mirror of
https://github.com/opencv/opencv.git
synced 2025-01-07 11:41:48 +08:00
1101 lines
37 KiB
C++
1101 lines
37 KiB
C++
// This file is part of OpenCV project.
|
|
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
|
// of this distribution and at http://opencv.org/license.html
|
|
|
|
// This file is based on file issued with the following license:
|
|
|
|
/*============================================================================
|
|
|
|
Copyright 2017 Toby Collins
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions are met:
|
|
|
|
1. Redistributions of source code must retain the above copyright notice, this
|
|
list of conditions and the following disclaimer.
|
|
|
|
2. Redistributions in binary form must reproduce the above copyright notice, this
|
|
list of conditions and the following disclaimer in the documentation
|
|
and/or other materials provided with the distribution.
|
|
|
|
3. Neither the name of the copyright holder nor the names of its contributors may
|
|
be used to endorse or promote products derived from this software without
|
|
specific prior written permission.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
|
|
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
|
|
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
|
|
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include "precomp.hpp"
|
|
#include "ippe.hpp"
|
|
|
|
namespace cv {
|
|
namespace IPPE {
|
|
PoseSolver::PoseSolver() : IPPE_SMALL(1e-3)
|
|
{
|
|
}
|
|
|
|
void PoseSolver::solveGeneric(InputArray _objectPoints, InputArray _imagePoints, OutputArray _rvec1, OutputArray _tvec1,
|
|
float& err1, OutputArray _rvec2, OutputArray _tvec2, float& err2)
|
|
{
|
|
Mat normalizedImagePoints;
|
|
if (_imagePoints.getMat().type() == CV_32FC2)
|
|
{
|
|
_imagePoints.getMat().convertTo(normalizedImagePoints, CV_64F);
|
|
}
|
|
else
|
|
{
|
|
normalizedImagePoints = _imagePoints.getMat();
|
|
}
|
|
|
|
//solve:
|
|
Mat Ma, Mb;
|
|
solveGeneric(_objectPoints, normalizedImagePoints, Ma, Mb);
|
|
|
|
//the two poses computed by IPPE (sorted):
|
|
Mat M1, M2;
|
|
|
|
//sort poses by reprojection error:
|
|
sortPosesByReprojError(_objectPoints, normalizedImagePoints, Ma, Mb, M1, M2, err1, err2);
|
|
|
|
//fill outputs
|
|
rot2vec(M1.colRange(0, 3).rowRange(0, 3), _rvec1);
|
|
rot2vec(M2.colRange(0, 3).rowRange(0, 3), _rvec2);
|
|
|
|
M1.colRange(3, 4).rowRange(0, 3).copyTo(_tvec1);
|
|
M2.colRange(3, 4).rowRange(0, 3).copyTo(_tvec2);
|
|
}
|
|
|
|
void PoseSolver::solveGeneric(InputArray _objectPoints, InputArray _normalizedInputPoints,
|
|
OutputArray _Ma, OutputArray _Mb)
|
|
{
|
|
//argument checking:
|
|
size_t n = static_cast<size_t>(_normalizedInputPoints.rows()) * static_cast<size_t>(_normalizedInputPoints.cols()); //number of points
|
|
int objType = _objectPoints.type();
|
|
int type_input = _normalizedInputPoints.type();
|
|
|
|
CV_CheckType(objType, objType == CV_32FC3 || objType == CV_64FC3,
|
|
"Type of _objectPoints must be CV_32FC3 or CV_64FC3" );
|
|
CV_CheckType(type_input, type_input == CV_32FC2 || type_input == CV_64FC2,
|
|
"Type of _normalizedInputPoints must be CV_32FC2 or CV_64FC2" );
|
|
CV_Assert(_objectPoints.rows() == 1 || _objectPoints.cols() == 1);
|
|
CV_Assert(_objectPoints.rows() >= 4 || _objectPoints.cols() >= 4);
|
|
CV_Assert(_normalizedInputPoints.rows() == 1 || _normalizedInputPoints.cols() == 1);
|
|
CV_Assert(static_cast<size_t>(_objectPoints.rows()) * static_cast<size_t>(_objectPoints.cols()) == n);
|
|
|
|
Mat normalizedInputPoints;
|
|
if (type_input == CV_32FC2)
|
|
{
|
|
_normalizedInputPoints.getMat().convertTo(normalizedInputPoints, CV_64F);
|
|
}
|
|
else
|
|
{
|
|
normalizedInputPoints = _normalizedInputPoints.getMat();
|
|
}
|
|
|
|
Mat objectInputPoints;
|
|
if (objType == CV_32FC3)
|
|
{
|
|
_objectPoints.getMat().convertTo(objectInputPoints, CV_64F);
|
|
}
|
|
else
|
|
{
|
|
objectInputPoints = _objectPoints.getMat();
|
|
}
|
|
|
|
Mat canonicalObjPoints;
|
|
Mat MmodelPoints2Canonical;
|
|
|
|
//transform object points to the canonical position (zero centred and on the plane z=0):
|
|
makeCanonicalObjectPoints(objectInputPoints, canonicalObjPoints, MmodelPoints2Canonical);
|
|
|
|
//compute the homography mapping the model's points to normalizedInputPoints
|
|
Matx33d H;
|
|
HomographyHO::homographyHO(canonicalObjPoints, _normalizedInputPoints, H);
|
|
|
|
//now solve
|
|
Mat MaCanon, MbCanon;
|
|
solveCanonicalForm(canonicalObjPoints, normalizedInputPoints, H, MaCanon, MbCanon);
|
|
|
|
//transform computed poses to account for canonical transform:
|
|
Mat Ma = MaCanon * MmodelPoints2Canonical;
|
|
Mat Mb = MbCanon * MmodelPoints2Canonical;
|
|
|
|
//output poses:
|
|
Ma.copyTo(_Ma);
|
|
Mb.copyTo(_Mb);
|
|
}
|
|
|
|
void PoseSolver::solveCanonicalForm(InputArray _canonicalObjPoints, InputArray _normalizedInputPoints, const Matx33d& H,
|
|
OutputArray _Ma, OutputArray _Mb)
|
|
{
|
|
_Ma.create(4, 4, CV_64FC1);
|
|
_Mb.create(4, 4, CV_64FC1);
|
|
|
|
Mat Ma = _Ma.getMat();
|
|
Mat Mb = _Mb.getMat();
|
|
|
|
//initialise poses:
|
|
Ma.setTo(0);
|
|
Ma.at<double>(3, 3) = 1;
|
|
Mb.setTo(0);
|
|
Mb.at<double>(3, 3) = 1;
