cudaStream_t stream);
void maxMat_v2(PtrStepSz<unsigned int> src1, PtrStepSz<unsigned int> src2, PtrStepSz<unsigned int> dst, cudaStream_t stream);
template <typename T> void maxMat(PtrStepSzb src1, PtrStepSzb src2, PtrStepSzb dst, cudaStream_t stream);
template <typename T> void maxScalar(PtrStepSzb src1, double src2, PtrStepSzb dst, cudaStream_t stream);
}
void cv::gpu::min(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, Stream& s)
{
using namespace arithm;
typedef void (*func_t)(PtrStepSzb src1, PtrStepSzb src2, PtrStepSzb dst, cudaStream_t stream);
static const func_t funcs[] =
{
minMat<unsigned char>,
minMat<signed char>,
minMat<unsigned short>,
minMat<short>,
minMat<int>,
minMat<float>,
minMat<double>
};
const int depth = src1.depth();
const int cn = src1.channels();
CV_Assert( depth <= CV_64F );
CV_Assert( src2.type() == src1.type() && src2.size() == src1.size() );
if (depth == CV_64F)
{
if (!deviceSupports(NATIVE_DOUBLE))
CV_Error(CV_StsUnsupportedFormat, "The device doesn't support double");
}
dst.create(src1.size(), src1.type());
cudaStream_t stream = StreamAccessor::getStream(s);
PtrStepSzb src1_(src1.rows, src1.cols * cn, src1.data, src1.step);
PtrStepSzb src2_(src1.rows, src1.cols * cn, src2.data, src2.step);
PtrStepSzb dst_(src1.rows, src1.cols * cn, dst.data, dst.step);
if (depth == CV_8U || depth == CV_16U)
{
const intptr_t src1ptr = reinterpret_cast<intptr_t>(src1_.data);
const intptr_t src2ptr = reinterpret_cast<intptr_t>(src2_.data);
const intptr_t dstptr = reinterpret_cast<intptr_t>(dst_.data);
const bool isAllAligned = (src1ptr & 31) == 0 && (src2ptr & 31) == 0 && (dstptr & 31) == 0;
if (isAllAligned)
{
if (depth == CV_8U && (src1_.cols & 3) == 0)
{
const int vcols = src1_.cols >> 2;
minMat_v4(PtrStepSz<unsigned int>(src1_.rows, vcols, (unsigned int*) src1_.data, src1_.step),
PtrStepSz<unsigned int>(src1_.rows, vcols, (unsigned int*) src2_.data, src2_.step),
PtrStepSz<unsigned int>(src1_.rows, vcols, (unsigned int*) dst_.data, dst_.step),
stream);
return;
}
else if (depth == CV_16U && (src1_.cols & 1) == 0)
{
const int vcols = src1_.cols >> 1;
minMat_v2(PtrStepSz<unsigned int>(src1_.rows, vcols, (unsigned int*) src1_.data, src1_.step),
PtrStepSz<unsigned int>(src1_.rows, vcols, (unsigned int*) src2_.data, src2_.step),
PtrStepSz<unsigned int>(src1_.rows, vcols, (unsigned int*) dst_.data, dst_.step),
stream);
return;
}
}
}
const func_t func = funcs[depth];
if (!func)
CV_Error(CV_StsUnsupportedFormat, "Unsupported combination of source and destination types");
func(src1_, src2_, dst_, stream);
}
void cv::gpu::max(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, Stream& s)
{
using namespace arithm;
typedef void (*func_t)(PtrStepSzb src1, PtrStepSzb src2, PtrStepSzb dst, cudaStream_t stream);
static const func_t funcs[] =
{
maxMat<unsigned char>,
maxMat<signed char>,
maxMat<unsigned short>,
maxMat<short>,
maxMat<int>,
maxMat<float>,
maxMat<double>
};
const int depth = src1.depth();
const int cn = src1.channels();
CV_Assert( depth <= CV_64F );
CV_Assert( src2.type() == src1.type() && src2.size() == src1.size() );
if (depth == CV_64F)
{
if (!deviceSupports(NATIVE_DOUBLE))
CV_Error(CV_StsUnsupportedFormat, "The device doesn't support double");
}
dst.create(src1.size(), src1.type());
cudaStream_t stream = StreamAccessor::getStream(s);
PtrStepSzb src1_(src1.rows, src1.cols * cn, src1.data, src1.step);
PtrStepSzb src2_(src1.rows, src1.cols * cn, src2.data, src2.step);
PtrStepSzb dst_(src1.rows, src1.cols * cn, dst.data, dst.step);
if (depth == CV_8U || depth == CV_16U)
{
const intptr_t src1ptr = reinterpret_cast<intptr_t>(src1_.data);
const intptr_t src2ptr = reinterpret_cast<intptr_t>(src2_.data);
const intptr_t dstptr = reinterpret_cast<intptr_t>(dst_.data);
const bool isAllAligned = (src1ptr & 31) == 0 && (src2ptr & 31) == 0 && (dstptr & 31) == 0;
if (isAllAligned)
{
if (depth == CV_8U && (src1_.cols & 3) == 0)
{
const int vcols = src1_.cols >> 2;
maxMat_v4(PtrStepSz<unsigned int>(src1_.rows, vcols, (unsigned int*) src1_.data, src1_.step),
