opencv/modules/core/src/ocl.cpp
2017-08-09 11:54:55 +03:00

5000 lines
153 KiB
C++

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the OpenCV Foundation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#include <list>
#include <map>
#include <deque>
#include <string>
#include <sstream>
#include <iostream> // std::cerr
#if !(defined _MSC_VER) || (defined _MSC_VER && _MSC_VER > 1700)
#include <inttypes.h>
#endif
#include "opencv2/core/ocl_genbase.hpp"
#define CV_OPENCL_ALWAYS_SHOW_BUILD_LOG 0
#define CV_OPENCL_SHOW_RUN_ERRORS 0
#define CV_OPENCL_SHOW_SVM_ERROR_LOG 1
#define CV_OPENCL_SHOW_SVM_LOG 0
#include "opencv2/core/bufferpool.hpp"
#ifndef LOG_BUFFER_POOL
# if 0
# define LOG_BUFFER_POOL printf
# else
# define LOG_BUFFER_POOL(...)
# endif
#endif
#if CV_OPENCL_SHOW_SVM_LOG
// TODO add timestamp logging
#define CV_OPENCL_SVM_TRACE_P printf("line %d (ocl.cpp): ", __LINE__); printf
#else
#define CV_OPENCL_SVM_TRACE_P(...)
#endif
#if CV_OPENCL_SHOW_SVM_ERROR_LOG
// TODO add timestamp logging
#define CV_OPENCL_SVM_TRACE_ERROR_P printf("Error on line %d (ocl.cpp): ", __LINE__); printf
#else
#define CV_OPENCL_SVM_TRACE_ERROR_P(...)
#endif
#include "opencv2/core/opencl/runtime/opencl_clamdblas.hpp"
#include "opencv2/core/opencl/runtime/opencl_clamdfft.hpp"
#ifdef HAVE_OPENCL
#include "opencv2/core/opencl/runtime/opencl_core.hpp"
#else
// TODO FIXIT: This file can't be build without OPENCL
#include "ocl_deprecated.hpp"
#endif // HAVE_OPENCL
#ifdef _DEBUG
#define CV_OclDbgAssert CV_DbgAssert
#else
static bool isRaiseError()
{
static bool initialized = false;
static bool value = false;
if (!initialized)
{
value = cv::utils::getConfigurationParameterBool("OPENCV_OPENCL_RAISE_ERROR", false);
initialized = true;
}
return value;
}
#define CV_OclDbgAssert(expr) do { if (isRaiseError()) { CV_Assert(expr); } else { (void)(expr); } } while ((void)0, 0)
#endif
#ifdef HAVE_OPENCL_SVM
#include "opencv2/core/opencl/runtime/opencl_svm_20.hpp"
#include "opencv2/core/opencl/runtime/opencl_svm_hsa_extension.hpp"
#include "opencv2/core/opencl/opencl_svm.hpp"
#endif
namespace cv { namespace ocl {
struct UMat2D
{
UMat2D(const UMat& m)
{
offset = (int)m.offset;
step = (int)m.step;
rows = m.rows;
cols = m.cols;
}
int offset;
int step;
int rows;
int cols;
};
struct UMat3D
{
UMat3D(const UMat& m)
{
offset = (int)m.offset;
step = (int)m.step.p[1];
slicestep = (int)m.step.p[0];
slices = (int)m.size.p[0];
rows = m.size.p[1];
cols = m.size.p[2];
}
int offset;
int slicestep;
int step;
int slices;
int rows;
int cols;
};
// Computes 64-bit "cyclic redundancy check" sum, as specified in ECMA-182
static uint64 crc64( const uchar* data, size_t size, uint64 crc0=0 )
{
static uint64 table[256];
static bool initialized = false;
if( !initialized )
{
for( int i = 0; i < 256; i++ )
{
uint64 c = i;
for( int j = 0; j < 8; j++ )
c = ((c & 1) ? CV_BIG_UINT(0xc96c5795d7870f42) : 0) ^ (c >> 1);
table[i] = c;
}
initialized = true;
}
uint64 crc = ~crc0;
for( size_t idx = 0; idx < size; idx++ )
crc = table[(uchar)crc ^ data[idx]] ^ (crc >> 8);
return ~crc;
}
bool haveOpenCL()
{
#ifdef HAVE_OPENCL
static bool g_isOpenCLInitialized = false;
static bool g_isOpenCLAvailable = false;
if (!g_isOpenCLInitialized)
{
try
{
cl_uint n = 0;
g_isOpenCLAvailable = ::clGetPlatformIDs(0, NULL, &n) == CL_SUCCESS;
}
catch (...)
