opencv/modules/dnn/src/layers/instance_norm_layer.cpp
Oleg Pipikin 6da2ddcf0e Fix for OpenVINO 2024.0
Remove support OpenVINO lower than 2022.1 release
Remove legacy InferenceEngine wrappers
2024-03-18 15:05:50 +04:00

274 lines
12 KiB
C++

// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#include "../precomp.hpp"
#include <opencv2/dnn/shape_utils.hpp>
#include "./cpu_kernels/fast_norm.hpp"
// CANN backend
#include "../op_cann.hpp"
// OpenVINO backend
#include "../op_inf_engine.hpp"
#include "../ie_ngraph.hpp"
// CUDA backend
#include "../op_cuda.hpp"
#ifdef HAVE_CUDA
#include "../cuda4dnn/primitives/instance_norm.hpp"
using namespace cv::dnn::cuda4dnn;
#endif
// OpenCL backend
#ifdef HAVE_OPENCL
#include "../ocl4dnn/include/math_functions.hpp"
#include "opencl_kernels_dnn.hpp"
#endif
namespace cv { namespace dnn {
// https://github.com/onnx/onnx/blob/main/docs/Operators.md#InstanceNormalization
class InstanceNormLayerImpl CV_FINAL : public InstanceNormLayer {
public:
InstanceNormLayerImpl(const LayerParams &params) {
setParamsFrom(params);
epsilon = params.get<float>("epsilon", 1e-5);
}
virtual bool supportBackend(int backendId) CV_OVERRIDE {
#ifdef HAVE_INF_ENGINE
if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
return true;
#endif
return backendId == DNN_BACKEND_OPENCV ||
backendId == DNN_BACKEND_CUDA;
// backendId == DNN_BACKEND_CANN; // not supported due to 1d mat shape issue
}
bool getMemoryShapes(const std::vector<MatShape> &inputs,
const int requiredOutputs,
std::vector<MatShape> &outputs,
std::vector<MatShape> &internals) const CV_OVERRIDE {
const auto &input = inputs[0];
const auto &scale = inputs[1];
const auto &bias = inputs[2];
CV_CheckGE(input.size(), static_cast<size_t>(3), "DNN/InstanceNorm: input dimension >= 3 is required");
int C = input[1];
int scale_dim = std::accumulate(scale.begin(), scale.end(), 1, std::multiplies<int>());
CV_CheckEQ(scale_dim, C, "DNN/InstanceNorm: scale must be a 1d tensor and match the channel of input");
int bias_dim = std::accumulate(bias.begin(), bias.end(), 1, std::multiplies<int>());
CV_CheckEQ(bias_dim, C, "DNN/InstanceNorm: bias must be a 1d tensor and match the channel of input");
outputs.assign(1, inputs[0]);
return false;
}
void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr) CV_OVERRIDE {
CV_TRACE_FUNCTION();
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
CV_OCL_RUN(IS_DNN_OPENCL_TARGET(preferableTarget),
forward_ocl(inputs_arr, outputs_arr, internals_arr))
if (inputs_arr.depth() == CV_16F)
{
forward_fallback(inputs_arr, outputs_arr, internals_arr);
return;
}
std::vector<Mat> inputs, outputs;
inputs_arr.getMatVector(inputs);
outputs_arr.getMatVector(outputs);
const auto &input = inputs[0];
const auto &scale = inputs[1];
const auto &bias = inputs[2];
fastNormChannel(input, scale, bias, outputs[0], epsilon);
}
#ifdef HAVE_OPENCL
bool forward_ocl(InputArrayOfArrays inputs_, OutputArrayOfArrays outputs_, OutputArrayOfArrays internals_) {
std::vector<UMat> inputs;
std::vector<UMat> outputs;
inputs_.getUMatVector(inputs);
outputs_.getUMatVector(outputs);
const auto &input = inputs[0], &scale = inputs[1], &bias = inputs[2];
auto &output = outputs[0];
const auto input_shape = shape(input);
size_t N = input_shape[0], C = input_shape[1],
loops = N * C, norm_size = static_cast<size_t>(total(input_shape, 2));