PtrStepSz<unsigned int>(src1_.rows, vcols, (unsigned int*) src2_.data, src2_.step),
PtrStepSz<unsigned int>(src1_.rows, vcols, (unsigned int*) dst_.data, dst_.step),
stream);
return;
}
else if (depth == CV_16U && (src1_.cols & 1) == 0)
{
const int vcols = src1_.cols >> 1;
maxMat_v2(PtrStepSz<unsigned int>(src1_.rows, vcols, (unsigned int*) src1_.data, src1_.step),
PtrStepSz<unsigned int>(src1_.rows, vcols, (unsigned int*) src2_.data, src2_.step),
PtrStepSz<unsigned int>(src1_.rows, vcols, (unsigned int*) dst_.data, dst_.step),
stream);
return;
}
}
}
const func_t func = funcs[depth];
if (!func)
CV_Error(CV_StsUnsupportedFormat, "Unsupported combination of source and destination types");
func(src1_, src2_, dst_, stream);
}
namespace
{
template <typename T> double castScalar(double val)
{
return saturate_cast<T>(val);
}
}
void cv::gpu::min(const GpuMat& src, double val, GpuMat& dst, Stream& stream)
{
using namespace arithm;
typedef void (*func_t)(PtrStepSzb src1, double src2, PtrStepSzb dst, cudaStream_t stream);
static const func_t funcs[] =
{
minScalar<unsigned char>,
minScalar<signed char>,
minScalar<unsigned short>,
minScalar<short>,
minScalar<int>,
minScalar<float>,
minScalar<double>
};
typedef double (*cast_func_t)(double sc);
static const cast_func_t cast_func[] =
{
castScalar<unsigned char>, castScalar<signed char>, castScalar<unsigned short>, castScalar<short>, castScalar<int>, castScalar<float>, castScalar<double>
};
const int depth = src.depth();
CV_Assert( depth <= CV_64F );
CV_Assert( src.channels() == 1 );
if (depth == CV_64F)
{
if (!deviceSupports(NATIVE_DOUBLE))
CV_Error(CV_StsUnsupportedFormat, "The device doesn't support double");
}
dst.create(src.size(), src.type());
funcs[depth](src, cast_func[depth](val), dst, StreamAccessor::getStream(stream));
}
void cv::gpu::max(const GpuMat& src, double val, GpuMat& dst, Stream& stream)
{
using namespace arithm;
typedef void (*func_t)(PtrStepSzb src1, double src2, PtrStepSzb dst, cudaStream_t stream);
static const func_t funcs[] =
{
maxScalar<unsigned char>,
maxScalar<signed char>,
maxScalar<unsigned short>,
maxScalar<short>,
maxScalar<int>,
maxScalar<float>,
maxScalar<double>
};
typedef double (*cast_func_t)(double sc);
static const cast_func_t cast_func[] =
{
castScalar<unsigned char>, castScalar<signed char>, castScalar<unsigned short>, castScalar<short>, castScalar<int>, castScalar<float>, castScalar<double>
};
const int depth = src.depth();
CV_Assert( depth <= CV_64F );
CV_Assert( src.channels() == 1 );
if (depth == CV_64F)
{
if (!deviceSupports(NATIVE_DOUBLE))
CV_Error(CV_StsUnsupportedFormat, "The device doesn't support double");
}
dst.create(src.size(), src.type());
funcs[depth](src, cast_func[depth](val), dst, StreamAccessor::getStream(stream));
}
////////////////////////////////////////////////////////////////////////
// threshold
namespace arithm
{
template <typename T>
void threshold(PtrStepSzb src, PtrStepSzb dst, double thresh, double maxVal, int type, cudaStream_t stream);
}
double cv::gpu::threshold(const GpuMat& src, GpuMat& dst, double thresh, double maxVal, int type, Stream& s)
{
const int depth = src.depth();
CV_Assert( src.channels() == 1 && depth <= CV_64F );
CV_Assert( type <= THRESH_TOZERO_INV );
if (depth == CV_64F)
{
if (!deviceSupports(NATIVE_DOUBLE))
CV_Error(CV_StsUnsupportedFormat, "The device doesn't support double");
}
dst.create(src.size(), src.type());
cudaStream_t stream = StreamAccessor::getStream(s);
if (src.type() == CV_32FC1 && type == THRESH_TRUNC)
{
NppStreamHandler h(stream);
NppiSize sz;
sz.width = src.cols;
sz.height = src.rows;
nppSafeCall( nppiThreshold_32f_C1R(src.ptr<Npp32f>(), static_cast<int>(src.step),
dst.ptr<Npp32f>(), static_cast<int>(dst.step), sz, static_cast<Npp32f>(thresh), NPP_CMP_GREATER) );
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
else
{
typedef void (*func_t)(PtrStepSzb src, PtrStepSzb dst, double thresh, double maxVal, int type, cudaStream_t stream);
static const func_t funcs[] =
{