|
|
|
|
//Compute the Jacobian J of the homography at (0,0):
|
|
double j00 = H(0, 0) - H(2, 0) * H(0, 2);
|
|
double j01 = H(0, 1) - H(2, 1) * H(0, 2);
|
|
double j10 = H(1, 0) - H(2, 0) * H(1, 2);
|
|
double j11 = H(1, 1) - H(2, 1) * H(1, 2);
|
|
|
|
//Compute the transformation of (0,0) into the image:
|
|
double v0 = H(0, 2);
|
|
double v1 = H(1, 2);
|
|
|
|
//compute the two rotation solutions:
|
|
Mat Ra = Ma.colRange(0, 3).rowRange(0, 3);
|
|
Mat Rb = Mb.colRange(0, 3).rowRange(0, 3);
|
|
computeRotations(j00, j01, j10, j11, v0, v1, Ra, Rb);
|
|
|
|
//for each rotation solution, compute the corresponding translation solution:
|
|
Mat ta = Ma.colRange(3, 4).rowRange(0, 3);
|
|
Mat tb = Mb.colRange(3, 4).rowRange(0, 3);
|
|
computeTranslation(_canonicalObjPoints, _normalizedInputPoints, Ra, ta);
|
|
computeTranslation(_canonicalObjPoints, _normalizedInputPoints, Rb, tb);
|
|
}
|
|
|
|
void PoseSolver::solveSquare(InputArray _objectPoints, InputArray _imagePoints, OutputArray _rvec1, OutputArray _tvec1,
|
|
float& err1, OutputArray _rvec2, OutputArray _tvec2, float& err2)
|
|
{
|
|
//allocate outputs:
|
|
_rvec1.create(3, 1, CV_64FC1);
|
|
_tvec1.create(3, 1, CV_64FC1);
|
|
_rvec2.create(3, 1, CV_64FC1);
|
|
_tvec2.create(3, 1, CV_64FC1);
|
|
|
|
Mat objectPoints2D;
|
|
|
|
//generate the object points:
|
|
objectPoints2D.create(1, 4, CV_64FC2);
|
|
Mat objectPoints = _objectPoints.getMat();
|
|
double squareLength;
|
|
if (objectPoints.depth() == CV_32F)
|
|
{
|
|
objectPoints2D.ptr<Vec2d>(0)[0] = Vec2d(objectPoints.ptr<Vec3f>(0)[0](0), objectPoints.ptr<Vec3f>(0)[0](1));
|
|
objectPoints2D.ptr<Vec2d>(0)[1] = Vec2d(objectPoints.ptr<Vec3f>(0)[1](0), objectPoints.ptr<Vec3f>(0)[1](1));
|
|
objectPoints2D.ptr<Vec2d>(0)[2] = Vec2d(objectPoints.ptr<Vec3f>(0)[2](0), objectPoints.ptr<Vec3f>(0)[2](1));
|
|
objectPoints2D.ptr<Vec2d>(0)[3] = Vec2d(objectPoints.ptr<Vec3f>(0)[3](0), objectPoints.ptr<Vec3f>(0)[3](1));
|
|
|
|
squareLength = sqrt( (objectPoints.ptr<Vec3f>(0)[1](0) - objectPoints.ptr<Vec3f>(0)[0](0))*
|
|
(objectPoints.ptr<Vec3f>(0)[1](0) - objectPoints.ptr<Vec3f>(0)[0](0)) +
|
|
(objectPoints.ptr<Vec3f>(0)[1](1) - objectPoints.ptr<Vec3f>(0)[0](1))*
|
|
(objectPoints.ptr<Vec3f>(0)[1](1) - objectPoints.ptr<Vec3f>(0)[0](1)) );
|
|
}
|
|
else
|
|
{
|
|
objectPoints2D.ptr<Vec2d>(0)[0] = Vec2d(objectPoints.ptr<Vec3d>(0)[0](0), objectPoints.ptr<Vec3d>(0)[0](1));
|
|
objectPoints2D.ptr<Vec2d>(0)[1] = Vec2d(objectPoints.ptr<Vec3d>(0)[1](0), objectPoints.ptr<Vec3d>(0)[1](1));
|
|
objectPoints2D.ptr<Vec2d>(0)[2] = Vec2d(objectPoints.ptr<Vec3d>(0)[2](0), objectPoints.ptr<Vec3d>(0)[2](1));
|
|
objectPoints2D.ptr<Vec2d>(0)[3] = Vec2d(objectPoints.ptr<Vec3d>(0)[3](0), objectPoints.ptr<Vec3d>(0)[3](1));
|
|
|
|
squareLength = sqrt( (objectPoints.ptr<Vec3d>(0)[1](0) - objectPoints.ptr<Vec3d>(0)[0](0))*
|
|
(objectPoints.ptr<Vec3d>(0)[1](0) - objectPoints.ptr<Vec3d>(0)[0](0)) +
|
|
(objectPoints.ptr<Vec3d>(0)[1](1) - objectPoints.ptr<Vec3d>(0)[0](1))*
|
|
(objectPoints.ptr<Vec3d>(0)[1](1) - objectPoints.ptr<Vec3d>(0)[0](1)) );
|
|
}
|
|
|
|
Mat H; //homography from canonical object points to normalized pixels
|
|
|
|
Mat normalizedInputPoints;
|
|
if (_imagePoints.getMat().type() == CV_32FC2)
|
|
{
|
|
_imagePoints.getMat().convertTo(normalizedInputPoints, CV_64F);
|
|
}
|
|
else
|
|
{
|
|
normalizedInputPoints = _imagePoints.getMat();
|
|
}
|
|
|
|
//compute H
|
|
homographyFromSquarePoints(normalizedInputPoints, squareLength / 2.0, H);
|
|
|
|
//now solve
|
|
Mat Ma, Mb;
|
|
solveCanonicalForm(objectPoints2D, normalizedInputPoints, H, Ma, Mb);
|
|
|
|
//sort poses according to reprojection error:
|
|
Mat M1, M2;
|
|
sortPosesByReprojError(_objectPoints, normalizedInputPoints, Ma, Mb, M1, M2, err1, err2);
|
|
|
|
//fill outputs
|
|
rot2vec(M1.colRange(0, 3).rowRange(0, 3), _rvec1);
|
|
rot2vec(M2.colRange(0, 3).rowRange(0, 3), _rvec2);
|
|
|
|
M1.colRange(3, 4).rowRange(0, 3).copyTo(_tvec1);
|
|
M2.colRange(3, 4).rowRange(0, 3).copyTo(_tvec2);
|
|
}
|
|
|
|
void PoseSolver::generateSquareObjectCorners3D(double squareLength, OutputArray _objectPoints)
|
|
{
|
|
_objectPoints.create(1, 4, CV_64FC3);
|
|
Mat objectPoints = _objectPoints.getMat();
|
|
objectPoints.ptr<Vec3d>(0)[0] = Vec3d(-squareLength / 2.0, squareLength / 2.0, 0.0);
|
|
objectPoints.ptr<Vec3d>(0)[1] = Vec3d(squareLength / 2.0, squareLength / 2.0, 0.0);
|
|
objectPoints.ptr<Vec3d>(0)[2] = Vec3d(squareLength / 2.0, -squareLength / 2.0, 0.0);
|
|
objectPoints.ptr<Vec3d>(0)[3] = Vec3d(-squareLength / 2.0, -squareLength / 2.0, 0.0);
|
|
}
|
|
|
|
void PoseSolver::generateSquareObjectCorners2D(double squareLength, OutputArray _objectPoints)
|
|
{
|
|
_objectPoints.create(1, 4, CV_64FC2);
|
|
Mat objectPoints = _objectPoints.getMat();
|
|
objectPoints.ptr<Vec2d>(0)[0] = Vec2d(-squareLength / 2.0, squareLength / 2.0);
|
|
objectPoints.ptr<Vec2d>(0)[1] = Vec2d(squareLength / 2.0, squareLength / 2.0);
|
|
objectPoints.ptr<Vec2d>(0)[2] = Vec2d(squareLength / 2.0, -squareLength / 2.0);
|
|
objectPoints.ptr<Vec2d>(0)[3] = Vec2d(-squareLength / 2.0, -squareLength / 2.0);
|
|
}
|
|
|
|
