mirror of
https://github.com/opencv/opencv.git
synced 2025-07-23 21:16:58 +08:00

rename cv::cuda::internal namespace to cv::cuda::device to prevent conflicts with cv::internal
190 lines
6.1 KiB
Plaintext
190 lines
6.1 KiB
Plaintext
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#include "opencv2/opencv_modules.hpp"
|
|
|
|
#ifndef HAVE_OPENCV_CUDEV
|
|
|
|
#error "opencv_cudev is required"
|
|
|
|
#else
|
|
|
|
#include "opencv2/cudaarithm.hpp"
|
|
#include "opencv2/cudev.hpp"
|
|
#include "opencv2/core/private.cuda.hpp"
|
|
|
|
using namespace cv;
|
|
using namespace cv::cuda;
|
|
using namespace cv::cudev;
|
|
|
|
namespace
|
|
{
|
|
template <typename T, typename R>
|
|
void minMaxImpl(const GpuMat& _src, const GpuMat& mask, GpuMat& _dst, Stream& stream)
|
|
{
|
|
const GpuMat_<T>& src = (const GpuMat_<T>&) _src;
|
|
GpuMat_<R>& dst = (GpuMat_<R>&) _dst;
|
|
|
|
if (mask.empty())
|
|
gridFindMinMaxVal(src, dst, stream);
|
|
else
|
|
gridFindMinMaxVal(src, dst, globPtr<uchar>(mask), stream);
|
|
}
|
|
|
|
template <typename T, typename R>
|
|
void minMaxImpl(const GpuMat& src, const GpuMat& mask, double* minVal, double* maxVal)
|
|
{
|
|
BufferPool pool(Stream::Null());
|
|
GpuMat buf(pool.getBuffer(1, 2, DataType<R>::type));
|
|
|
|
minMaxImpl<T, R>(src, mask, buf, Stream::Null());
|
|
|
|
R data[2];
|
|
buf.download(Mat(1, 2, buf.type(), data));
|
|
|
|
}
|
|
}
|
|
|
|
void cv::cuda::findMinMax(InputArray _src, OutputArray _dst, InputArray _mask, Stream& stream)
|
|
{
|
|
typedef void (*func_t)(const GpuMat& _src, const GpuMat& mask, GpuMat& _dst, Stream& stream);
|
|
static const func_t funcs[] =
|
|
{
|
|
minMaxImpl<uchar, int>,
|
|
minMaxImpl<schar, int>,
|
|
minMaxImpl<ushort, int>,
|
|
minMaxImpl<short, int>,
|
|
minMaxImpl<int, int>,
|
|
minMaxImpl<float, float>,
|
|
minMaxImpl<double, double>
|
|
};
|
|
|
|
const GpuMat src = getInputMat(_src, stream);
|
|
const GpuMat mask = getInputMat(_mask, stream);
|
|
|
|
CV_Assert( src.channels() == 1 );
|
|
CV_Assert( mask.empty() || (mask.size() == src.size() && mask.type() == CV_8U) );
|
|
|
|
const int src_depth = src.depth();
|
|
const int dst_depth = src_depth < CV_32F ? CV_32S : src_depth;
|
|
|
|
GpuMat dst = getOutputMat(_dst, 1, 2, dst_depth, stream);
|
|
|
|
const func_t func = funcs[src.depth()];
|
|
func(src, mask, dst, stream);
|
|
|
|
syncOutput(dst, _dst, stream);
|
|
}
|
|
|
|
void cv::cuda::minMax(InputArray _src, double* minVal, double* maxVal, InputArray _mask)
|
|
{
|
|
Stream& stream = Stream::Null();
|
|
|
|
HostMem dst;
|
|
findMinMax(_src, dst, _mask, stream);
|
|
|
|
stream.waitForCompletion();
|
|
|
|
double vals[2];
|
|
dst.createMatHeader().convertTo(Mat(1, 2, CV_64FC1, &vals[0]), CV_64F);
|
|
|
|
if (minVal)
|
|
*minVal = vals[0];
|
|
|
|
if (maxVal)
|
|
*maxVal = vals[1];
|
|
}
|
|
|
|
namespace cv { namespace cuda { namespace device {
|
|
|
|
void findMaxAbs(InputArray _src, OutputArray _dst, InputArray _mask, Stream& stream);
|
|
|
|
}}}
|
|
|
|
namespace
|
|
{
|
|
template <typename T, typename R>
|
|
void findMaxAbsImpl(const GpuMat& _src, const GpuMat& mask, GpuMat& _dst, Stream& stream)
|
|
{
|
|
const GpuMat_<T>& src = (const GpuMat_<T>&) _src;
|
|
GpuMat_<R>& dst = (GpuMat_<R>&) _dst;
|
|
|
|
if (mask.empty())
|
|
gridFindMaxVal(abs_(src), dst, stream);
|
|
else
|
|
gridFindMaxVal(abs_(src), dst, globPtr<uchar>(mask), stream);
|
|
}
|
|
}
|
|
|
|
void cv::cuda::device::findMaxAbs(InputArray _src, OutputArray _dst, InputArray _mask, Stream& stream)
|
|
{
|
|
typedef void (*func_t)(const GpuMat& _src, const GpuMat& mask, GpuMat& _dst, Stream& stream);
|
|
static const func_t funcs[] =
|
|
{
|
|
findMaxAbsImpl<uchar, int>,
|
|
findMaxAbsImpl<schar, int>,
|
|
findMaxAbsImpl<ushort, int>,
|
|
findMaxAbsImpl<short, int>,
|
|
findMaxAbsImpl<int, int>,
|
|
findMaxAbsImpl<float, float>,
|
|
findMaxAbsImpl<double, double>
|
|
};
|
|
|
|
const GpuMat src = getInputMat(_src, stream);
|
|
const GpuMat mask = getInputMat(_mask, stream);
|
|
|
|
CV_Assert( src.channels() == 1 );
|
|
CV_Assert( mask.empty() || (mask.size() == src.size() && mask.type() == CV_8U) );
|
|
|
|
const int src_depth = src.depth();
|
|
const int dst_depth = src_depth < CV_32F ? CV_32S : src_depth;
|
|
|
|
GpuMat dst = getOutputMat(_dst, 1, 1, dst_depth, stream);
|
|
|
|
const func_t func = funcs[src.depth()];
|
|
func(src, mask, dst, stream);
|
|
|
|
syncOutput(dst, _dst, stream);
|
|
}
|
|
|
|
#endif
|