float inv_norm_size = 1.f / norm_size;
// no fp16 support
if (input.depth() == CV_16F) {
return false;
}
String base_opts = format(" -DT=float -DT4=float4 -Dconvert_T=convert_float4");
// Calculate mean
UMat one = UMat::ones(norm_size, 1, CV_32F);
UMat mean = UMat(loops, 1, CV_32F);
UMat mean_square = UMat(loops, 1, CV_32F);
UMat tmp = UMat(loops, norm_size, CV_32F);
bool ret = ocl4dnn::ocl4dnnGEMV<float>(ocl4dnn::CblasNoTrans, loops, norm_size, inv_norm_size,
input, 0, one, 0, 0.f, mean, 0);
if (!ret) {
return false;
}
// Calculate mean_square
int num_vector = (norm_size % 8 == 0) ? 8 : ((norm_size % 4 == 0) ? 4 : 1);
size_t global[] = {loops, static_cast<size_t>(norm_size / num_vector)};
String build_opt = format(" -DNUM=%d", num_vector) + base_opts;
String mean_square_kernel_name = format("calc_mean%d", num_vector);
ocl::Kernel mean_square_kernel(mean_square_kernel_name.c_str(), ocl::dnn::mvn_oclsrc, build_opt + " -DKERNEL_MEAN");
if (mean_square_kernel.empty()) {
return false;
}
mean_square_kernel.set(0, ocl::KernelArg::PtrReadOnly(input));
mean_square_kernel.set(1, (int)loops);
mean_square_kernel.set(2, (int)norm_size);
mean_square_kernel.set(3, ocl::KernelArg::PtrReadOnly(mean));
mean_square_kernel.set(4, ocl::KernelArg::PtrWriteOnly(tmp));
ret = mean_square_kernel.run(2, global, NULL, false);
if (!ret) {
return false;
}
ret = ocl4dnn::ocl4dnnGEMV<float>(ocl4dnn::CblasNoTrans, loops, norm_size, inv_norm_size,
tmp, 0, one, 0, 0.f, mean_square, 0);
if (!ret) {
return false;
}
// Calculate instance norm: output = scale * (x - mean) / sqrt(var + eps) + bias
String mvn_kernel_name = format("mvn%d", num_vector);
build_opt += " -DNORM_VARIANCE -DFUSE_BATCH_NORM -DKERNEL_MVN";
ocl::Kernel mvn_kernel(mvn_kernel_name.c_str(), ocl::dnn::mvn_oclsrc, build_opt);
if (mvn_kernel.empty()) {
return false;
}
mvn_kernel.set(0, ocl::KernelArg::PtrReadOnly(input));
mvn_kernel.set(1, (int)loops);
mvn_kernel.set(2, (int)norm_size);
mvn_kernel.set(3, (float)epsilon);
mvn_kernel.set(4, ocl::KernelArg::PtrReadOnly(mean));
mvn_kernel.set(5, ocl::KernelArg::PtrReadOnly(mean_square));
mvn_kernel.set(6, ocl::KernelArg::PtrReadOnly(scale));
mvn_kernel.set(7, ocl::KernelArg::PtrReadOnly(bias));
mvn_kernel.set(8, (int)C);
mvn_kernel.set(9, (float)0.f);
mvn_kernel.set(10, ocl::KernelArg::PtrWriteOnly(output));
ret = mvn_kernel.run(2, global, NULL, false);
if (!ret) {
return false;
}
return true;
}
#endif
#ifdef HAVE_CANN
virtual Ptr<BackendNode> initCann(const std::vector<Ptr<BackendWrapper> > &inputs,
const std::vector<Ptr<BackendWrapper> > &outputs,
const std::vector<Ptr<BackendNode> >& nodes) CV_OVERRIDE {
auto input_tensor_wrapper = inputs[0].dynamicCast<CannBackendWrapper>();
auto input_tensor_desc = input_tensor_wrapper->getTensorDesc();
auto scale_tensor_wrapper = inputs[1].dynamicCast<CannBackendWrapper>();
auto scale_tensor_desc = scale_tensor_wrapper->getTensorDesc();
auto bias_tensor_wrapper = inputs[2].dynamicCast<CannBackendWrapper>();
auto bias_tensor_desc = bias_tensor_wrapper->getTensorDesc();
auto last_node = nodes[0].dynamicCast<CannBackendNode>()->getOp();
auto scale_node = nodes[1].dynamicCast<CannBackendNode>()->getOp();
auto bias_node = nodes[2].dynamicCast<CannBackendNode>()->getOp();
auto op = std::make_shared<ge::op::InstanceNorm>(name);
// set attrs
op->set_attr_epsilon(epsilon);
// set inputs