double PoseSolver::meanSceneDepth(InputArray _objectPoints, InputArray _rvec, InputArray _tvec)
|
|
{
|
|
CV_CheckType(_objectPoints.type(), _objectPoints.type() == CV_64FC3,
|
|
"Type of _objectPoints must be CV_64FC3" );
|
|
|
|
size_t n = static_cast<size_t>(_objectPoints.rows() * _objectPoints.cols());
|
|
Mat R;
|
|
Mat q;
|
|
Rodrigues(_rvec, R);
|
|
double zBar = 0;
|
|
|
|
for (size_t i = 0; i < n; i++)
|
|
{
|
|
Mat p(_objectPoints.getMat().at<Point3d>(static_cast<int>(i)));
|
|
q = R * p + _tvec.getMat();
|
|
double z;
|
|
if (q.depth() == CV_64F)
|
|
{
|
|
z = q.at<double>(2);
|
|
}
|
|
else
|
|
{
|
|
z = static_cast<double>(q.at<float>(2));
|
|
}
|
|
zBar += z;
|
|
}
|
|
return zBar / static_cast<double>(n);
|
|
}
|
|
|
|
void PoseSolver::rot2vec(InputArray _R, OutputArray _r)
|
|
{
|
|
CV_CheckType(_R.type(), _R.type() == CV_64FC1,
|
|
"Type of _R must be CV_64FC1" );
|
|
CV_Assert(_R.rows() == 3);
|
|
CV_Assert(_R.cols() == 3);
|
|
|
|
_r.create(3, 1, CV_64FC1);
|
|
|
|
Mat R = _R.getMat();
|
|
Mat rvec = _r.getMat();
|
|
|
|
double trace = R.at<double>(0, 0) + R.at<double>(1, 1) + R.at<double>(2, 2);
|
|
double w_norm = acos((trace - 1.0) / 2.0);
|
|
double eps = std::numeric_limits<float>::epsilon();
|
|
double d = 1 / (2 * sin(w_norm)) * w_norm;
|
|
if (w_norm < eps) //rotation is the identity
|
|
{
|
|
rvec.setTo(0);
|
|
}
|
|
else
|
|
{
|
|
double c0 = R.at<double>(2, 1) - R.at<double>(1, 2);
|
|
double c1 = R.at<double>(0, 2) - R.at<double>(2, 0);
|
|
double c2 = R.at<double>(1, 0) - R.at<double>(0, 1);
|
|
rvec.at<double>(0) = d * c0;
|
|
rvec.at<double>(1) = d * c1;
|
|
rvec.at<double>(2) = d * c2;
|
|
}
|
|
}
|
|
|
|
void PoseSolver::computeTranslation(InputArray _objectPoints, InputArray _normalizedImgPoints, InputArray _R, OutputArray _t)
|
|
{
|
|
//This is solved by building the linear system At = b, where t corresponds to the (unknown) translation.
|
|
//This is then inverted with the associated normal equations to give t = inv(transpose(A)*A)*transpose(A)*b
|
|
//For efficiency we only store the coefficients of (transpose(A)*A) and (transpose(A)*b)
|
|
|
|
CV_CheckType(_objectPoints.type(), _objectPoints.type() == CV_64FC2,
|
|
"Type of _objectPoints must be CV_64FC2" );
|
|
CV_CheckType(_normalizedImgPoints.type(), _normalizedImgPoints.type() == CV_64FC2,
|
|
"Type of _normalizedImgPoints must be CV_64FC2" );
|
|
CV_CheckType(_R.type(), _R.type() == CV_64FC1,
|
|
"Type of _R must be CV_64FC1" );
|
|
CV_Assert(_R.rows() == 3 && _R.cols() == 3);
|
|
CV_Assert(_objectPoints.rows() == 1 || _objectPoints.cols() == 1);
|
|
CV_Assert(_normalizedImgPoints.rows() == 1 || _normalizedImgPoints.cols() == 1);
|
|
|
|
size_t n = static_cast<size_t>(_normalizedImgPoints.rows() * _normalizedImgPoints.cols());
|
|
CV_Assert(n == static_cast<size_t>(_objectPoints.rows() * _objectPoints.cols()));
|
|
|
|
Mat objectPoints = _objectPoints.getMat();
|
|
Mat imgPoints = _normalizedImgPoints.getMat();
|
|
|
|
_t.create(3, 1, CV_64FC1);
|
|
|
|
Mat R = _R.getMat();
|
|
|
|
//coefficients of (transpose(A)*A)
|
|
double ATA00 = static_cast<double>(n);
|
|
double ATA02 = 0;
|
|
double ATA11 = static_cast<double>(n);
|
|
double ATA12 = 0;
|
|
double ATA20 = 0;
|
|
double ATA21 = 0;
|
|
double ATA22 = 0;
|
|
|
|
//coefficients of (transpose(A)*b)
|
|
double ATb0 = 0;
|
|
double ATb1 = 0;
|
|
double ATb2 = 0;
|
|
|
|
//now loop through each point and increment the coefficients:
|
|
for (int i = 0; i < static_cast<int>(n); i++)
|
|
{
|
|
const Vec2d& objPt = objectPoints.at<Vec2d>(i);
|
|
double rx = R.at<double>(0, 0) * objPt(0) + R.at<double>(0, 1) * objPt(1);
|
|
double ry = R.at<double>(1, 0) * objPt(0) + R.at<double>(1, 1) * objPt(1);
|
|
double rz = R.at<double>(2, 0) * objPt(0) + R.at<double>(2, 1) * objPt(1);
|
|
|
|
const Vec2d& imgPt = imgPoints.at<Vec2d>(i);
|
|
double a2 = -imgPt(0);
|
|
double b2 = -imgPt(1);
|
|
|
|
ATA02 = ATA02 + a2;
|
|
ATA12 = ATA12 + b2;
|
|
ATA20 = ATA20 + a2;
|
|
ATA21 = ATA21 + b2;
|
|
ATA22 = ATA22 + a2 * a2 + b2 * b2;
|
|
|
|
double bx = -a2 * rz - rx;
|
|
double by = -b2 * rz - ry;
|
|
|
|
ATb0 = ATb0 + bx;
|
|
ATb1 = ATb1 + by;
|
|
ATb2 = ATb2 + a2 * bx + b2 * by;
|
|
}
|
|
|
|
double detAInv = 1.0 / (ATA00 * ATA11 * ATA22 - ATA00 * ATA12 * ATA21 - ATA02 * ATA11 * ATA20);
|
|
|
|
//S gives inv(transpose(A)*A)/det(A)^2
|
|
//construct S:
|
|
double S00 = ATA11 * ATA22 - ATA12 * ATA21;
|
|
double S01 = ATA02 * ATA21;
|
|
double S02 = -ATA02 * ATA11;
|
|
double S10 = ATA12 * ATA20;
|
|
double S11 = ATA00 * ATA22 - ATA02 * ATA20;
|
|
double S12 = -ATA00 * ATA12;
|
|
double S20 = -ATA11 * ATA20;
|
|
double S21 = -ATA00 * ATA21;
|
|
double S22 = ATA00 * ATA11;
|
|
|
|
//solve t:
|
|
Mat t = _t.getMat();
|
|
t.at<double>(0) = detAInv * (S00 * ATb0 + S01 * ATb1 + S02 * ATb2);
|
|
t.at<double>(1) = detAInv * (S10 * ATb0 + S11 * ATb1 + S12 * ATb2);
|
|
t.at<double>(2) = detAInv * (S20 * ATb0 + S21 * ATb1 + S22 * ATb2);
|
|
}
|
|
|
|
void PoseSolver::computeRotations(double j00, double j01, double j10, double j11, double p, double q, OutputArray _R1, OutputArray _R2)
|
|
{
|
|
//This is fairly optimized code which makes it hard to understand. The matlab code is certainly easier to read.