arithm::threshold<unsigned char>,
arithm::threshold<signed char>,
arithm::threshold<unsigned short>,
arithm::threshold<short>,
arithm::threshold<int>,
arithm::threshold<float>,
arithm::threshold<double>
};
if (depth != CV_32F && depth != CV_64F)
{
thresh = cvFloor(thresh);
maxVal = cvRound(maxVal);
}
funcs[depth](src, dst, thresh, maxVal, type, stream);
}
return thresh;
}
////////////////////////////////////////////////////////////////////////
// pow
namespace arithm
{
template<typename T> void pow(PtrStepSzb src, double power, PtrStepSzb dst, cudaStream_t stream);
}
void cv::gpu::pow(const GpuMat& src, double power, GpuMat& dst, Stream& stream)
{
typedef void (*func_t)(PtrStepSzb src, double power, PtrStepSzb dst, cudaStream_t stream);
static const func_t funcs[] =
{
arithm::pow<unsigned char>,
arithm::pow<signed char>,
arithm::pow<unsigned short>,
arithm::pow<short>,
arithm::pow<int>,
arithm::pow<float>,
arithm::pow<double>
};
const int depth = src.depth();
const int cn = src.channels();
CV_Assert(depth <= CV_64F);
if (depth == CV_64F)
{
if (!deviceSupports(NATIVE_DOUBLE))
CV_Error(CV_StsUnsupportedFormat, "The device doesn't support double");
}
dst.create(src.size(), src.type());
PtrStepSzb src_(src.rows, src.cols * cn, src.data, src.step);
PtrStepSzb dst_(src.rows, src.cols * cn, dst.data, dst.step);
funcs[depth](src_, power, dst_, StreamAccessor::getStream(stream));
}
////////////////////////////////////////////////////////////////////////
// alphaComp
namespace
{
template <int DEPTH> struct NppAlphaCompFunc
{
typedef typename NppTypeTraits<DEPTH>::npp_t npp_t;
typedef NppStatus (*func_t)(const npp_t* pSrc1, int nSrc1Step, const npp_t* pSrc2, int nSrc2Step, npp_t* pDst, int nDstStep, NppiSize oSizeROI, NppiAlphaOp eAlphaOp);
};
template <int DEPTH, typename NppAlphaCompFunc<DEPTH>::func_t func> struct NppAlphaComp
{
typedef typename NppTypeTraits<DEPTH>::npp_t npp_t;
static void call(const GpuMat& img1, const GpuMat& img2, GpuMat& dst, NppiAlphaOp eAlphaOp, cudaStream_t stream)
{
NppStreamHandler h(stream);
NppiSize oSizeROI;
oSizeROI.width = img1.cols;
oSizeROI.height = img2.rows;
nppSafeCall( func(img1.ptr<npp_t>(), static_cast<int>(img1.step), img2.ptr<npp_t>(), static_cast<int>(img2.step),
dst.ptr<npp_t>(), static_cast<int>(dst.step), oSizeROI, eAlphaOp) );
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
};
}
void cv::gpu::alphaComp(const GpuMat& img1, const GpuMat& img2, GpuMat& dst, int alpha_op, Stream& stream)
{
static const NppiAlphaOp npp_alpha_ops[] = {
NPPI_OP_ALPHA_OVER,
NPPI_OP_ALPHA_IN,
NPPI_OP_ALPHA_OUT,
NPPI_OP_ALPHA_ATOP,
NPPI_OP_ALPHA_XOR,
NPPI_OP_ALPHA_PLUS,
NPPI_OP_ALPHA_OVER_PREMUL,
NPPI_OP_ALPHA_IN_PREMUL,
NPPI_OP_ALPHA_OUT_PREMUL,
NPPI_OP_ALPHA_ATOP_PREMUL,
NPPI_OP_ALPHA_XOR_PREMUL,
NPPI_OP_ALPHA_PLUS_PREMUL,
NPPI_OP_ALPHA_PREMUL
};
typedef void (*func_t)(const GpuMat& img1, const GpuMat& img2, GpuMat& dst, NppiAlphaOp eAlphaOp, cudaStream_t stream);
static const func_t funcs[] =
{
NppAlphaComp<CV_8U, nppiAlphaComp_8u_AC4R>::call,
0,
NppAlphaComp<CV_16U, nppiAlphaComp_16u_AC4R>::call,
0,
NppAlphaComp<CV_32S, nppiAlphaComp_32s_AC4R>::call,
NppAlphaComp<CV_32F, nppiAlphaComp_32f_AC4R>::call
};
CV_Assert( img1.type() == CV_8UC4 || img1.type() == CV_16UC4 || img1.type() == CV_32SC4 || img1.type() == CV_32FC4 );
CV_Assert( img1.size() == img2.size() && img1.type() == img2.type() );
dst.create(img1.size(), img1.type());
const func_t func = funcs[img1.depth()];
func(img1, img2, dst, npp_alpha_ops[alpha_op], StreamAccessor::getStream(stream));
}
////////////////////////////////////////////////////////////////////////
// addWeighted
namespace arithm
{
template <typename T1, typename T2, typename D>
void addWeighted(PtrStepSzb src1, double alpha, PtrStepSzb src2, double beta, double gamma, PtrStepSzb dst, cudaStream_t stream);
}
void cv::gpu::addWeighted(const GpuMat& src1, double alpha, const GpuMat& src2, double beta, double gamma, GpuMat& dst, int ddepth, Stream& stream)
{
