mirror of
https://github.com/opencv/opencv.git
synced 2025-06-12 20:42:53 +08:00
430 lines
16 KiB
C++
430 lines
16 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
|
|
// Copyright (C) 2017, Intel Corporation, all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#include "../precomp.hpp"
|
|
#include "layers_common.hpp"
|
|
#include "../op_inf_engine.hpp"
|
|
#include "../ie_ngraph.hpp"
|
|
|
|
#include <opencv2/dnn/shape_utils.hpp>
|
|
|
|
#ifdef HAVE_OPENCL
|
|
#include "../ocl4dnn/include/math_functions.hpp"
|
|
#include "opencl_kernels_dnn.hpp"
|
|
#endif
|
|
|
|
namespace cv
|
|
{
|
|
namespace dnn
|
|
{
|
|
|
|
class MVNLayerImpl CV_FINAL : public MVNLayer
|
|
{
|
|
public:
|
|
MVNLayerImpl(const LayerParams& params)
|
|
{
|
|
setParamsFrom(params);
|
|
normVariance = params.get<bool>("normalize_variance", true);
|
|
acrossChannels = params.get<bool>("across_channels", false);
|
|
eps = params.get<double>("eps", 1e-9);
|
|
fuse_batch_norm = false;
|
|
fuse_relu = false;
|
|
relu_slope = 0.f;
|
|
zeroDev = false;
|
|
}
|
|
|
|
Mat scale, shift;
|
|
#ifdef HAVE_OPENCL
|
|
UMat umat_scale, umat_shift;
|
|
#endif
|
|
bool fuse_batch_norm;
|
|
|
|
Ptr<ReLULayer> activ_relu;
|
|
float relu_slope;
|
|
bool fuse_relu;
|
|
bool zeroDev; // TODO: Doesn't considered in Intel's Inference Engine backend.
|
|
bool setActivation(const Ptr<ActivationLayer>& layer) CV_OVERRIDE
|
|
{
|
|
if (!layer.empty() && !fuse_relu && !fuse_batch_norm)
|
|
{
|
|
layer->getScaleShift(scale, shift);
|
|
fuse_batch_norm = !scale.empty() || !shift.empty();
|
|
return fuse_batch_norm;
|
|
}
|
|
|
|
if (!layer.empty() && preferableTarget == DNN_TARGET_OPENCL)
|
|
{
|
|
activ_relu = layer.dynamicCast<ReLULayer>();
|
|
if( !activ_relu.empty() )
|
|
relu_slope = activ_relu->negativeSlope;
|
|
}
|
|
fuse_relu = !activ_relu.empty();
|
|
return fuse_relu;
|
|
}
|
|
|
|
void finalize(InputArrayOfArrays inputs_arr, OutputArrayOfArrays) CV_OVERRIDE
|
|
{
|
|
std::vector<Mat> inputs;
|
|
inputs_arr.getMatVector(inputs);
|
|
int splitDim = (acrossChannels) ? 1 : 2;
|
|
int i, newRows = 1;
|
|
for( i = 0; i < splitDim; i++ )
|
|
newRows *= inputs[0].size[i];
|
|
zeroDev = inputs[0].total() == newRows;
|
|
#ifdef HAVE_OPENCL
|
|
umat_scale.release();
|
|
umat_shift.release();
|
|
#endif
|
|
}
|
|
|
|
virtual bool supportBackend(int backendId) CV_OVERRIDE
|
|
{
|
|
#ifdef HAVE_DNN_IE_NN_BUILDER_2019
|
|
if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
|
|
return !zeroDev && (preferableTarget != DNN_TARGET_MYRIAD || eps <= 1e-7f);
|
|
#endif
|
|
#ifdef HAVE_DNN_NGRAPH
|
|
if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
|
|
return true;
|
|
#endif
|
|
{
|
|
return backendId == DNN_BACKEND_OPENCV;
|
|
}
|
|
}
|
|
|
|
#ifdef HAVE_OPENCL
|
|
bool fast_forward_ocl(std::vector<UMat> &inputs, std::vector<UMat> &outputs)
|
|
{
|
|
if (umat_scale.empty() && !scale.empty())
|
|
scale.copyTo(umat_scale);
|
|
if (umat_shift.empty() && !shift.empty())
|
|
shift.copyTo(umat_shift);
|
|
UMat& bnorm_weight = umat_scale;
|
|
UMat& bnorm_bias = umat_shift;
|
|
|
|
const unsigned LOCAL_SIZE = 128;
|
|
bool use_half = (inputs[0].depth() == CV_16S);
|
|
String opts = format(" -DT=%s -DT4=%s -Dconvert_T=%s -DLOCAL_SIZE=%u", use_half ? "half" : "float",