|
|
_R1.create(3, 3, CV_64FC1);
|
|
_R2.create(3, 3, CV_64FC1);
|
|
|
|
Matx33d Rv;
|
|
Matx31d v(p, q, 1);
|
|
rotateVec2ZAxis(v,Rv);
|
|
Rv = Rv.t();
|
|
|
|
//setup the 2x2 SVD decomposition:
|
|
double rv00 = Rv(0,0);
|
|
double rv01 = Rv(0,1);
|
|
double rv02 = Rv(0,2);
|
|
|
|
double rv10 = Rv(1,0);
|
|
double rv11 = Rv(1,1);
|
|
double rv12 = Rv(1,2);
|
|
|
|
double rv20 = Rv(2,0);
|
|
double rv21 = Rv(2,1);
|
|
double rv22 = Rv(2,2);
|
|
|
|
double b00 = rv00 - p * rv20;
|
|
double b01 = rv01 - p * rv21;
|
|
double b10 = rv10 - q * rv20;
|
|
double b11 = rv11 - q * rv21;
|
|
|
|
double dtinv = 1.0 / ((b00 * b11 - b01 * b10));
|
|
|
|
double binv00 = dtinv * b11;
|
|
double binv01 = -dtinv * b01;
|
|
double binv10 = -dtinv * b10;
|
|
double binv11 = dtinv * b00;
|
|
|
|
double a00 = binv00 * j00 + binv01 * j10;
|
|
double a01 = binv00 * j01 + binv01 * j11;
|
|
double a10 = binv10 * j00 + binv11 * j10;
|
|
double a11 = binv10 * j01 + binv11 * j11;
|
|
|
|
//compute the largest singular value of A:
|
|
double ata00 = a00 * a00 + a01 * a01;
|
|
double ata01 = a00 * a10 + a01 * a11;
|
|
double ata11 = a10 * a10 + a11 * a11;
|
|
|
|
double gamma2 = 0.5 * (ata00 + ata11 + sqrt((ata00 - ata11) * (ata00 - ata11) + 4.0 * ata01 * ata01));
|
|
if (gamma2 < 0)
|
|
CV_Error(Error::StsNoConv, "gamma2 is negative.");
|
|
|
|
double gamma = sqrt(gamma2);
|
|
|
|
if (std::fabs(gamma) < std::numeric_limits<float>::epsilon())
|
|
CV_Error(Error::StsNoConv, "gamma is zero.");
|
|
|
|
//reconstruct the full rotation matrices:
|
|
double rtilde00 = a00 / gamma;
|
|
double rtilde01 = a01 / gamma;
|
|
double rtilde10 = a10 / gamma;
|
|
double rtilde11 = a11 / gamma;
|
|
|
|
double rtilde00_2 = rtilde00 * rtilde00;
|
|
double rtilde01_2 = rtilde01 * rtilde01;
|
|
double rtilde10_2 = rtilde10 * rtilde10;
|
|
double rtilde11_2 = rtilde11 * rtilde11;
|
|
|
|
double b0 = sqrt(-rtilde00_2 - rtilde10_2 + 1);
|
|
double b1 = sqrt(-rtilde01_2 - rtilde11_2 + 1);
|
|
double sp = (-rtilde00 * rtilde01 - rtilde10 * rtilde11);
|
|
|
|
if (sp < 0)
|
|
{
|
|
b1 = -b1;
|
|
}
|
|
|
|
//store results:
|
|
Mat R1 = _R1.getMat();
|
|
Mat R2 = _R2.getMat();
|
|
|
|
R1.at<double>(0, 0) = (rtilde00)*rv00 + (rtilde10)*rv01 + (b0)*rv02;
|
|
R1.at<double>(0, 1) = (rtilde01)*rv00 + (rtilde11)*rv01 + (b1)*rv02;
|
|
R1.at<double>(0, 2) = (b1 * rtilde10 - b0 * rtilde11) * rv00 + (b0 * rtilde01 - b1 * rtilde00) * rv01 + (rtilde00 * rtilde11 - rtilde01 * rtilde10) * rv02;
|
|
R1.at<double>(1, 0) = (rtilde00)*rv10 + (rtilde10)*rv11 + (b0)*rv12;
|
|
R1.at<double>(1, 1) = (rtilde01)*rv10 + (rtilde11)*rv11 + (b1)*rv12;
|
|
R1.at<double>(1, 2) = (b1 * rtilde10 - b0 * rtilde11) * rv10 + (b0 * rtilde01 - b1 * rtilde00) * rv11 + (rtilde00 * rtilde11 - rtilde01 * rtilde10) * rv12;
|
|
R1.at<double>(2, 0) = (rtilde00)*rv20 + (rtilde10)*rv21 + (b0)*rv22;
|
|
R1.at<double>(2, 1) = (rtilde01)*rv20 + (rtilde11)*rv21 + (b1)*rv22;
|
|
R1.at<double>(2, 2) = (b1 * rtilde10 - b0 * rtilde11) * rv20 + (b0 * rtilde01 - b1 * rtilde00) * rv21 + (rtilde00 * rtilde11 - rtilde01 * rtilde10) * rv22;
|
|
|
|
R2.at<double>(0, 0) = (rtilde00)*rv00 + (rtilde10)*rv01 + (-b0) * rv02;
|
|
R2.at<double>(0, 1) = (rtilde01)*rv00 + (rtilde11)*rv01 + (-b1) * rv02;
|
|
R2.at<double>(0, 2) = (b0 * rtilde11 - b1 * rtilde10) * rv00 + (b1 * rtilde00 - b0 * rtilde01) * rv01 + (rtilde00 * rtilde11 - rtilde01 * rtilde10) * rv02;
|
|
R2.at<double>(1, 0) = (rtilde00)*rv10 + (rtilde10)*rv11 + (-b0) * rv12;
|
|
R2.at<double>(1, 1) = (rtilde01)*rv10 + (rtilde11)*rv11 + (-b1) * rv12;
|
|
R2.at<double>(1, 2) = (b0 * rtilde11 - b1 * rtilde10) * rv10 + (b1 * rtilde00 - b0 * rtilde01) * rv11 + (rtilde00 * rtilde11 - rtilde01 * rtilde10) * rv12;
|
|
R2.at<double>(2, 0) = (rtilde00)*rv20 + (rtilde10)*rv21 + (-b0) * rv22;
|
|
R2.at<double>(2, 1) = (rtilde01)*rv20 + (rtilde11)*rv21 + (-b1) * rv22;
|
|
R2.at<double>(2, 2) = (b0 * rtilde11 - b1 * rtilde10) * rv20 + (b1 * rtilde00 - b0 * rtilde01) * rv21 + (rtilde00 * rtilde11 - rtilde01 * rtilde10) * rv22;
|
|
}
|
|
|
|
void PoseSolver::homographyFromSquarePoints(InputArray _targetPoints, double halfLength, OutputArray H_)
|
|
{
|
|
CV_CheckType(_targetPoints.type(), _targetPoints.type() == CV_32FC2 || _targetPoints.type() == CV_64FC2,
|
|
"Type of _targetPoints must be CV_32FC2 or CV_64FC2" );
|
|
|
|
Mat pts = _targetPoints.getMat();
|
|
|
|
double p1x, p1y;
|
|
double p2x, p2y;
|
|
double p3x, p3y;
|
|
double p4x, p4y;
|
|
|
|
if (_targetPoints.type() == CV_32FC2)
|
|
{
|
|
p1x = -pts.at<Vec2f>(0)(0);