typedef void (*func_t)(PtrStepSzb src1, double alpha, PtrStepSzb src2, double beta, double gamma, PtrStepSzb dst, cudaStream_t stream);
static const func_t funcs[7][7][7] =
{
{
{
arithm::addWeighted<unsigned char, unsigned char, unsigned char >,
arithm::addWeighted<unsigned char, unsigned char, signed char >,
arithm::addWeighted<unsigned char, unsigned char, unsigned short>,
arithm::addWeighted<unsigned char, unsigned char, short >,
arithm::addWeighted<unsigned char, unsigned char, int >,
arithm::addWeighted<unsigned char, unsigned char, float >,
arithm::addWeighted<unsigned char, unsigned char, double>
},
{
arithm::addWeighted<unsigned char, signed char, unsigned char >,
arithm::addWeighted<unsigned char, signed char, signed char >,
arithm::addWeighted<unsigned char, signed char, unsigned short>,
arithm::addWeighted<unsigned char, signed char, short >,
arithm::addWeighted<unsigned char, signed char, int >,
arithm::addWeighted<unsigned char, signed char, float >,
arithm::addWeighted<unsigned char, signed char, double>
},
{
arithm::addWeighted<unsigned char, unsigned short, unsigned char >,
arithm::addWeighted<unsigned char, unsigned short, signed char >,
arithm::addWeighted<unsigned char, unsigned short, unsigned short>,
arithm::addWeighted<unsigned char, unsigned short, short >,
arithm::addWeighted<unsigned char, unsigned short, int >,
arithm::addWeighted<unsigned char, unsigned short, float >,
arithm::addWeighted<unsigned char, unsigned short, double>
},
{
arithm::addWeighted<unsigned char, short, unsigned char >,
arithm::addWeighted<unsigned char, short, signed char >,
arithm::addWeighted<unsigned char, short, unsigned short>,
arithm::addWeighted<unsigned char, short, short >,
arithm::addWeighted<unsigned char, short, int >,
arithm::addWeighted<unsigned char, short, float >,
arithm::addWeighted<unsigned char, short, double>
},
{
arithm::addWeighted<unsigned char, int, unsigned char >,
arithm::addWeighted<unsigned char, int, signed char >,
arithm::addWeighted<unsigned char, int, unsigned short>,
arithm::addWeighted<unsigned char, int, short >,
arithm::addWeighted<unsigned char, int, int >,
arithm::addWeighted<unsigned char, int, float >,
arithm::addWeighted<unsigned char, int, double>
},
{
arithm::addWeighted<unsigned char, float, unsigned char >,
arithm::addWeighted<unsigned char, float, signed char >,
arithm::addWeighted<unsigned char, float, unsigned short>,
arithm::addWeighted<unsigned char, float, short >,
arithm::addWeighted<unsigned char, float, int >,
arithm::addWeighted<unsigned char, float, float >,
arithm::addWeighted<unsigned char, float, double>
},
{
arithm::addWeighted<unsigned char, double, unsigned char >,
arithm::addWeighted<unsigned char, double, signed char >,
arithm::addWeighted<unsigned char, double, unsigned short>,
arithm::addWeighted<unsigned char, double, short >,
arithm::addWeighted<unsigned char, double, int >,
arithm::addWeighted<unsigned char, double, float >,
arithm::addWeighted<unsigned char, double, double>
}
},
{
{
0/*arithm::addWeighted<signed char, unsigned char, unsigned char >*/,
0/*arithm::addWeighted<signed char, unsigned char, signed char >*/,
0/*arithm::addWeighted<signed char, unsigned char, unsigned short>*/,
0/*arithm::addWeighted<signed char, unsigned char, short >*/,
0/*arithm::addWeighted<signed char, unsigned char, int >*/,
0/*arithm::addWeighted<signed char, unsigned char, float >*/,
0/*arithm::addWeighted<signed char, unsigned char, double>*/
},
{
arithm::addWeighted<signed char, signed char, unsigned char >,
arithm::addWeighted<signed char, signed char, signed char >,
arithm::addWeighted<signed char, signed char, unsigned short>,
arithm::addWeighted<signed char, signed char, short >,
arithm::addWeighted<signed char, signed char, int >,
arithm::addWeighted<signed char, signed char, float >,
arithm::addWeighted<signed char, signed char, double>
},
{
arithm::addWeighted<signed char, unsigned short, unsigned char >,
arithm::addWeighted<signed char, unsigned short, signed char >,
arithm::addWeighted<signed char, unsigned short, unsigned short>,