{
g_isOpenCLAvailable = false;
}
g_isOpenCLInitialized = true;
}
return g_isOpenCLAvailable;
#else
return false;
#endif
}
bool useOpenCL()
{
CoreTLSData* data = getCoreTlsData().get();
if( data->useOpenCL < 0 )
{
try
{
data->useOpenCL = (int)haveOpenCL() && Device::getDefault().ptr() && Device::getDefault().available();
}
catch (...)
{
data->useOpenCL = 0;
}
}
return data->useOpenCL > 0;
}
void setUseOpenCL(bool flag)
{
if( haveOpenCL() )
{
CoreTLSData* data = getCoreTlsData().get();
data->useOpenCL = (flag && Device::getDefault().ptr() != NULL) ? 1 : 0;
}
}
#ifdef HAVE_CLAMDBLAS
class AmdBlasHelper
{
public:
static AmdBlasHelper & getInstance()
{
CV_SINGLETON_LAZY_INIT_REF(AmdBlasHelper, new AmdBlasHelper())
}
bool isAvailable() const
{
return g_isAmdBlasAvailable;
}
~AmdBlasHelper()
{
try
{
clAmdBlasTeardown();
}
catch (...) { }
}
protected:
AmdBlasHelper()
{
if (!g_isAmdBlasInitialized)
{
AutoLock lock(getInitializationMutex());
if (!g_isAmdBlasInitialized)
{
if (haveOpenCL())
{
try
{
g_isAmdBlasAvailable = clAmdBlasSetup() == clAmdBlasSuccess;
}
catch (...)
{
g_isAmdBlasAvailable = false;
}
}
else
g_isAmdBlasAvailable = false;
g_isAmdBlasInitialized = true;
}
}
}
private:
static bool g_isAmdBlasInitialized;
static bool g_isAmdBlasAvailable;
};
bool AmdBlasHelper::g_isAmdBlasAvailable = false;
bool AmdBlasHelper::g_isAmdBlasInitialized = false;
bool haveAmdBlas()
{
return AmdBlasHelper::getInstance().isAvailable();
}
#else
bool haveAmdBlas()
{
return false;
}
#endif
#ifdef HAVE_CLAMDFFT
class AmdFftHelper
{
public:
static AmdFftHelper & getInstance()
{
CV_SINGLETON_LAZY_INIT_REF(AmdFftHelper, new AmdFftHelper())
}
bool isAvailable() const
{
return g_isAmdFftAvailable;
}
~AmdFftHelper()
{
try
{
// clAmdFftTeardown();
}
catch (...) { }
}
protected:
AmdFftHelper()
{
if (!g_isAmdFftInitialized)
{
AutoLock lock(getInitializationMutex());
if (!g_isAmdFftInitialized)
{
if (haveOpenCL())
{
try
{
cl_uint major, minor, patch;
CV_Assert(clAmdFftInitSetupData(&setupData) == CLFFT_SUCCESS);
// it throws exception in case AmdFft binaries are not found
CV_Assert(clAmdFftGetVersion(&major, &minor, &patch) == CLFFT_SUCCESS);
g_isAmdFftAvailable = true;
}
catch (const Exception &)
{
g_isAmdFftAvailable = false;
}
}
else
g_isAmdFftAvailable = false;
g_isAmdFftInitialized = true;
}
}
}
private:
static clAmdFftSetupData setupData;
static bool g_isAmdFftInitialized;
static bool g_isAmdFftAvailable;
};
clAmdFftSetupData AmdFftHelper::setupData;
bool AmdFftHelper::g_isAmdFftAvailable = false;
bool AmdFftHelper::g_isAmdFftInitialized = false;
bool haveAmdFft()
{
return AmdFftHelper::getInstance().isAvailable();
}
#else
bool haveAmdFft()
{
return false;
}
#endif
bool haveSVM()
{
#ifdef HAVE_OPENCL_SVM
return true;
#else
return false;
#endif
}
void finish()
{
Queue::getDefault().finish();
}
#define IMPLEMENT_REFCOUNTABLE() \
void addref() { CV_XADD(&refcount, 1); } \
void release() { if( CV_XADD(&refcount, -1) == 1 && !cv::__termination) delete this; } \
int refcount
/////////////////////////////////////////// Platform /////////////////////////////////////////////
struct Platform::Impl
{
Impl()
{
refcount = 1;
handle = 0;
initialized = false;
}
~Impl() {}
void init()
{
if( !initialized )
{
//cl_uint num_entries
cl_uint n = 0;
if( clGetPlatformIDs(1, &handle, &n) != CL_SUCCESS || n == 0 )
handle = 0;
if( handle != 0 )
{
char buf[1000];