|
|
p1y = -pts.at<Vec2f>(0)(1);
|
|
|
|
p2x = -pts.at<Vec2f>(1)(0);
|
|
p2y = -pts.at<Vec2f>(1)(1);
|
|
|
|
p3x = -pts.at<Vec2f>(2)(0);
|
|
p3y = -pts.at<Vec2f>(2)(1);
|
|
|
|
p4x = -pts.at<Vec2f>(3)(0);
|
|
p4y = -pts.at<Vec2f>(3)(1);
|
|
}
|
|
else
|
|
{
|
|
p1x = -pts.at<Vec2d>(0)(0);
|
|
p1y = -pts.at<Vec2d>(0)(1);
|
|
|
|
p2x = -pts.at<Vec2d>(1)(0);
|
|
p2y = -pts.at<Vec2d>(1)(1);
|
|
|
|
p3x = -pts.at<Vec2d>(2)(0);
|
|
p3y = -pts.at<Vec2d>(2)(1);
|
|
|
|
p4x = -pts.at<Vec2d>(3)(0);
|
|
p4y = -pts.at<Vec2d>(3)(1);
|
|
}
|
|
|
|
//analytic solution:
|
|
double det = (halfLength * (p1x * p2y - p2x * p1y - p1x * p4y + p2x * p3y - p3x * p2y + p4x * p1y + p3x * p4y - p4x * p3y));
|
|
if (abs(det) < 1e-9)
|
|
CV_Error(Error::StsNoConv, "Determinant is zero!");
|
|
double detsInv = -1 / det;
|
|
|
|
Matx33d H;
|
|
H(0, 0) = detsInv * (p1x * p3x * p2y - p2x * p3x * p1y - p1x * p4x * p2y + p2x * p4x * p1y - p1x * p3x * p4y + p1x * p4x * p3y + p2x * p3x * p4y - p2x * p4x * p3y);
|
|
H(0, 1) = detsInv * (p1x * p2x * p3y - p1x * p3x * p2y - p1x * p2x * p4y + p2x * p4x * p1y + p1x * p3x * p4y - p3x * p4x * p1y - p2x * p4x * p3y + p3x * p4x * p2y);
|
|
H(0, 2) = detsInv * halfLength * (p1x * p2x * p3y - p2x * p3x * p1y - p1x * p2x * p4y + p1x * p4x * p2y - p1x * p4x * p3y + p3x * p4x * p1y + p2x * p3x * p4y - p3x * p4x * p2y);
|
|
H(1, 0) = detsInv * (p1x * p2y * p3y - p2x * p1y * p3y - p1x * p2y * p4y + p2x * p1y * p4y - p3x * p1y * p4y + p4x * p1y * p3y + p3x * p2y * p4y - p4x * p2y * p3y);
|
|
H(1, 1) = detsInv * (p2x * p1y * p3y - p3x * p1y * p2y - p1x * p2y * p4y + p4x * p1y * p2y + p1x * p3y * p4y - p4x * p1y * p3y - p2x * p3y * p4y + p3x * p2y * p4y);
|
|
H(1, 2) = detsInv * halfLength * (p1x * p2y * p3y - p3x * p1y * p2y - p2x * p1y * p4y + p4x * p1y * p2y - p1x * p3y * p4y + p3x * p1y * p4y + p2x * p3y * p4y - p4x * p2y * p3y);
|
|
H(2, 0) = -detsInv * (p1x * p3y - p3x * p1y - p1x * p4y - p2x * p3y + p3x * p2y + p4x * p1y + p2x * p4y - p4x * p2y);
|
|
H(2, 1) = detsInv * (p1x * p2y - p2x * p1y - p1x * p3y + p3x * p1y + p2x * p4y - p4x * p2y - p3x * p4y + p4x * p3y);
|
|
H(2, 2) = 1.0;
|
|
|
|
Mat(H, false).copyTo(H_);
|
|
}
|
|
|
|
void PoseSolver::makeCanonicalObjectPoints(InputArray _objectPoints, OutputArray _canonicalObjPoints, OutputArray _MmodelPoints2Canonical)
|
|
{
|
|
int objType = _objectPoints.type();
|
|
CV_CheckType(objType, objType == CV_32FC3 || objType == CV_64FC3,
|
|
"Type of _objectPoints must be CV_32FC3 or CV_64FC3" );
|
|
|
|
int n = _objectPoints.rows() * _objectPoints.cols();
|
|
|
|
_canonicalObjPoints.create(1, n, CV_64FC2);
|
|
|
|
Mat objectPoints = _objectPoints.getMat();
|
|
Mat canonicalObjPoints = _canonicalObjPoints.getMat();
|
|
|
|
Mat UZero(3, n, CV_64FC1);
|
|
|
|
double xBar = 0;
|
|
double yBar = 0;
|
|
double zBar = 0;
|
|
bool isOnZPlane = true;
|
|
for (int i = 0; i < n; i++)
|
|
{
|
|
double x, y, z;
|
|
if (objType == CV_32FC3)
|
|
{
|
|
x = static_cast<double>(objectPoints.at<Vec3f>(i)[0]);
|
|
y = static_cast<double>(objectPoints.at<Vec3f>(i)[1]);
|
|
z = static_cast<double>(objectPoints.at<Vec3f>(i)[2]);
|
|
}
|
|
else
|
|
{
|
|
x = objectPoints.at<Vec3d>(i)[0];
|
|
y = objectPoints.at<Vec3d>(i)[1];
|
|
z = objectPoints.at<Vec3d>(i)[2];
|
|
}
|
|
|
|
if (abs(z) > IPPE_SMALL)
|
|
{
|
|
isOnZPlane = false;
|
|
}
|
|
|
|
xBar += x;
|
|
yBar += y;
|
|
zBar += z;
|
|
|
|
UZero.at<double>(0, i) = x;
|
|
UZero.at<double>(1, i) = y;
|
|
UZero.at<double>(2, i) = z;
|
|
}
|
|
xBar = xBar / static_cast<double>(n);
|
|
yBar = yBar / static_cast<double>(n);
|
|
zBar = zBar / static_cast<double>(n);
|
|
|
|
for (int i = 0; i < n; i++)
|
|
{
|
|
UZero.at<double>(0, i) -= xBar;
|
|
UZero.at<double>(1, i) -= yBar;
|
|
UZero.at<double>(2, i) -= zBar;
|
|
}
|
|
|
|
Matx44d MCenter = Matx44d::eye();
|
|
MCenter(0, 3) = -xBar;
|
|
MCenter(1, 3) = -yBar;
|
|
MCenter(2, 3) = -zBar;
|
|
|
|
if (isOnZPlane)
|
|
{
|
|
//MmodelPoints2Canonical is given by MCenter
|
|
Mat(MCenter, false).copyTo(_MmodelPoints2Canonical);
|
|
for (int i = 0; i < n; i++)
|
|
{
|
|
canonicalObjPoints.at<Vec2d>(i)[0] = UZero.at<double>(0, i);
|
|
canonicalObjPoints.at<Vec2d>(i)[1] = UZero.at<double>(1, i);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
Mat UZeroAligned(3, n, CV_64FC1);
|
|
Matx33d R; //rotation that rotates objectPoints to the plane z=0
|
|
|
|
if (!computeObjextSpaceR3Pts(objectPoints,R))
|
|
{
|
|
//we could not compute R, probably because there is a duplicate point in {objectPoints(0),objectPoints(1),objectPoints(2)}.