arithm::addWeighted<signed char, unsigned short, short >,
arithm::addWeighted<signed char, unsigned short, int >,
arithm::addWeighted<signed char, unsigned short, float >,
arithm::addWeighted<signed char, unsigned short, double>
},
{
arithm::addWeighted<signed char, short, unsigned char >,
arithm::addWeighted<signed char, short, signed char >,
arithm::addWeighted<signed char, short, unsigned short>,
arithm::addWeighted<signed char, short, short >,
arithm::addWeighted<signed char, short, int >,
arithm::addWeighted<signed char, short, float >,
arithm::addWeighted<signed char, short, double>
},
{
arithm::addWeighted<signed char, int, unsigned char >,
arithm::addWeighted<signed char, int, signed char >,
arithm::addWeighted<signed char, int, unsigned short>,
arithm::addWeighted<signed char, int, short >,
arithm::addWeighted<signed char, int, int >,
arithm::addWeighted<signed char, int, float >,
arithm::addWeighted<signed char, int, double>
},
{
arithm::addWeighted<signed char, float, unsigned char >,
arithm::addWeighted<signed char, float, signed char >,
arithm::addWeighted<signed char, float, unsigned short>,
arithm::addWeighted<signed char, float, short >,
arithm::addWeighted<signed char, float, int >,
arithm::addWeighted<signed char, float, float >,
arithm::addWeighted<signed char, float, double>
},
{
arithm::addWeighted<signed char, double, unsigned char >,
arithm::addWeighted<signed char, double, signed char >,
arithm::addWeighted<signed char, double, unsigned short>,
arithm::addWeighted<signed char, double, short >,
arithm::addWeighted<signed char, double, int >,
arithm::addWeighted<signed char, double, float >,
arithm::addWeighted<signed char, double, double>
}
},
{
{
0/*arithm::addWeighted<unsigned short, unsigned char, unsigned char >*/,
0/*arithm::addWeighted<unsigned short, unsigned char, signed char >*/,
0/*arithm::addWeighted<unsigned short, unsigned char, unsigned short>*/,
0/*arithm::addWeighted<unsigned short, unsigned char, short >*/,
0/*arithm::addWeighted<unsigned short, unsigned char, int >*/,
0/*arithm::addWeighted<unsigned short, unsigned char, float >*/,
0/*arithm::addWeighted<unsigned short, unsigned char, double>*/
},
{
0/*arithm::addWeighted<unsigned short, signed char, unsigned char >*/,
0/*arithm::addWeighted<unsigned short, signed char, signed char >*/,
0/*arithm::addWeighted<unsigned short, signed char, unsigned short>*/,
0/*arithm::addWeighted<unsigned short, signed char, short >*/,
0/*arithm::addWeighted<unsigned short, signed char, int >*/,
0/*arithm::addWeighted<unsigned short, signed char, float >*/,
0/*arithm::addWeighted<unsigned short, signed char, double>*/
},
{
arithm::addWeighted<unsigned short, unsigned short, unsigned char >,
arithm::addWeighted<unsigned short, unsigned short, signed char >,
arithm::addWeighted<unsigned short, unsigned short, unsigned short>,
arithm::addWeighted<unsigned short, unsigned short, short >,
arithm::addWeighted<unsigned short, unsigned short, int >,
arithm::addWeighted<unsigned short, unsigned short, float >,
arithm::addWeighted<unsigned short, unsigned short, double>
},
{
arithm::addWeighted<unsigned short, short, unsigned char >,
arithm::addWeighted<unsigned short, short, signed char >,
arithm::addWeighted<unsigned short, short, unsigned short>,
arithm::addWeighted<unsigned short, short, short >,
arithm::addWeighted<unsigned short, short, int >,
arithm::addWeighted<unsigned short, short, float >,
arithm::addWeighted<unsigned short, short, double>
},
{
arithm::addWeighted<unsigned short, int, unsigned char >,
arithm::addWeighted<unsigned short, int, signed char >,
arithm::addWeighted<unsigned short, int, unsigned short>,
arithm::addWeighted<unsigned short, int, short >,
arithm::addWeighted<unsigned short, int, int >,
arithm::addWeighted<unsigned short, int, float >,
arithm::addWeighted<unsigned short, int, double>
},
{
arithm::addWeighted<unsigned short, float, unsigned char >,
arithm::addWeighted<unsigned short, float, signed char >,
arithm::addWeighted<unsigned short, float, unsigned short>,