size_t len = 0;
CV_OclDbgAssert(clGetPlatformInfo(handle, CL_PLATFORM_VENDOR, sizeof(buf), buf, &len) == CL_SUCCESS);
buf[len] = '\0';
vendor = String(buf);
}
initialized = true;
}
}
IMPLEMENT_REFCOUNTABLE();
cl_platform_id handle;
String vendor;
bool initialized;
};
Platform::Platform()
{
p = 0;
}
Platform::~Platform()
{
if(p)
p->release();
}
Platform::Platform(const Platform& pl)
{
p = (Impl*)pl.p;
if(p)
p->addref();
}
Platform& Platform::operator = (const Platform& pl)
{
Impl* newp = (Impl*)pl.p;
if(newp)
newp->addref();
if(p)
p->release();
p = newp;
return *this;
}
void* Platform::ptr() const
{
return p ? p->handle : 0;
}
Platform& Platform::getDefault()
{
static Platform p;
if( !p.p )
{
p.p = new Impl;
p.p->init();
}
return p;
}
/////////////////////////////////////// Device ////////////////////////////////////////////
// deviceVersion has format
// OpenCL<space><major_version.minor_version><space><vendor-specific information>
// by specification
// http://www.khronos.org/registry/cl/sdk/1.1/docs/man/xhtml/clGetDeviceInfo.html
// http://www.khronos.org/registry/cl/sdk/1.2/docs/man/xhtml/clGetDeviceInfo.html
static void parseDeviceVersion(const String &deviceVersion, int &major, int &minor)
{
major = minor = 0;
if (10 >= deviceVersion.length())
return;
const char *pstr = deviceVersion.c_str();
if (0 != strncmp(pstr, "OpenCL ", 7))
return;
size_t ppos = deviceVersion.find('.', 7);
if (String::npos == ppos)
return;
String temp = deviceVersion.substr(7, ppos - 7);
major = atoi(temp.c_str());
temp = deviceVersion.substr(ppos + 1);
minor = atoi(temp.c_str());
}
struct Device::Impl
{
Impl(void* d)
{
handle = (cl_device_id)d;
refcount = 1;
name_ = getStrProp(CL_DEVICE_NAME);
version_ = getStrProp(CL_DEVICE_VERSION);
doubleFPConfig_ = getProp<cl_device_fp_config, int>(CL_DEVICE_DOUBLE_FP_CONFIG);
hostUnifiedMemory_ = getBoolProp(CL_DEVICE_HOST_UNIFIED_MEMORY);
maxComputeUnits_ = getProp<cl_uint, int>(CL_DEVICE_MAX_COMPUTE_UNITS);
maxWorkGroupSize_ = getProp<size_t, size_t>(CL_DEVICE_MAX_WORK_GROUP_SIZE);
type_ = getProp<cl_device_type, int>(CL_DEVICE_TYPE);
driverVersion_ = getStrProp(CL_DRIVER_VERSION);
String deviceVersion_ = getStrProp(CL_DEVICE_VERSION);
parseDeviceVersion(deviceVersion_, deviceVersionMajor_, deviceVersionMinor_);
intelSubgroupsSupport_ = isExtensionSupported("cl_intel_subgroups");
vendorName_ = getStrProp(CL_DEVICE_VENDOR);
if (vendorName_ == "Advanced Micro Devices, Inc." ||
vendorName_ == "AMD")
vendorID_ = VENDOR_AMD;
else if (vendorName_ == "Intel(R) Corporation" || vendorName_ == "Intel" || strstr(name_.c_str(), "Iris") != 0)
vendorID_ = VENDOR_INTEL;
else if (vendorName_ == "NVIDIA Corporation")
vendorID_ = VENDOR_NVIDIA;
else
vendorID_ = UNKNOWN_VENDOR;
}
template<typename _TpCL, typename _TpOut>
_TpOut getProp(cl_device_info prop) const
{
_TpCL temp=_TpCL();
size_t sz = 0;
return clGetDeviceInfo(handle, prop, sizeof(temp), &temp, &sz) == CL_SUCCESS &&
sz == sizeof(temp) ? _TpOut(temp) : _TpOut();
}
bool getBoolProp(cl_device_info prop) const
{
cl_bool temp = CL_FALSE;
size_t sz = 0;
return clGetDeviceInfo(handle, prop, sizeof(temp), &temp, &sz) == CL_SUCCESS &&
sz == sizeof(temp) ? temp != 0 : false;
}
String getStrProp(cl_device_info prop) const
{
char buf[1024];
size_t sz=0;
return clGetDeviceInfo(handle, prop, sizeof(buf)-16, buf, &sz) == CL_SUCCESS &&
sz < sizeof(buf) ? String(buf) : String();