|
|
//So we compute it with the SVD (which is slower):
|
|
computeObjextSpaceRSvD(UZero,R);
|
|
}
|
|
|
|
UZeroAligned = R * UZero;
|
|
|
|
for (int i = 0; i < n; i++)
|
|
{
|
|
canonicalObjPoints.at<Vec2d>(i)[0] = UZeroAligned.at<double>(0, i);
|
|
canonicalObjPoints.at<Vec2d>(i)[1] = UZeroAligned.at<double>(1, i);
|
|
if (abs(UZeroAligned.at<double>(2, i)) > IPPE_SMALL)
|
|
CV_Error(Error::StsNoConv, "Cannot transform object points to the plane z=0!");
|
|
}
|
|
|
|
Matx44d MRot = Matx44d::zeros();
|
|
MRot(3, 3) = 1;
|
|
|
|
for (int i = 0; i < 3; i++)
|
|
{
|
|
for (int j = 0; j < 3; j++)
|
|
{
|
|
MRot(i,j) = R(i,j);
|
|
}
|
|
}
|
|
Matx44d Mb = MRot * MCenter;
|
|
Mat(Mb, false).copyTo(_MmodelPoints2Canonical);
|
|
}
|
|
}
|
|
|
|
void PoseSolver::evalReprojError(InputArray _objectPoints, InputArray _imagePoints, InputArray _M, float& err)
|
|
{
|
|
Mat projectedPoints;
|
|
Mat imagePoints = _imagePoints.getMat();
|
|
Mat r;
|
|
rot2vec(_M.getMat().colRange(0, 3).rowRange(0, 3), r);
|
|
|
|
Mat K = Mat::eye(3, 3, CV_64FC1);
|
|
Mat dist;
|
|
projectPoints(_objectPoints, r, _M.getMat().colRange(3, 4).rowRange(0, 3), K, dist, projectedPoints);
|
|
|
|
err = 0;
|
|
int n = _objectPoints.rows() * _objectPoints.cols();
|
|
|
|
float dx, dy;
|
|
const int projPtsDepth = projectedPoints.depth();
|
|
for (int i = 0; i < n; i++)
|
|
{
|
|
if (projPtsDepth == CV_32F)
|
|
{
|
|
dx = projectedPoints.at<Vec2f>(i)[0] - static_cast<float>(imagePoints.at<Vec2d>(i)[0]);
|
|
dy = projectedPoints.at<Vec2f>(i)[1] - static_cast<float>(imagePoints.at<Vec2d>(i)[1]);
|
|
}
|
|
else
|
|
{
|
|
dx = static_cast<float>(projectedPoints.at<Vec2d>(i)[0] - imagePoints.at<Vec2d>(i)[0]);
|
|
dy = static_cast<float>(projectedPoints.at<Vec2d>(i)[1] - imagePoints.at<Vec2d>(i)[1]);
|
|
}
|
|
|
|
err += dx * dx + dy * dy;
|
|
}
|
|
err = sqrt(err / (2.0f * n));
|
|
}
|
|
|
|
void PoseSolver::sortPosesByReprojError(InputArray _objectPoints, InputArray _imagePoints, InputArray _Ma, InputArray _Mb,
|
|
OutputArray _M1, OutputArray _M2, float& err1, float& err2)
|
|
{
|
|
float erra, errb;
|
|
evalReprojError(_objectPoints, _imagePoints, _Ma, erra);
|
|
evalReprojError(_objectPoints, _imagePoints, _Mb, errb);
|
|
if (erra < errb)
|
|
{
|
|
err1 = erra;
|
|
_Ma.copyTo(_M1);
|
|
|
|
err2 = errb;
|
|
_Mb.copyTo(_M2);
|
|
}
|
|
else
|
|
{
|
|
err1 = errb;
|
|
_Mb.copyTo(_M1);
|
|
|
|
err2 = erra;
|
|
_Ma.copyTo(_M2);
|
|
}
|
|
}
|
|
|
|
void PoseSolver::rotateVec2ZAxis(const Matx31d& a, Matx33d& Ra)
|
|
{
|
|
double ax = a(0);
|
|
double ay = a(1);
|
|
double az = a(2);
|
|
|
|
double nrm = sqrt(ax*ax + ay*ay + az*az);
|
|
ax = ax/nrm;
|
|
ay = ay/nrm;
|
|
az = az/nrm;
|
|
|
|
double c = az;
|
|
|
|
if (abs(1.0+c) < std::numeric_limits<float>::epsilon())
|
|
{
|
|
Ra = Matx33d::zeros();
|
|
Ra(0,0) = 1.0;
|
|
Ra(1,1) = 1.0;
|
|
Ra(2,2) = -1.0;
|
|
}
|
|
else
|
|
{
|
|
double d = 1.0/(1.0+c);
|
|
double ax2 = ax*ax;
|
|
double ay2 = ay*ay;
|
|
double axay = ax*ay;
|
|
|
|
Ra(0,0) = -ax2*d + 1.0;
|
|
Ra(0,1) = -axay*d;
|
|
Ra(0,2) = -ax;
|
|
|
|
Ra(1,0) = -axay*d;
|
|
Ra(1,1) = -ay2*d + 1.0;
|
|
Ra(1,2) = -ay;
|
|
|
|
Ra(2,0) = ax;
|
|
Ra(2,1) = ay;
|
|
Ra(2,2) = 1.0 - (ax2 + ay2)*d;
|
|
}
|
|
}
|
|
|
|
bool PoseSolver::computeObjextSpaceR3Pts(InputArray _objectPoints, Matx33d& R)
|
|
{
|
|
bool ret; //return argument
|
|
double p1x,p1y,p1z;
|
|
double p2x,p2y,p2z;
|
|
double p3x,p3y,p3z;
|
|
|
|
Mat objectPoints = _objectPoints.getMat();
|
|
if (objectPoints.type() == CV_32FC3)
|
|
{
|
|
p1x = objectPoints.at<Vec3f>(0)[0];
|
|
p1y = objectPoints.at<Vec3f>(0)[1];
|
|
p1z = objectPoints.at<Vec3f>(0)[2];
|
|
|
|
p2x = objectPoints.at<Vec3f>(1)[0];
|
|
p2y = objectPoints.at<Vec3f>(1)[1];
|
|
p2z = objectPoints.at<Vec3f>(1)[2];
|
|
|
|
p3x = objectPoints.at<Vec3f>(2)[0];
|
|
p3y = objectPoints.at<Vec3f>(2)[1];
|
|
p3z = objectPoints.at<Vec3f>(2)[2];
|
|
}
|
|
else
|
|
{
|
|
p1x = objectPoints.at<Vec3d>(0)[0];
|
|
