mirror of
https://github.com/opencv/opencv.git
synced 2024-12-15 18:09:11 +08:00
d27e440b2a
fixed dependency of stitching module on xfeatures2d module as optional fixed the initModule_xfeatures2d function that was called in module stitching since it is in another namespace than the standard cv one.
211 lines
6.9 KiB
C++
211 lines
6.9 KiB
C++
#include "perf_precomp.hpp"
|
|
#include "opencv2/imgcodecs.hpp"
|
|
#include "opencv2/flann.hpp"
|
|
#include "opencv2/opencv_modules.hpp"
|
|
|
|
using namespace std;
|
|
using namespace cv;
|
|
using namespace perf;
|
|
using std::tr1::make_tuple;
|
|
using std::tr1::get;
|
|
|
|
#define SURF_MATCH_CONFIDENCE 0.65f
|
|
#define ORB_MATCH_CONFIDENCE 0.3f
|
|
#define WORK_MEGAPIX 0.6
|
|
|
|
typedef TestBaseWithParam<string> stitch;
|
|
typedef TestBaseWithParam<string> match;
|
|
typedef std::tr1::tuple<string, int> matchVector_t;
|
|
typedef TestBaseWithParam<matchVector_t> matchVector;
|
|
|
|
#ifdef HAVE_OPENCV_XFEATURES2D_TODO_FIND_WHY_SURF_IS_NOT_ABLE_TO_STITCH_PANOS
|
|
#define TEST_DETECTORS testing::Values("surf", "orb")
|
|
#else
|
|
#define TEST_DETECTORS testing::Values<string>("orb")
|
|
#endif
|
|
|
|
PERF_TEST_P(stitch, a123, TEST_DETECTORS)
|
|
{
|
|
Mat pano;
|
|
|
|
vector<Mat> imgs;
|
|
imgs.push_back( imread( getDataPath("stitching/a1.png") ) );
|
|
imgs.push_back( imread( getDataPath("stitching/a2.png") ) );
|
|
imgs.push_back( imread( getDataPath("stitching/a3.png") ) );
|
|
|
|
Ptr<detail::FeaturesFinder> featuresFinder = GetParam() == "orb"
|
|
? Ptr<detail::FeaturesFinder>(new detail::OrbFeaturesFinder())
|
|
: Ptr<detail::FeaturesFinder>(new detail::SurfFeaturesFinder());
|
|
|
|
Ptr<detail::FeaturesMatcher> featuresMatcher = GetParam() == "orb"
|
|
? makePtr<detail::BestOf2NearestMatcher>(false, ORB_MATCH_CONFIDENCE)
|
|
: makePtr<detail::BestOf2NearestMatcher>(false, SURF_MATCH_CONFIDENCE);
|
|
|
|
declare.time(30 * 20).iterations(20);
|
|
|
|
while(next())
|
|
{
|
|
Stitcher stitcher = Stitcher::createDefault();
|
|
stitcher.setFeaturesFinder(featuresFinder);
|
|
stitcher.setFeaturesMatcher(featuresMatcher);
|
|
stitcher.setWarper(makePtr<SphericalWarper>());
|
|
stitcher.setRegistrationResol(WORK_MEGAPIX);
|
|
|
|
startTimer();
|
|
stitcher.stitch(imgs, pano);
|
|
stopTimer();
|
|
}
|
|
|
|
EXPECT_NEAR(pano.size().width, 1182, 50);
|
|
EXPECT_NEAR(pano.size().height, 682, 30);
|
|
|
|
SANITY_CHECK_NOTHING();
|
|
}
|
|
|
|
PERF_TEST_P(stitch, b12, TEST_DETECTORS)
|
|
{
|
|
Mat pano;
|
|
|
|
vector<Mat> imgs;
|
|
imgs.push_back( imread( getDataPath("stitching/b1.png") ) );
|
|
imgs.push_back( imread( getDataPath("stitching/b2.png") ) );
|
|
|
|
Ptr<detail::FeaturesFinder> featuresFinder = GetParam() == "orb"
|
|
? Ptr<detail::FeaturesFinder>(new detail::OrbFeaturesFinder())
|
|
: Ptr<detail::FeaturesFinder>(new detail::SurfFeaturesFinder());
|
|
|
|
Ptr<detail::FeaturesMatcher> featuresMatcher = GetParam() == "orb"
|
|
? makePtr<detail::BestOf2NearestMatcher>(false, ORB_MATCH_CONFIDENCE)
|
|
: makePtr<detail::BestOf2NearestMatcher>(false, SURF_MATCH_CONFIDENCE);
|
|
|
|
declare.time(30 * 20).iterations(20);
|
|
|
|
while(next())
|
|
{
|
|
Stitcher stitcher = Stitcher::createDefault();
|
|
stitcher.setFeaturesFinder(featuresFinder);
|
|
stitcher.setFeaturesMatcher(featuresMatcher);
|
|
stitcher.setWarper(makePtr<SphericalWarper>());
|
|
stitcher.setRegistrationResol(WORK_MEGAPIX);
|
|
|
|
startTimer();
|
|
stitcher.stitch(imgs, pano);
|
|
stopTimer();
|
|
}
|
|
|
|
Mat pano_small;
|
|
if (!pano.empty())
|
|
resize(pano, pano_small, Size(320, 240), 0, 0, INTER_AREA);
|
|
|
|
SANITY_CHECK(pano_small, 5);
|
|
}
|
|
|
|
PERF_TEST_P( match, bestOf2Nearest, TEST_DETECTORS)