// set inputs : x
op->set_input_x_by_name(*last_node, input_tensor_wrapper->name.c_str());
op->update_input_desc_x(*input_tensor_desc);
// set inputs : gamma
op->set_input_gamma_by_name((*scale_node), scale_tensor_wrapper->name.c_str());
op->update_input_desc_gamma(*scale_tensor_desc);
// set inputs : beta
op->set_input_beta_by_name(*bias_node, bias_tensor_wrapper->name.c_str());
op->update_input_desc_beta(*bias_tensor_desc);
// set outputs
auto output_desc_y = std::make_shared<ge::TensorDesc>(ge::Shape(), ge::FORMAT_NCHW, ge::DT_FLOAT);
op->update_output_desc_y(*output_desc_y);
auto output_desc_mean = std::make_shared<ge::TensorDesc>(ge::Shape(), ge::FORMAT_NCHW, ge::DT_FLOAT);
op->update_output_desc_mean(*output_desc_mean);
auto output_desc_var = std::make_shared<ge::TensorDesc>(ge::Shape(), ge::FORMAT_NCHW, ge::DT_FLOAT);
op->update_output_desc_variance(*output_desc_var);
return Ptr<BackendNode>(new CannBackendNode(op));
}
#endif // HAVE_CANN
#ifdef HAVE_DNN_NGRAPH
virtual Ptr<BackendNode> initNgraph(const std::vector<Ptr<BackendWrapper> >& inputs,
const std::vector<Ptr<BackendNode> >& nodes) CV_OVERRIDE {
// onnx to openvino convertion: https://github.com/openvinotoolkit/openvino/blob/2023.1.0/src/frontends/onnx/frontend/src/op/instance_norm.cpp
auto ieInpNode = nodes[0].dynamicCast<InfEngineNgraphNode>()->node;
const auto &input_shape = ieInpNode.get_shape();
std::shared_ptr<ov::Node> mvn, result;
// mvn
// https://docs.openvino.ai/2023.1/openvino_docs_ops_normalization_MVN_6.html
std::vector<int64_t> axes_v(input_shape.size() - 2);
std::iota(axes_v.begin(), axes_v.end(), 2); // {2, 3, ...} for nd input tensor, n>=3
auto axes = std::make_shared<ov::op::v0::Constant>(ov::element::i64, ov::Shape{axes_v.size()}, axes_v.data());
bool normalize_variance = true;
mvn = std::make_shared<ov::op::v6::MVN>(ieInpNode, axes, normalize_variance, epsilon, ov::op::MVNEpsMode::INSIDE_SQRT);
// instance norm = scale * mvn + bias
auto scale = nodes[1].dynamicCast<InfEngineNgraphNode>()->node;
std::vector<int64_t> shared_shape_v(input_shape.size(), 1);
shared_shape_v[1] = -1;
auto shared_shape = std::make_shared<ov::op::v0::Constant>(ov::element::i64, ov::Shape{shared_shape_v.size()}, shared_shape_v.data());
scale = std::make_shared<ov::op::v1::Reshape>(scale, shared_shape, true);
result = std::make_shared<ov::op::v1::Multiply>(mvn, scale);
auto bias = nodes[2].dynamicCast<InfEngineNgraphNode>()->node;
bias = std::make_shared<ov::op::v1::Reshape>(bias, shared_shape, true);
result = std::make_shared<ov::op::v1::Add>(result, bias);
return Ptr<BackendNode>(new InfEngineNgraphNode(result));
}
#endif // HAVE_DNN_NGRAPH
#ifdef HAVE_CUDA
Ptr<BackendNode> initCUDA(void *context_,
const std::vector<Ptr<BackendWrapper>>& inputs,
const std::vector<Ptr<BackendWrapper>>& outputs) override {
auto context = reinterpret_cast<csl::CSLContext*>(context_);
auto input_wrapper = inputs[0].dynamicCast<CUDABackendWrapper>();
auto input_shape = input_wrapper->getShape();
size_t loops = static_cast<size_t>(total(input_shape, 0, 2));
return make_cuda_node<cuda4dnn::InstanceNormOp>(preferableTarget, std::move(context->stream), epsilon, loops);
}
#endif // HAVE_CUDA
};
Ptr<InstanceNormLayer> InstanceNormLayer::create(const LayerParams &params) {
return Ptr<InstanceNormLayer>(new InstanceNormLayerImpl(params));
}
}} // cv::dnn