}
bool isExtensionSupported(const String& extensionName) const
{
bool ret = false;
size_t pos = getStrProp(CL_DEVICE_EXTENSIONS).find(extensionName);
if (pos != String::npos)
{
ret = true;
}
return ret;
}
IMPLEMENT_REFCOUNTABLE();
cl_device_id handle;
String name_;
String version_;
int doubleFPConfig_;
bool hostUnifiedMemory_;
int maxComputeUnits_;
size_t maxWorkGroupSize_;
int type_;
int deviceVersionMajor_;
int deviceVersionMinor_;
String driverVersion_;
String vendorName_;
int vendorID_;
bool intelSubgroupsSupport_;
};
Device::Device()
{
p = 0;
}
Device::Device(void* d)
{
p = 0;
set(d);
}
Device::Device(const Device& d)
{
p = d.p;
if(p)
p->addref();
}
Device& Device::operator = (const Device& d)
{
Impl* newp = (Impl*)d.p;
if(newp)
newp->addref();
if(p)
p->release();
p = newp;
return *this;
}
Device::~Device()
{
if(p)
p->release();
}
void Device::set(void* d)
{
if(p)
p->release();
p = new Impl(d);
}
void* Device::ptr() const
{
return p ? p->handle : 0;
}
String Device::name() const
{ return p ? p->name_ : String(); }
String Device::extensions() const
{ return p ? p->getStrProp(CL_DEVICE_EXTENSIONS) : String(); }
String Device::version() const
{ return p ? p->version_ : String(); }
String Device::vendorName() const
{ return p ? p->vendorName_ : String(); }
int Device::vendorID() const
{ return p ? p->vendorID_ : 0; }
String Device::OpenCL_C_Version() const
{ return p ? p->getStrProp(CL_DEVICE_OPENCL_C_VERSION) : String(); }
String Device::OpenCLVersion() const
{ return p ? p->getStrProp(CL_DEVICE_VERSION) : String(); }
int Device::deviceVersionMajor() const
{ return p ? p->deviceVersionMajor_ : 0; }
int Device::deviceVersionMinor() const
{ return p ? p->deviceVersionMinor_ : 0; }
String Device::driverVersion() const
{ return p ? p->driverVersion_ : String(); }
int Device::type() const
{ return p ? p->type_ : 0; }
int Device::addressBits() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_ADDRESS_BITS) : 0; }
bool Device::available() const
{ return p ? p->getBoolProp(CL_DEVICE_AVAILABLE) : false; }
bool Device::compilerAvailable() const
{ return p ? p->getBoolProp(CL_DEVICE_COMPILER_AVAILABLE) : false; }
bool Device::linkerAvailable() const
#ifdef CL_VERSION_1_2
{ return p ? p->getBoolProp(CL_DEVICE_LINKER_AVAILABLE) : false; }
#else
{ CV_REQUIRE_OPENCL_1_2_ERROR; }
#endif
int Device::doubleFPConfig() const
{ return p ? p->doubleFPConfig_ : 0; }
int Device::singleFPConfig() const
{ return p ? p->getProp<cl_device_fp_config, int>(CL_DEVICE_SINGLE_FP_CONFIG) : 0; }
int Device::halfFPConfig() const
#ifdef CL_VERSION_1_2
{ return p ? p->getProp<cl_device_fp_config, int>(CL_DEVICE_HALF_FP_CONFIG) : 0; }
#else
{ CV_REQUIRE_OPENCL_1_2_ERROR; }
#endif
bool Device::endianLittle() const
{ return p ? p->getBoolProp(CL_DEVICE_ENDIAN_LITTLE) : false; }
bool Device::errorCorrectionSupport() const
{ return p ? p->getBoolProp(CL_DEVICE_ERROR_CORRECTION_SUPPORT) : false; }
int Device::executionCapabilities() const
{ return p ? p->getProp<cl_device_exec_capabilities, int>(CL_DEVICE_EXECUTION_CAPABILITIES) : 0; }
size_t Device::globalMemCacheSize() const
{ return p ? p->getProp<cl_ulong, size_t>(CL_DEVICE_GLOBAL_MEM_CACHE_SIZE) : 0; }
int Device::globalMemCacheType() const
{ return p ? p->getProp<cl_device_mem_cache_type, int>(CL_DEVICE_GLOBAL_MEM_CACHE_TYPE) : 0; }