arithm::addWeighted<unsigned short, float, short >,
arithm::addWeighted<unsigned short, float, int >,
arithm::addWeighted<unsigned short, float, float >,
arithm::addWeighted<unsigned short, float, double>
},
{
arithm::addWeighted<unsigned short, double, unsigned char >,
arithm::addWeighted<unsigned short, double, signed char >,
arithm::addWeighted<unsigned short, double, unsigned short>,
arithm::addWeighted<unsigned short, double, short >,
arithm::addWeighted<unsigned short, double, int >,
arithm::addWeighted<unsigned short, double, float >,
arithm::addWeighted<unsigned short, double, double>
}
},
{
{
0/*arithm::addWeighted<short, unsigned char, unsigned char >*/,
0/*arithm::addWeighted<short, unsigned char, signed char >*/,
0/*arithm::addWeighted<short, unsigned char, unsigned short>*/,
0/*arithm::addWeighted<short, unsigned char, short >*/,
0/*arithm::addWeighted<short, unsigned char, int >*/,
0/*arithm::addWeighted<short, unsigned char, float >*/,
0/*arithm::addWeighted<short, unsigned char, double>*/
},
{
0/*arithm::addWeighted<short, signed char, unsigned char >*/,
0/*arithm::addWeighted<short, signed char, signed char >*/,
0/*arithm::addWeighted<short, signed char, unsigned short>*/,
0/*arithm::addWeighted<short, signed char, short >*/,
0/*arithm::addWeighted<short, signed char, int >*/,
0/*arithm::addWeighted<short, signed char, float >*/,
0/*arithm::addWeighted<short, signed char, double>*/
},
{
0/*arithm::addWeighted<short, unsigned short, unsigned char >*/,
0/*arithm::addWeighted<short, unsigned short, signed char >*/,
0/*arithm::addWeighted<short, unsigned short, unsigned short>*/,
0/*arithm::addWeighted<short, unsigned short, short >*/,
0/*arithm::addWeighted<short, unsigned short, int >*/,
0/*arithm::addWeighted<short, unsigned short, float >*/,
0/*arithm::addWeighted<short, unsigned short, double>*/
},
{
arithm::addWeighted<short, short, unsigned char >,
arithm::addWeighted<short, short, signed char >,
arithm::addWeighted<short, short, unsigned short>,
arithm::addWeighted<short, short, short >,
arithm::addWeighted<short, short, int >,
arithm::addWeighted<short, short, float >,
arithm::addWeighted<short, short, double>
},
{
arithm::addWeighted<short, int, unsigned char >,
arithm::addWeighted<short, int, signed char >,
arithm::addWeighted<short, int, unsigned short>,
arithm::addWeighted<short, int, short >,
arithm::addWeighted<short, int, int >,
arithm::addWeighted<short, int, float >,
arithm::addWeighted<short, int, double>
},
{
arithm::addWeighted<short, float, unsigned char >,
arithm::addWeighted<short, float, signed char >,
arithm::addWeighted<short, float, unsigned short>,
arithm::addWeighted<short, float, short >,
arithm::addWeighted<short, float, int >,
arithm::addWeighted<short, float, float >,
arithm::addWeighted<short, float, double>
},
{
arithm::addWeighted<short, double, unsigned char >,
arithm::addWeighted<short, double, signed char >,
arithm::addWeighted<short, double, unsigned short>,
arithm::addWeighted<short, double, short >,
arithm::addWeighted<short, double, int >,
arithm::addWeighted<short, double, float >,
arithm::addWeighted<short, double, double>
}
},
{
{
0/*arithm::addWeighted<int, unsigned char, unsigned char >*/,
0/*arithm::addWeighted<int, unsigned char, signed char >*/,
0/*arithm::addWeighted<int, unsigned char, unsigned short>*/,
0/*arithm::addWeighted<int, unsigned char, short >*/,
0/*arithm::addWeighted<int, unsigned char, int >*/,
0/*arithm::addWeighted<int, unsigned char, float >*/,
0/*arithm::addWeighted<int, unsigned char, double>*/
},
{
0/*arithm::addWeighted<int, signed char, unsigned char >*/,
0/*arithm::addWeighted<int, signed char, signed char >*/,
0/*arithm::addWeighted<int, signed char, unsigned short>*/,
0/*arithm::addWeighted<int, signed char, short >*/,
0/*arithm::addWeighted<int, signed char, int >*/,
0/*arithm::addWeighted<int, signed char, float >*/,
0/*arithm::addWeighted<int, signed char, double>*/
},
{
0/*arithm::addWeighted<int, unsigned short, unsigned char >*/,