p1y = objectPoints.at<Vec3d>(0)[1];
|
|
p1z = objectPoints.at<Vec3d>(0)[2];
|
|
|
|
p2x = objectPoints.at<Vec3d>(1)[0];
|
|
p2y = objectPoints.at<Vec3d>(1)[1];
|
|
p2z = objectPoints.at<Vec3d>(1)[2];
|
|
|
|
p3x = objectPoints.at<Vec3d>(2)[0];
|
|
p3y = objectPoints.at<Vec3d>(2)[1];
|
|
p3z = objectPoints.at<Vec3d>(2)[2];
|
|
}
|
|
|
|
double nx = (p1y - p2y)*(p1z - p3z) - (p1y - p3y)*(p1z - p2z);
|
|
double ny = (p1x - p3x)*(p1z - p2z) - (p1x - p2x)*(p1z - p3z);
|
|
double nz = (p1x - p2x)*(p1y - p3y) - (p1x - p3x)*(p1y - p2y);
|
|
|
|
double nrm = sqrt(nx*nx+ ny*ny + nz*nz);
|
|
if (nrm > IPPE_SMALL)
|
|
{
|
|
nx = nx/nrm;
|
|
ny = ny/nrm;
|
|
nz = nz/nrm;
|
|
Matx31d v(nx, ny, nz);
|
|
rotateVec2ZAxis(v,R);
|
|
ret = true;
|
|
}
|
|
else
|
|
{
|
|
ret = false;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
void PoseSolver::computeObjextSpaceRSvD(InputArray _objectPointsZeroMean, OutputArray _R)
|
|
{
|
|
_R.create(3, 3, CV_64FC1);
|
|
Mat R = _R.getMat();
|
|
|
|
//we could not compute R with the first three points, so lets use the SVD
|
|
SVD s;
|
|
Mat W, U, VT;
|
|
s.compute(_objectPointsZeroMean.getMat() * _objectPointsZeroMean.getMat().t(), W, U, VT);
|
|
double s3 = W.at<double>(2);
|
|
double s2 = W.at<double>(1);
|
|
|
|
//check if points are coplanar:
|
|
CV_Assert(s3 / s2 < IPPE_SMALL);
|
|
|
|
R = U.t();
|
|
if (determinant(R) < 0)
|
|
{
|
|
//this ensures R is a rotation matrix and not a general unitary matrix:
|
|
R.at<double>(2, 0) = -R.at<double>(2, 0);
|
|
R.at<double>(2, 1) = -R.at<double>(2, 1);
|
|
R.at<double>(2, 2) = -R.at<double>(2, 2);
|
|
}
|
|
}
|
|
} //namespace IPPE
|
|
|
|
namespace HomographyHO {
|
|
void normalizeDataIsotropic(InputArray _Data, OutputArray _DataN, OutputArray _T, OutputArray _Ti)
|
|
{
|
|
Mat Data = _Data.getMat();
|
|
int numPoints = Data.rows * Data.cols;
|
|
CV_Assert(Data.rows == 1 || Data.cols == 1);
|
|
CV_Assert(Data.channels() == 2 || Data.channels() == 3);
|
|
CV_Assert(numPoints >= 4);
|
|
|
|
int dataType = _Data.type();
|
|
CV_CheckType(dataType, dataType == CV_32FC2 || dataType == CV_32FC3 || dataType == CV_64FC2 || dataType == CV_64FC3,
|
|
"Type of _Data must be one of CV_32FC2, CV_32FC3, CV_64FC2, CV_64FC3");
|
|
|
|
_DataN.create(2, numPoints, CV_64FC1);
|
|
|
|
_T.create(3, 3, CV_64FC1);
|
|
_Ti.create(3, 3, CV_64FC1);
|
|
|
|
Mat DataN = _DataN.getMat();
|
|
Mat T = _T.getMat();
|
|
Mat Ti = _Ti.getMat();
|
|
|
|
_T.setTo(0);
|
|
_Ti.setTo(0);
|
|
|
|
int numChannels = Data.channels();
|
|
double xm = 0;
|
|
double ym = 0;
|
|
for (int i = 0; i < numPoints; i++)
|
|
{
|
|
if (numChannels == 2)
|
|
{
|
|
if (dataType == CV_32FC2)
|
|
{
|
|
xm = xm + Data.at<Vec2f>(i)[0];
|
|
ym = ym + Data.at<Vec2f>(i)[1];
|
|
}
|
|
else
|
|
{
|
|
xm = xm + Data.at<Vec2d>(i)[0];
|
|
ym = ym + Data.at<Vec2d>(i)[1];
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (dataType == CV_32FC3)
|
|
{
|
|
xm = xm + Data.at<Vec3f>(i)[0];
|
|
ym = ym + Data.at<Vec3f>(i)[1];
|
|
}
|
|
else
|
|
{
|
|
xm = xm + Data.at<Vec3d>(i)[0];
|
|
ym = ym + Data.at<Vec3d>(i)[1];
|
|
}
|
|
}
|
|
}
|
|
xm = xm / static_cast<double>(numPoints);
|
|
ym = ym / static_cast<double>(numPoints);
|
|
|
|
double kappa = 0;
|
|
double xh, yh;
|
|
|
|
for (int i = 0; i < numPoints; i++)
|
|
{
|
|
|
|
if (numChannels == 2)
|
|
{
|
|
if (dataType == CV_32FC2)
|
|
{
|
|
xh = Data.at<Vec2f>(i)[0] - xm;
|
|
yh = Data.at<Vec2f>(i)[1] - ym;
|
|
}
|
|
else
|
|
{
|
|
xh = Data.at<Vec2d>(i)[0] - xm;
|
|
yh = Data.at<Vec2d>(i)[1] - ym;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (dataType == CV_32FC3)
|
|
{
|
|
xh = Data.at<Vec3f>(i)[0] - xm;
|
|
yh = Data.at<Vec3f>(i)[1] - ym;
|
|
}
|
|
else
|
|
{
|
|
xh = Data.at<Vec3d>(i)[0] - xm;
|
|
yh = Data.at<Vec3d>(i)[1] - ym;
|
|
}
|
|
}
|
|
|
|
DataN.at<double>(0, i) = xh;
|
|
DataN.at<double>(1, i) = yh;
|
|
kappa = kappa + xh * xh + yh * yh;
|
|
}
|
|
double beta = sqrt(2 * numPoints / kappa);
|
|
DataN = DataN * beta;
|
|
|
|