int Device::globalMemCacheLineSize() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_GLOBAL_MEM_CACHELINE_SIZE) : 0; }
size_t Device::globalMemSize() const
{ return p ? p->getProp<cl_ulong, size_t>(CL_DEVICE_GLOBAL_MEM_SIZE) : 0; }
size_t Device::localMemSize() const
{ return p ? p->getProp<cl_ulong, size_t>(CL_DEVICE_LOCAL_MEM_SIZE) : 0; }
int Device::localMemType() const
{ return p ? p->getProp<cl_device_local_mem_type, int>(CL_DEVICE_LOCAL_MEM_TYPE) : 0; }
bool Device::hostUnifiedMemory() const
{ return p ? p->hostUnifiedMemory_ : false; }
bool Device::imageSupport() const
{ return p ? p->getBoolProp(CL_DEVICE_IMAGE_SUPPORT) : false; }
bool Device::imageFromBufferSupport() const
{
bool ret = false;
if (p)
{
size_t pos = p->getStrProp(CL_DEVICE_EXTENSIONS).find("cl_khr_image2d_from_buffer");
if (pos != String::npos)
{
ret = true;
}
}
return ret;
}
uint Device::imagePitchAlignment() const
{
#ifdef CL_DEVICE_IMAGE_PITCH_ALIGNMENT
return p ? p->getProp<cl_uint, uint>(CL_DEVICE_IMAGE_PITCH_ALIGNMENT) : 0;
#else
return 0;
#endif
}
uint Device::imageBaseAddressAlignment() const
{
#ifdef CL_DEVICE_IMAGE_BASE_ADDRESS_ALIGNMENT
return p ? p->getProp<cl_uint, uint>(CL_DEVICE_IMAGE_BASE_ADDRESS_ALIGNMENT) : 0;
#else
return 0;
#endif
}
size_t Device::image2DMaxWidth() const
{ return p ? p->getProp<size_t, size_t>(CL_DEVICE_IMAGE2D_MAX_WIDTH) : 0; }
size_t Device::image2DMaxHeight() const
{ return p ? p->getProp<size_t, size_t>(CL_DEVICE_IMAGE2D_MAX_HEIGHT) : 0; }
size_t Device::image3DMaxWidth() const
{ return p ? p->getProp<size_t, size_t>(CL_DEVICE_IMAGE3D_MAX_WIDTH) : 0; }
size_t Device::image3DMaxHeight() const
{ return p ? p->getProp<size_t, size_t>(CL_DEVICE_IMAGE3D_MAX_HEIGHT) : 0; }
size_t Device::image3DMaxDepth() const
{ return p ? p->getProp<size_t, size_t>(CL_DEVICE_IMAGE3D_MAX_DEPTH) : 0; }
size_t Device::imageMaxBufferSize() const
#ifdef CL_VERSION_1_2
{ return p ? p->getProp<size_t, size_t>(CL_DEVICE_IMAGE_MAX_BUFFER_SIZE) : 0; }
#else
{ CV_REQUIRE_OPENCL_1_2_ERROR; }
#endif
size_t Device::imageMaxArraySize() const
#ifdef CL_VERSION_1_2
{ return p ? p->getProp<size_t, size_t>(CL_DEVICE_IMAGE_MAX_ARRAY_SIZE) : 0; }
#else
{ CV_REQUIRE_OPENCL_1_2_ERROR; }
#endif
bool Device::intelSubgroupsSupport() const
{ return p ? p->intelSubgroupsSupport_ : false; }
int Device::maxClockFrequency() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_MAX_CLOCK_FREQUENCY) : 0; }
int Device::maxComputeUnits() const
{ return p ? p->maxComputeUnits_ : 0; }
int Device::maxConstantArgs() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_MAX_CONSTANT_ARGS) : 0; }
size_t Device::maxConstantBufferSize() const
{ return p ? p->getProp<cl_ulong, size_t>(CL_DEVICE_MAX_CONSTANT_BUFFER_SIZE) : 0; }
size_t Device::maxMemAllocSize() const
{ return p ? p->getProp<cl_ulong, size_t>(CL_DEVICE_MAX_MEM_ALLOC_SIZE) : 0; }
size_t Device::maxParameterSize() const
{ return p ? p->getProp<cl_ulong, size_t>(CL_DEVICE_MAX_PARAMETER_SIZE) : 0; }
int Device::maxReadImageArgs() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_MAX_READ_IMAGE_ARGS) : 0; }
int Device::maxWriteImageArgs() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_MAX_WRITE_IMAGE_ARGS) : 0; }
int Device::maxSamplers() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_MAX_SAMPLERS) : 0; }
size_t Device::maxWorkGroupSize() const
{ return p ? p->maxWorkGroupSize_ : 0; }