0/*arithm::addWeighted<int, unsigned short, signed char >*/,
0/*arithm::addWeighted<int, unsigned short, unsigned short>*/,
0/*arithm::addWeighted<int, unsigned short, short >*/,
0/*arithm::addWeighted<int, unsigned short, int >*/,
0/*arithm::addWeighted<int, unsigned short, float >*/,
0/*arithm::addWeighted<int, unsigned short, double>*/
},
{
0/*arithm::addWeighted<int, short, unsigned char >*/,
0/*arithm::addWeighted<int, short, signed char >*/,
0/*arithm::addWeighted<int, short, unsigned short>*/,
0/*arithm::addWeighted<int, short, short >*/,
0/*arithm::addWeighted<int, short, int >*/,
0/*arithm::addWeighted<int, short, float >*/,
0/*arithm::addWeighted<int, short, double>*/
},
{
arithm::addWeighted<int, int, unsigned char >,
arithm::addWeighted<int, int, signed char >,
arithm::addWeighted<int, int, unsigned short>,
arithm::addWeighted<int, int, short >,
arithm::addWeighted<int, int, int >,
arithm::addWeighted<int, int, float >,
arithm::addWeighted<int, int, double>
},
{
arithm::addWeighted<int, float, unsigned char >,
arithm::addWeighted<int, float, signed char >,
arithm::addWeighted<int, float, unsigned short>,
arithm::addWeighted<int, float, short >,
arithm::addWeighted<int, float, int >,
arithm::addWeighted<int, float, float >,
arithm::addWeighted<int, float, double>
},
{
arithm::addWeighted<int, double, unsigned char >,
arithm::addWeighted<int, double, signed char >,
arithm::addWeighted<int, double, unsigned short>,
arithm::addWeighted<int, double, short >,
arithm::addWeighted<int, double, int >,
arithm::addWeighted<int, double, float >,
arithm::addWeighted<int, double, double>
}
},
{
{
0/*arithm::addWeighted<float, unsigned char, unsigned char >*/,
0/*arithm::addWeighted<float, unsigned char, signed char >*/,
0/*arithm::addWeighted<float, unsigned char, unsigned short>*/,
0/*arithm::addWeighted<float, unsigned char, short >*/,
0/*arithm::addWeighted<float, unsigned char, int >*/,
0/*arithm::addWeighted<float, unsigned char, float >*/,
0/*arithm::addWeighted<float, unsigned char, double>*/
},
{
0/*arithm::addWeighted<float, signed char, unsigned char >*/,
0/*arithm::addWeighted<float, signed char, signed char >*/,
0/*arithm::addWeighted<float, signed char, unsigned short>*/,
0/*arithm::addWeighted<float, signed char, short >*/,
0/*arithm::addWeighted<float, signed char, int >*/,
0/*arithm::addWeighted<float, signed char, float >*/,
0/*arithm::addWeighted<float, signed char, double>*/
},
{
0/*arithm::addWeighted<float, unsigned short, unsigned char >*/,
0/*arithm::addWeighted<float, unsigned short, signed char >*/,
0/*arithm::addWeighted<float, unsigned short, unsigned short>*/,
0/*arithm::addWeighted<float, unsigned short, short >*/,
0/*arithm::addWeighted<float, unsigned short, int >*/,
0/*arithm::addWeighted<float, unsigned short, float >*/,
0/*arithm::addWeighted<float, unsigned short, double>*/
},
{
0/*arithm::addWeighted<float, short, unsigned char >*/,
0/*arithm::addWeighted<float, short, signed char >*/,
0/*arithm::addWeighted<float, short, unsigned short>*/,
0/*arithm::addWeighted<float, short, short >*/,
0/*arithm::addWeighted<float, short, int >*/,
0/*arithm::addWeighted<float, short, float >*/,
0/*arithm::addWeighted<float, short, double>*/
},
{
0/*arithm::addWeighted<float, int, unsigned char >*/,
0/*arithm::addWeighted<float, int, signed char >*/,
0/*arithm::addWeighted<float, int, unsigned short>*/,
0/*arithm::addWeighted<float, int, short >*/,
0/*arithm::addWeighted<float, int, int >*/,
0/*arithm::addWeighted<float, int, float >*/,
0/*arithm::addWeighted<float, int, double>*/
},
{
arithm::addWeighted<float, float, unsigned char >,
arithm::addWeighted<float, float, signed char >,
arithm::addWeighted<float, float, unsigned short>,
arithm::addWeighted<float, float, short >,
arithm::addWeighted<float, float, int >,
arithm::addWeighted<float, float, float >,
arithm::addWeighted<float, float, double>
},
{
arithm::addWeighted<float, double, unsigned char >,
arithm::addWeighted<float, double, signed char >,
arithm::addWeighted<float, double, unsigned short>,