|
|
use_half ? "half4" : "float4", use_half ? "convert_half4" : "convert_float4",
|
|
LOCAL_SIZE
|
|
);
|
|
|
|
int splitDim = (acrossChannels) ? 1 : 2;
|
|
for (size_t inpIdx = 0; inpIdx < inputs.size(); inpIdx++)
|
|
{
|
|
UMat &inpMat = inputs[inpIdx];
|
|
UMat &outMat = outputs[inpIdx];
|
|
int newRows = total(shape(inpMat), 0, splitDim);
|
|
CV_Assert(newRows != 0);
|
|
|
|
MatShape s = shape(newRows, inpMat.total() / newRows);
|
|
UMat meanMat = UMat(s[0], 1, (use_half) ? CV_16S : CV_32F);
|
|
UMat tmpMat = UMat(s[0], s[1], CV_32F);
|
|
float alpha = 1.0f / s[1];
|
|
|
|
String buildopt = "-DNUM=4" + opts;
|
|
ocl::Kernel k("mean_fuse4", ocl::dnn::mvn_oclsrc, buildopt + " -DKERNEL_MEAN_FUSE");
|
|
size_t localsize[] = { LOCAL_SIZE };
|
|
size_t globalsize[] = { (size_t)s[0] / 4 * localsize[0] };
|
|
|
|
int argId = 0;
|
|
k.set(argId++, ocl::KernelArg::PtrReadOnly(inpMat));
|
|
k.set(argId++, (int)s[1]);
|
|
k.set(argId++, alpha);
|
|
k.set(argId++, ocl::KernelArg::PtrWriteOnly(meanMat));
|
|
k.set(argId++, ocl::KernelArg::PtrWriteOnly(tmpMat));
|
|
bool ret = k.run(1, globalsize, localsize, false);
|
|
if (!ret)
|
|
return false;
|
|
|
|
buildopt += format(" %s %s", (fuse_batch_norm) ? "-DFUSE_BATCH_NORM" : "",
|
|
(fuse_relu) ? "-DFUSE_RELU" : "");
|
|
|
|
ocl::Kernel k1("mvn_fuse4", ocl::dnn::mvn_oclsrc, buildopt + " -DKERNEL_MVN_FUSE");
|
|
argId = 0;
|
|
k1.set(argId++, ocl::KernelArg::PtrReadOnly(tmpMat));
|
|
k1.set(argId++, ocl::KernelArg::PtrReadOnly(inpMat));
|
|
k1.set(argId++, ocl::KernelArg::PtrReadOnly(meanMat));
|
|
k1.set(argId++, (int)s[1]);
|
|
k1.set(argId++, (float)alpha);
|
|
k1.set(argId++, (float)eps);
|
|
k1.set(argId++, (float)relu_slope);
|
|
k1.set(argId++, ocl::KernelArg::PtrReadOnly(bnorm_weight));
|
|
k1.set(argId++, ocl::KernelArg::PtrReadOnly(bnorm_bias));
|
|
k1.set(argId++, ocl::KernelArg::PtrWriteOnly(outMat));
|
|
ret = k1.run(1, globalsize, localsize, false);
|
|
if (!ret)
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool forward_ocl(InputArrayOfArrays inputs_, OutputArrayOfArrays outputs_, OutputArrayOfArrays internals_)
|
|
{
|
|
if (umat_scale.empty() && !scale.empty())
|
|
scale.copyTo(umat_scale);
|
|
if (umat_shift.empty() && !shift.empty())
|
|
shift.copyTo(umat_shift);
|
|
UMat& bnorm_weight = umat_scale;
|
|
UMat& bnorm_bias = umat_shift;
|
|
|
|
std::vector<UMat> inputs;
|
|
std::vector<UMat> outputs;
|
|
|
|
inputs_.getUMatVector(inputs);
|
|
outputs_.getUMatVector(outputs);
|
|
|
|
int splitDim = (acrossChannels) ? 1 : 2;
|
|
int row_size = total(shape(inputs[0]), 0, splitDim);
|
|
int plane_size = total(shape(inputs[0]), splitDim);
|
|
if (normVariance && (row_size % 4 == 0) && (plane_size % 4 == 0))
|
|
return fast_forward_ocl(inputs, outputs);
|
|
|
|
if (inputs[0].depth() == CV_16S)
|
|
return false;
|
|
|
|
String opts = format(" -DT=float -DT4=float4 -Dconvert_T=convert_float4");
|
|
|
|
for (size_t inpIdx = 0; inpIdx < inputs.size(); inpIdx++)
|
|
{
|
|
UMat &inpMat = inputs[inpIdx];
|
|
UMat &outMat = outputs[inpIdx];
|
|
int newRows = total(shape(inpMat), 0, splitDim);
|
|
CV_Assert(newRows != 0);
|
|
|
|
MatShape s = shape(newRows, inpMat.total() / newRows);
|
|
UMat oneMat = UMat::ones(s[1], 1, CV_32F);
|
|