int Device::maxWorkItemDims() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_MAX_WORK_ITEM_DIMENSIONS) : 0; }
void Device::maxWorkItemSizes(size_t* sizes) const
{
if(p)
{
const int MAX_DIMS = 32;
size_t retsz = 0;
CV_OclDbgAssert(clGetDeviceInfo(p->handle, CL_DEVICE_MAX_WORK_ITEM_SIZES,
MAX_DIMS*sizeof(sizes[0]), &sizes[0], &retsz) == CL_SUCCESS);
}
}
int Device::memBaseAddrAlign() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_MEM_BASE_ADDR_ALIGN) : 0; }
int Device::nativeVectorWidthChar() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_NATIVE_VECTOR_WIDTH_CHAR) : 0; }
int Device::nativeVectorWidthShort() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_NATIVE_VECTOR_WIDTH_SHORT) : 0; }
int Device::nativeVectorWidthInt() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_NATIVE_VECTOR_WIDTH_INT) : 0; }
int Device::nativeVectorWidthLong() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_NATIVE_VECTOR_WIDTH_LONG) : 0; }
int Device::nativeVectorWidthFloat() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_NATIVE_VECTOR_WIDTH_FLOAT) : 0; }
int Device::nativeVectorWidthDouble() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_NATIVE_VECTOR_WIDTH_DOUBLE) : 0; }
int Device::nativeVectorWidthHalf() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_NATIVE_VECTOR_WIDTH_HALF) : 0; }
int Device::preferredVectorWidthChar() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_PREFERRED_VECTOR_WIDTH_CHAR) : 0; }
int Device::preferredVectorWidthShort() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_PREFERRED_VECTOR_WIDTH_SHORT) : 0; }
int Device::preferredVectorWidthInt() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_PREFERRED_VECTOR_WIDTH_INT) : 0; }
int Device::preferredVectorWidthLong() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_PREFERRED_VECTOR_WIDTH_LONG) : 0; }
int Device::preferredVectorWidthFloat() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_PREFERRED_VECTOR_WIDTH_FLOAT) : 0; }
int Device::preferredVectorWidthDouble() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_PREFERRED_VECTOR_WIDTH_DOUBLE) : 0; }
int Device::preferredVectorWidthHalf() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_PREFERRED_VECTOR_WIDTH_HALF) : 0; }
size_t Device::printfBufferSize() const
#ifdef CL_VERSION_1_2
{ return p ? p->getProp<size_t, size_t>(CL_DEVICE_PRINTF_BUFFER_SIZE) : 0; }
#else
{ CV_REQUIRE_OPENCL_1_2_ERROR; }
#endif
size_t Device::profilingTimerResolution() const
{ return p ? p->getProp<size_t, size_t>(CL_DEVICE_PROFILING_TIMER_RESOLUTION) : 0; }
const Device& Device::getDefault()
{
const Context& ctx = Context::getDefault();
int idx = getCoreTlsData().get()->device;
const Device& device = ctx.device(idx);
return device;
}
////////////////////////////////////// Context ///////////////////////////////////////////////////
template <typename Functor, typename ObjectType>
inline cl_int getStringInfo(Functor f, ObjectType obj, cl_uint name, std::string& param)
{
::size_t required;
cl_int err = f(obj, name, 0, NULL, &required);
if (err != CL_SUCCESS)
return err;
param.clear();
if (required > 0)
{
AutoBuffer<char> buf(required + 1);
char* ptr = (char*)buf; // cleanup is not needed
err = f(obj, name, required, ptr, NULL);
if (err != CL_SUCCESS)
return err;
param = ptr;
}
return CL_SUCCESS;
}
static void split(const std::string &s, char delim, std::vector<std::string> &elems)
{
elems.clear();