arithm::addWeighted<float, double, short >,
arithm::addWeighted<float, double, int >,
arithm::addWeighted<float, double, float >,
arithm::addWeighted<float, double, double>
}
},
{
{
0/*arithm::addWeighted<double, unsigned char, unsigned char >*/,
0/*arithm::addWeighted<double, unsigned char, signed char >*/,
0/*arithm::addWeighted<double, unsigned char, unsigned short>*/,
0/*arithm::addWeighted<double, unsigned char, short >*/,
0/*arithm::addWeighted<double, unsigned char, int >*/,
0/*arithm::addWeighted<double, unsigned char, float >*/,
0/*arithm::addWeighted<double, unsigned char, double>*/
},
{
0/*arithm::addWeighted<double, signed char, unsigned char >*/,
0/*arithm::addWeighted<double, signed char, signed char >*/,
0/*arithm::addWeighted<double, signed char, unsigned short>*/,
0/*arithm::addWeighted<double, signed char, short >*/,
0/*arithm::addWeighted<double, signed char, int >*/,
0/*arithm::addWeighted<double, signed char, float >*/,
0/*arithm::addWeighted<double, signed char, double>*/
},
{
0/*arithm::addWeighted<double, unsigned short, unsigned char >*/,
0/*arithm::addWeighted<double, unsigned short, signed char >*/,
0/*arithm::addWeighted<double, unsigned short, unsigned short>*/,
0/*arithm::addWeighted<double, unsigned short, short >*/,
0/*arithm::addWeighted<double, unsigned short, int >*/,
0/*arithm::addWeighted<double, unsigned short, float >*/,
0/*arithm::addWeighted<double, unsigned short, double>*/
},
{
0/*arithm::addWeighted<double, short, unsigned char >*/,
0/*arithm::addWeighted<double, short, signed char >*/,
0/*arithm::addWeighted<double, short, unsigned short>*/,
0/*arithm::addWeighted<double, short, short >*/,
0/*arithm::addWeighted<double, short, int >*/,
0/*arithm::addWeighted<double, short, float >*/,
0/*arithm::addWeighted<double, short, double>*/
},
{
0/*arithm::addWeighted<double, int, unsigned char >*/,
0/*arithm::addWeighted<double, int, signed char >*/,
0/*arithm::addWeighted<double, int, unsigned short>*/,
0/*arithm::addWeighted<double, int, short >*/,
0/*arithm::addWeighted<double, int, int >*/,
0/*arithm::addWeighted<double, int, float >*/,
0/*arithm::addWeighted<double, int, double>*/
},
{
0/*arithm::addWeighted<double, float, unsigned char >*/,
0/*arithm::addWeighted<double, float, signed char >*/,
0/*arithm::addWeighted<double, float, unsigned short>*/,
0/*arithm::addWeighted<double, float, short >*/,
0/*arithm::addWeighted<double, float, int >*/,
0/*arithm::addWeighted<double, float, float >*/,
0/*arithm::addWeighted<double, float, double>*/
},
{
arithm::addWeighted<double, double, unsigned char >,
arithm::addWeighted<double, double, signed char >,
arithm::addWeighted<double, double, unsigned short>,
arithm::addWeighted<double, double, short >,
arithm::addWeighted<double, double, int >,
arithm::addWeighted<double, double, float >,
arithm::addWeighted<double, double, double>
}
}
};
int sdepth1 = src1.depth();
int sdepth2 = src2.depth();
ddepth = ddepth >= 0 ? CV_MAT_DEPTH(ddepth) : std::max(sdepth1, sdepth2);
const int cn = src1.channels();
CV_Assert( src2.size() == src1.size() && src2.channels() == cn );
CV_Assert( sdepth1 <= CV_64F && sdepth2 <= CV_64F && ddepth <= CV_64F );
if (sdepth1 == CV_64F || sdepth2 == CV_64F || ddepth == CV_64F)
{
if (!deviceSupports(NATIVE_DOUBLE))
CV_Error(CV_StsUnsupportedFormat, "The device doesn't support double");
}
dst.create(src1.size(), CV_MAKE_TYPE(ddepth, cn));
PtrStepSzb src1_(src1.rows, src1.cols * cn, src1.data, src1.step);
PtrStepSzb src2_(src1.rows, src1.cols * cn, src2.data, src2.step);
PtrStepSzb dst_(src1.rows, src1.cols * cn, dst.data, dst.step);
if (sdepth1 > sdepth2)
{
std::swap(src1_.data, src2_.data);
std::swap(src1_.step, src2_.step);
std::swap(alpha, beta);
std::swap(sdepth1, sdepth2);
}
const func_t func = funcs[sdepth1][sdepth2][ddepth];
if (!func)
CV_Error(CV_StsUnsupportedFormat, "Unsupported combination of source and destination types");
func(src1_, alpha, src2_, beta, gamma, dst_, StreamAccessor::getStream(stream));
}
#endif