UMat meanMat = UMat(s[0], 1, CV_32F);
|
|
UMat devMat = UMat(s[0], 1, CV_32F);
|
|
UMat tmpMat = UMat(s[0], s[1], CV_32F);
|
|
float alpha = 1.0f / s[1];
|
|
|
|
bool ret = ocl4dnn::ocl4dnnGEMV<float>(ocl4dnn::CblasNoTrans, s[0], s[1], alpha,
|
|
inpMat, 0, oneMat, 0, 0.0f, meanMat, 0);
|
|
if (!ret)
|
|
return false;
|
|
|
|
int number = (s[1] % 8 == 0) ? 8 : ((s[1] % 4 == 0) ? 4 : 1);
|
|
size_t global[] = { (size_t)s[0], (size_t)(s[1] / number) };
|
|
String buildopt = format("-DNUM=%d", number) + opts;
|
|
if (normVariance)
|
|
{
|
|
String kname = format("calc_mean%d", number);
|
|
ocl::Kernel kernel(kname.c_str(), ocl::dnn::mvn_oclsrc, buildopt + " -DKERNEL_MEAN");
|
|
if (kernel.empty())
|
|
return false;
|
|
|
|
kernel.set(0, ocl::KernelArg::PtrReadOnly(inpMat));
|
|
kernel.set(1, (int)s[0]);
|
|
kernel.set(2, (int)s[1]);
|
|
kernel.set(3, ocl::KernelArg::PtrReadOnly(meanMat));
|
|
kernel.set(4, ocl::KernelArg::PtrWriteOnly(tmpMat));
|
|
ret = kernel.run(2, global, NULL, false);
|
|
if (!ret)
|
|
return false;
|
|
|
|
ret = ocl4dnn::ocl4dnnGEMV<float>(ocl4dnn::CblasNoTrans, s[0], s[1], alpha,
|
|
tmpMat, 0, oneMat, 0, 0.0f, devMat, 0);
|
|
if (!ret)
|
|
return false;
|
|
}
|
|
|
|
String kname = format("mvn%d", number);
|
|
buildopt += format("%s%s%s -DKERNEL_MVN", (normVariance) ? " -DNORM_VARIANCE" : "",
|
|
(fuse_batch_norm) ? " -DFUSE_BATCH_NORM" : "",
|
|
(fuse_relu) ? " -DFUSE_RELU" : "");
|
|
ocl::Kernel kernel1(kname.c_str(), ocl::dnn::mvn_oclsrc, buildopt);
|
|
if (kernel1.empty())
|
|
return false;
|
|
kernel1.set(0, ocl::KernelArg::PtrReadOnly(inpMat));
|
|
kernel1.set(1, (int)s[0]);
|
|
kernel1.set(2, (int)s[1]);
|
|
kernel1.set(3, (float)eps);
|
|
kernel1.set(4, ocl::KernelArg::PtrReadOnly(meanMat));
|
|
kernel1.set(5, ocl::KernelArg::PtrReadOnly(devMat));
|
|
kernel1.set(6, ocl::KernelArg::PtrReadOnly(bnorm_weight));
|
|
kernel1.set(7, ocl::KernelArg::PtrReadOnly(bnorm_bias));
|
|
kernel1.set(8, (int)inpMat.size[1]);
|
|
kernel1.set(9, (float)relu_slope);
|
|
kernel1.set(10, ocl::KernelArg::PtrWriteOnly(outMat));
|
|
ret = kernel1.run(2, global, NULL, false);
|
|
if (!ret)
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
#endif
|
|
|
|
void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr) CV_OVERRIDE
|
|
{
|
|
CV_TRACE_FUNCTION();
|
|
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
|
|
|
|
CV_OCL_RUN(IS_DNN_OPENCL_TARGET(preferableTarget),
|
|
forward_ocl(inputs_arr, outputs_arr, internals_arr))
|
|
|
|
if (inputs_arr.depth() == CV_16S)
|
|
{
|
|
forward_fallback(inputs_arr, outputs_arr, internals_arr);
|
|
return;
|
|
}
|
|
|
|
std::vector<Mat> inputs, outputs, internals;
|
|
inputs_arr.getMatVector(inputs);
|
|
outputs_arr.getMatVector(outputs);
|
|
internals_arr.getMatVector(internals);
|
|
|
|
for (size_t inpIdx = 0; inpIdx < inputs.size(); inpIdx++)
|
|
{
|
|
Mat &inpBlob = inputs[inpIdx];
|
|
Mat &outBlob = outputs[inpIdx];
|
|
|
|
int splitDim = (acrossChannels) ? 1 : 2;
|
|
int i, newRows = 1;
|
|
for( i = 0; i < splitDim; i++ )
|
|
newRows *= inpBlob.size[i];
|
|
|
|
Mat inpMat = inpBlob.reshape(1, newRows);
|
|
Mat outMat = outBlob.reshape(1, newRows);
|
|
|
|
if ( inpBlob.total() == newRows )
|
|
{
|
|
// MVN is applied to single values at an every row.