if (s.size() == 0)
return;
std::istringstream ss(s);
std::string item;
while (!ss.eof())
{
std::getline(ss, item, delim);
elems.push_back(item);
}
}
// Layout: <Platform>:<CPU|GPU|ACCELERATOR|nothing=GPU/CPU>:<deviceName>
// Sample: AMD:GPU:
// Sample: AMD:GPU:Tahiti
// Sample: :GPU|CPU: = '' = ':' = '::'
static bool parseOpenCLDeviceConfiguration(const std::string& configurationStr,
std::string& platform, std::vector<std::string>& deviceTypes, std::string& deviceNameOrID)
{
std::vector<std::string> parts;
split(configurationStr, ':', parts);
if (parts.size() > 3)
{
std::cerr << "ERROR: Invalid configuration string for OpenCL device" << std::endl;
return false;
}
if (parts.size() > 2)
deviceNameOrID = parts[2];
if (parts.size() > 1)
{
split(parts[1], '|', deviceTypes);
}
if (parts.size() > 0)
{
platform = parts[0];
}
return true;
}
#ifdef WINRT
static cl_device_id selectOpenCLDevice()
{
return NULL;
}
#else
static cl_device_id selectOpenCLDevice()
{
std::string platform, deviceName;
std::vector<std::string> deviceTypes;
const char* configuration = getenv("OPENCV_OPENCL_DEVICE");
if (configuration &&
(strcmp(configuration, "disabled") == 0 ||
!parseOpenCLDeviceConfiguration(std::string(configuration), platform, deviceTypes, deviceName)
))
return NULL;
bool isID = false;
int deviceID = -1;
if (deviceName.length() == 1)
// We limit ID range to 0..9, because we want to write:
// - '2500' to mean i5-2500
// - '8350' to mean AMD FX-8350
// - '650' to mean GeForce 650
// To extend ID range change condition to '> 0'
{
isID = true;
for (size_t i = 0; i < deviceName.length(); i++)
{
if (!isdigit(deviceName[i]))
{
isID = false;
break;
}
}
if (isID)
{
deviceID = atoi(deviceName.c_str());
if (deviceID < 0)
return NULL;
}
}
std::vector<cl_platform_id> platforms;
{
cl_uint numPlatforms = 0;
CV_OclDbgAssert(clGetPlatformIDs(0, NULL, &numPlatforms) == CL_SUCCESS);
if (numPlatforms == 0)
return NULL;
platforms.resize((size_t)numPlatforms);
CV_OclDbgAssert(clGetPlatformIDs(numPlatforms, &platforms[0], &numPlatforms) == CL_SUCCESS);
platforms.resize(numPlatforms);
}
int selectedPlatform = -1;
if (platform.length() > 0)
{
for (size_t i = 0; i < platforms.size(); i++)
{
std::string name;
CV_OclDbgAssert(getStringInfo(clGetPlatformInfo, platforms[i], CL_PLATFORM_NAME, name) == CL_SUCCESS);
if (name.find(platform) != std::string::npos)
{
selectedPlatform = (int)i;
break;
}
}
if (selectedPlatform == -1)
{
std::cerr << "ERROR: Can't find OpenCL platform by name: " << platform << std::endl;
goto not_found;
}
}
if (deviceTypes.size() == 0)
{
if (!isID)
{
deviceTypes.push_back("GPU");
if (configuration)
deviceTypes.push_back("CPU");
}
else
deviceTypes.push_back("ALL");
}
for (size_t t = 0; t < deviceTypes.size(); t++)
{
int deviceType = 0;
std::string tempStrDeviceType = deviceTypes[t];
std::transform( tempStrDeviceType.begin(), tempStrDeviceType.end(), tempStrDeviceType.begin(), tolower );
if (tempStrDeviceType == "gpu" || tempStrDeviceType == "dgpu" || tempStrDeviceType == "igpu")
deviceType = Device::TYPE_GPU;
else if (tempStrDeviceType == "cpu")
deviceType = Device::TYPE_CPU;
else if (tempStrDeviceType == "accelerator")
deviceType = Device::TYPE_ACCELERATOR;
else if (tempStrDeviceType == "all")
deviceType = Device::TYPE_ALL;
else
{
std::cerr << "ERROR: Unsupported device type for OpenCL device (GPU, CPU, ACCELERATOR): " << deviceTypes[t] << std::endl;