|
|
{
|
|
Mat img1, img1_full = imread( getDataPath("stitching/b1.png") );
|
|
Mat img2, img2_full = imread( getDataPath("stitching/b2.png") );
|
|
float scale1 = (float)std::min(1.0, sqrt(WORK_MEGAPIX * 1e6 / img1_full.total()));
|
|
float scale2 = (float)std::min(1.0, sqrt(WORK_MEGAPIX * 1e6 / img2_full.total()));
|
|
resize(img1_full, img1, Size(), scale1, scale1);
|
|
resize(img2_full, img2, Size(), scale2, scale2);
|
|
|
|
Ptr<detail::FeaturesFinder> finder;
|
|
Ptr<detail::FeaturesMatcher> matcher;
|
|
if (GetParam() == "surf")
|
|
{
|
|
finder = makePtr<detail::SurfFeaturesFinder>();
|
|
matcher = makePtr<detail::BestOf2NearestMatcher>(false, SURF_MATCH_CONFIDENCE);
|
|
}
|
|
else if (GetParam() == "orb")
|
|
{
|
|
finder = makePtr<detail::OrbFeaturesFinder>();
|
|
matcher = makePtr<detail::BestOf2NearestMatcher>(false, ORB_MATCH_CONFIDENCE);
|
|
}
|
|
else
|
|
{
|
|
FAIL() << "Unknown 2D features type: " << GetParam();
|
|
}
|
|
|
|
detail::ImageFeatures features1, features2;
|
|
(*finder)(img1, features1);
|
|
(*finder)(img2, features2);
|
|
|
|
detail::MatchesInfo pairwise_matches;
|
|
|
|
declare.in(features1.descriptors, features2.descriptors);
|
|
|
|
while(next())
|
|
{
|
|
cvflann::seed_random(42);//for predictive FlannBasedMatcher
|
|
startTimer();
|
|
(*matcher)(features1, features2, pairwise_matches);
|
|
stopTimer();
|
|
matcher->collectGarbage();
|
|
}
|
|
|
|
std::vector<DMatch>& matches = pairwise_matches.matches;
|
|
if (GetParam() == "orb") matches.resize(0);
|
|
for(size_t q = 0; q < matches.size(); ++q)
|
|
if (matches[q].imgIdx < 0) { matches.resize(q); break;}
|
|
SANITY_CHECK_MATCHES(matches);
|
|
}
|
|
|
|
PERF_TEST_P( matchVector, bestOf2NearestVectorFeatures, testing::Combine(
|
|
TEST_DETECTORS,
|
|
testing::Values(2, 4, 8))
|
|
)
|
|
{
|
|
Mat img1, img1_full = imread( getDataPath("stitching/b1.png") );
|
|
Mat img2, img2_full = imread( getDataPath("stitching/b2.png") );
|
|
float scale1 = (float)std::min(1.0, sqrt(WORK_MEGAPIX * 1e6 / img1_full.total()));
|
|
float scale2 = (float)std::min(1.0, sqrt(WORK_MEGAPIX * 1e6 / img2_full.total()));
|
|
resize(img1_full, img1, Size(), scale1, scale1);
|
|
resize(img2_full, img2, Size(), scale2, scale2);
|
|
|
|
Ptr<detail::FeaturesFinder> finder;
|
|
Ptr<detail::FeaturesMatcher> matcher;
|
|
string detectorName = get<0>(GetParam());
|
|
int featuresVectorSize = get<1>(GetParam());
|
|
if (detectorName == "surf")
|
|
{
|
|
finder = makePtr<detail::SurfFeaturesFinder>();
|
|
matcher = makePtr<detail::BestOf2NearestMatcher>(false, SURF_MATCH_CONFIDENCE);
|
|
}
|
|
else if (detectorName == "orb")
|
|
{
|
|
finder = makePtr<detail::OrbFeaturesFinder>();
|
|
matcher = makePtr<detail::BestOf2NearestMatcher>(false, ORB_MATCH_CONFIDENCE);
|
|
}
|
|
else
|
|
{
|
|
FAIL() << "Unknown 2D features type: " << get<0>(GetParam());
|
|
}
|
|
|
|
detail::ImageFeatures features1, features2;
|
|
(*finder)(img1, features1);
|
|
(*finder)(img2, features2);
|
|
vector<detail::ImageFeatures> features;
|
|
vector<detail::MatchesInfo> pairwise_matches;
|
|
for(int i = 0; i < featuresVectorSize/2; i++)
|
|
{
|
|
features.push_back(features1);
|
|
features.push_back(features2);
|
|
}
|
|
|
|
declare.time(200);
|
|
while(next())
|
|
{
|
|
cvflann::seed_random(42);//for predictive FlannBasedMatcher
|
|
startTimer();
|
|
(*matcher)(features, pairwise_matches);
|
|
stopTimer();
|
|
matcher->collectGarbage();
|
|
}
|
|
|
|
|
|
std::vector<DMatch>& matches = pairwise_matches[detectorName == "surf" ? 1 : 0].matches;
|
|
for(size_t q = 0; q < matches.size(); ++q)
|
|
if (matches[q].imgIdx < 0) { matches.resize(q); break;}
|
|
SANITY_CHECK_MATCHES(matches);
|
|
}
|