T.at<double>(0, 0) = 1.0 / beta;
|
|
T.at<double>(1, 1) = 1.0 / beta;
|
|
|
|
T.at<double>(0, 2) = xm;
|
|
T.at<double>(1, 2) = ym;
|
|
|
|
T.at<double>(2, 2) = 1;
|
|
|
|
Ti.at<double>(0, 0) = beta;
|
|
Ti.at<double>(1, 1) = beta;
|
|
|
|
Ti.at<double>(0, 2) = -beta * xm;
|
|
Ti.at<double>(1, 2) = -beta * ym;
|
|
|
|
Ti.at<double>(2, 2) = 1;
|
|
}
|
|
|
|
void homographyHO(InputArray _srcPoints, InputArray _targPoints, Matx33d& H)
|
|
{
|
|
Mat DataA, DataB, TA, TAi, TB, TBi;
|
|
|
|
HomographyHO::normalizeDataIsotropic(_srcPoints, DataA, TA, TAi);
|
|
HomographyHO::normalizeDataIsotropic(_targPoints, DataB, TB, TBi);
|
|
|
|
int n = DataA.cols;
|
|
CV_Assert(n == DataB.cols);
|
|
|
|
Mat C1(1, n, CV_64FC1);
|
|
Mat C2(1, n, CV_64FC1);
|
|
Mat C3(1, n, CV_64FC1);
|
|
Mat C4(1, n, CV_64FC1);
|
|
|
|
double mC1 = 0, mC2 = 0, mC3 = 0, mC4 = 0;
|
|
|
|
for (int i = 0; i < n; i++)
|
|
{
|
|
C1.at<double>(0, i) = -DataB.at<double>(0, i) * DataA.at<double>(0, i);
|
|
C2.at<double>(0, i) = -DataB.at<double>(0, i) * DataA.at<double>(1, i);
|
|
C3.at<double>(0, i) = -DataB.at<double>(1, i) * DataA.at<double>(0, i);
|
|
C4.at<double>(0, i) = -DataB.at<double>(1, i) * DataA.at<double>(1, i);
|
|
|
|
mC1 += C1.at<double>(0, i);
|
|
mC2 += C2.at<double>(0, i);
|
|
mC3 += C3.at<double>(0, i);
|
|
mC4 += C4.at<double>(0, i);
|
|
}
|
|
|
|
mC1 /= n;
|
|
mC2 /= n;
|
|
mC3 /= n;
|
|
mC4 /= n;
|
|
|
|
Mat Mx(n, 3, CV_64FC1);
|
|
Mat My(n, 3, CV_64FC1);
|
|
|
|
for (int i = 0; i < n; i++)
|
|
{
|
|
Mx.at<double>(i, 0) = C1.at<double>(0, i) - mC1;
|
|
Mx.at<double>(i, 1) = C2.at<double>(0, i) - mC2;
|
|
Mx.at<double>(i, 2) = -DataB.at<double>(0, i);
|
|
|
|
My.at<double>(i, 0) = C3.at<double>(0, i) - mC3;
|
|
My.at<double>(i, 1) = C4.at<double>(0, i) - mC4;
|
|
My.at<double>(i, 2) = -DataB.at<double>(1, i);
|
|
}
|
|
|
|
Mat DataAT, DataADataAT;
|
|
|
|
transpose(DataA, DataAT);
|
|
DataADataAT = DataA * DataAT;
|
|
double dt = DataADataAT.at<double>(0, 0) * DataADataAT.at<double>(1, 1) - DataADataAT.at<double>(0, 1) * DataADataAT.at<double>(1, 0);
|
|
|
|
Mat DataADataATi(2, 2, CV_64FC1);
|
|
DataADataATi.at<double>(0, 0) = DataADataAT.at<double>(1, 1) / dt;
|
|
DataADataATi.at<double>(0, 1) = -DataADataAT.at<double>(0, 1) / dt;
|
|
DataADataATi.at<double>(1, 0) = -DataADataAT.at<double>(1, 0) / dt;
|
|
DataADataATi.at<double>(1, 1) = DataADataAT.at<double>(0, 0) / dt;
|
|
|
|
Mat Pp = DataADataATi * DataA;
|
|
|
|
Mat Bx = Pp * Mx;
|
|
Mat By = Pp * My;
|
|
|
|
Mat Ex = DataAT * Bx;
|
|
Mat Ey = DataAT * By;
|
|
|
|
Mat D(2 * n, 3, CV_64FC1);
|
|
|
|
for (int i = 0; i < n; i++)
|
|
{
|
|
D.at<double>(i, 0) = Mx.at<double>(i, 0) - Ex.at<double>(i, 0);
|
|
D.at<double>(i, 1) = Mx.at<double>(i, 1) - Ex.at<double>(i, 1);
|
|
D.at<double>(i, 2) = Mx.at<double>(i, 2) - Ex.at<double>(i, 2);
|
|
|
|
D.at<double>(i + n, 0) = My.at<double>(i, 0) - Ey.at<double>(i, 0);
|
|
D.at<double>(i + n, 1) = My.at<double>(i, 1) - Ey.at<double>(i, 1);
|
|
D.at<double>(i + n, 2) = My.at<double>(i, 2) - Ey.at<double>(i, 2);
|
|
}
|
|
|
|
Mat DT, DDT;
|
|
transpose(D, DT);
|
|
DDT = DT * D;
|
|
|
|
Mat S, U;
|
|
eigen(DDT, S, U);
|
|
|
|
Mat h789(3, 1, CV_64FC1);
|
|
h789.at<double>(0, 0) = U.at<double>(2, 0);
|
|
h789.at<double>(1, 0) = U.at<double>(2, 1);
|
|
h789.at<double>(2, 0) = U.at<double>(2, 2);
|
|
|
|
Mat h12 = -Bx * h789;
|
|
Mat h45 = -By * h789;
|
|
|
|
double h3 = -(mC1 * h789.at<double>(0, 0) + mC2 * h789.at<double>(1, 0));
|
|
double h6 = -(mC3 * h789.at<double>(0, 0) + mC4 * h789.at<double>(1, 0));
|
|
|
|
H(0, 0) = h12.at<double>(0, 0);
|
|
H(0, 1) = h12.at<double>(1, 0);
|
|
H(0, 2) = h3;
|
|
|
|
H(1, 0) = h45.at<double>(0, 0);
|
|
H(1, 1) = h45.at<double>(1, 0);
|
|
H(1, 2) = h6;
|
|
|
|
H(2, 0) = h789.at<double>(0, 0);
|
|
H(2, 1) = h789.at<double>(1, 0);
|
|
H(2, 2) = h789.at<double>(2, 0);
|
|
|
|
H = Mat(TB * H * TAi);
|
|
double h22_inv = 1 / H(2, 2);
|
|
H = H * h22_inv;
|
|
}
|
|
}
|
|
} //namespace cv
|