|
|
if (shift.empty())
|
|
{
|
|
outBlob.setTo(0);
|
|
}
|
|
else
|
|
{
|
|
for ( i = 0; i < newRows; i++ )
|
|
{
|
|
outMat.row(i).setTo(((float*)shift.data)[i]);
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
Scalar mean, dev;
|
|
for ( i = 0; i < newRows; i++)
|
|
{
|
|
Mat inpRow = inpMat.row(i);
|
|
Mat outRow = outMat.row(i);
|
|
float weight = 1.f;
|
|
float bias = 0.f;
|
|
if (fuse_batch_norm)
|
|
{
|
|
weight = i < scale.cols ? ((float*)scale.data)[i] : weight;
|
|
bias = i < shift.cols ? ((float*)shift.data)[i] : bias;
|
|
}
|
|
cv::meanStdDev(inpRow, mean, (normVariance) ? dev : noArray());
|
|
double alpha = 1;
|
|
if (normVariance)
|
|
{
|
|
alpha = 1 / std::sqrt(eps + dev[0]*dev[0]);
|
|
}
|
|
double normalizationScale = 1.0;
|
|
double normalizationShift = 0.0;
|
|
if (fuse_batch_norm)
|
|
{
|
|
normalizationScale = alpha * weight;
|
|
normalizationShift = -mean[0] * normalizationScale + bias;
|
|
}
|
|
else
|
|
{
|
|
normalizationScale = alpha;
|
|
normalizationShift = -mean[0] * alpha;
|
|
}
|
|
inpRow.convertTo(outRow, outRow.type(), normalizationScale, normalizationShift);
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifdef HAVE_DNN_IE_NN_BUILDER_2019
|
|
virtual Ptr<BackendNode> initInfEngine(const std::vector<Ptr<BackendWrapper> >&) CV_OVERRIDE
|
|
{
|
|
InferenceEngine::Builder::MVNLayer ieLayer(name);
|
|
ieLayer.setAcrossChannels(acrossChannels);
|
|
ieLayer.setNormalize(normVariance);
|
|
ieLayer.setEpsilon(eps);
|
|
return Ptr<BackendNode>(new InfEngineBackendNode(ieLayer));
|
|
}
|
|
#endif // HAVE_DNN_IE_NN_BUILDER_2019
|
|
|
|
#ifdef HAVE_DNN_NGRAPH
|
|
virtual Ptr<BackendNode> initNgraph(const std::vector<Ptr<BackendWrapper> >& inputs,
|
|
const std::vector<Ptr<BackendNode> >& nodes) CV_OVERRIDE
|
|
{
|
|
auto& ieInpNode = nodes[0].dynamicCast<InfEngineNgraphNode>()->node;
|
|
#if INF_ENGINE_VER_MAJOR_LE(INF_ENGINE_RELEASE_2021_2)
|
|
auto mvn = std::make_shared<ngraph::op::MVN>(ieInpNode, acrossChannels, normVariance, eps);
|
|
#else
|
|
int64_t start_axis = acrossChannels ? 1 : 2;
|
|
std::vector<int64_t> axes_v(ieInpNode->get_shape().size() - start_axis);
|
|
std::iota(axes_v.begin(), axes_v.end(), start_axis);
|
|
auto axes = std::make_shared<ngraph::op::Constant>(ngraph::element::i64, ngraph::Shape{axes_v.size()}, axes_v.data());
|
|
auto mvn = std::make_shared<ngraph::op::v6::MVN>(ieInpNode, axes, normVariance, eps, ngraph::op::MVNEpsMode::INSIDE_SQRT);
|
|
#endif
|
|
return Ptr<BackendNode>(new InfEngineNgraphNode(mvn));
|
|
}
|
|
#endif // HAVE_DNN_NGRAPH
|
|
|
|
virtual int64 getFLOPS(const std::vector<MatShape> &inputs,
|
|
const std::vector<MatShape> &outputs) const CV_OVERRIDE
|
|
{
|
|
CV_UNUSED(outputs); // suppress unused variable warning
|
|
long flops = 0;
|
|
for(int i = 0; i < inputs.size(); i++)
|
|
{
|
|
flops += 6*total(inputs[i]) + 3*total(inputs[i], 0, normVariance ? 2 : 1);
|
|
}
|
|
return flops;
|
|
}
|
|
};
|
|
|
|
Ptr<MVNLayer> MVNLayer::create(const LayerParams& params)
|
|
{
|
|
return Ptr<MVNLayer>(new MVNLayerImpl(params));
|
|
}
|
|
|
|
}
|
|
}
|