goto not_found;
}
std::vector<cl_device_id> devices; // TODO Use clReleaseDevice to cleanup
for (int i = selectedPlatform >= 0 ? selectedPlatform : 0;
(selectedPlatform >= 0 ? i == selectedPlatform : true) && (i < (int)platforms.size());
i++)
{
cl_uint count = 0;
cl_int status = clGetDeviceIDs(platforms[i], deviceType, 0, NULL, &count);
CV_OclDbgAssert(status == CL_SUCCESS || status == CL_DEVICE_NOT_FOUND);
if (count == 0)
continue;
size_t base = devices.size();
devices.resize(base + count);
status = clGetDeviceIDs(platforms[i], deviceType, count, &devices[base], &count);
CV_OclDbgAssert(status == CL_SUCCESS || status == CL_DEVICE_NOT_FOUND);
}
for (size_t i = (isID ? deviceID : 0);
(isID ? (i == (size_t)deviceID) : true) && (i < devices.size());
i++)
{
std::string name;
CV_OclDbgAssert(getStringInfo(clGetDeviceInfo, devices[i], CL_DEVICE_NAME, name) == CL_SUCCESS);
cl_bool useGPU = true;
if(tempStrDeviceType == "dgpu" || tempStrDeviceType == "igpu")
{
cl_bool isIGPU = CL_FALSE;
clGetDeviceInfo(devices[i], CL_DEVICE_HOST_UNIFIED_MEMORY, sizeof(isIGPU), &isIGPU, NULL);
useGPU = tempStrDeviceType == "dgpu" ? !isIGPU : isIGPU;
}
if ( (isID || name.find(deviceName) != std::string::npos) && useGPU)
{
// TODO check for OpenCL 1.1
return devices[i];
}
}
}
not_found:
if (!configuration)
return NULL; // suppress messages on stderr
std::cerr << "ERROR: Requested OpenCL device not found, check configuration: " << configuration << std::endl
<< " Platform: " << (platform.length() == 0 ? "any" : platform) << std::endl
<< " Device types: ";
for (size_t t = 0; t < deviceTypes.size(); t++)
std::cerr << deviceTypes[t] << " ";
std::cerr << std::endl << " Device name: " << (deviceName.length() == 0 ? "any" : deviceName) << std::endl;
return NULL;
}
#endif
#ifdef HAVE_OPENCL_SVM
namespace svm {
enum AllocatorFlags { // don't use first 16 bits
OPENCL_SVM_COARSE_GRAIN_BUFFER = 1 << 16, // clSVMAlloc + SVM map/unmap
OPENCL_SVM_FINE_GRAIN_BUFFER = 2 << 16, // clSVMAlloc
OPENCL_SVM_FINE_GRAIN_SYSTEM = 3 << 16, // direct access
OPENCL_SVM_BUFFER_MASK = 3 << 16,
OPENCL_SVM_BUFFER_MAP = 4 << 16
};
static bool checkForceSVMUmatUsage()
{
static bool initialized = false;
static bool force = false;
if (!initialized)
{
force = utils::getConfigurationParameterBool("OPENCV_OPENCL_SVM_FORCE_UMAT_USAGE", false);
initialized = true;
}
return force;
}
static bool checkDisableSVMUMatUsage()
{
static bool initialized = false;
static bool force = false;
if (!initialized)
{
force = utils::getConfigurationParameterBool("OPENCV_OPENCL_SVM_DISABLE_UMAT_USAGE", false);
initialized = true;
}
return force;
}
static bool checkDisableSVM()
{
static bool initialized = false;
static bool force = false;
if (!initialized)
{
force = utils::getConfigurationParameterBool("OPENCV_OPENCL_SVM_DISABLE", false);
initialized = true;
}
return force;
}
// see SVMCapabilities
static unsigned int getSVMCapabilitiesMask()
{
static bool initialized = false;
static unsigned int mask = 0;
if (!initialized)
{
const char* envValue = getenv("OPENCV_OPENCL_SVM_CAPABILITIES_MASK");
if (envValue == NULL)
{
return ~0U; // all bits 1
}
mask = atoi(envValue);
initialized = true;
}
return mask;
}
} // namespace
#endif
static size_t getProgramCountLimit()
{
static bool initialized = false;
static size_t count = 0;
if (!initialized)
{
count = utils::getConfigurationParameterSizeT("OPENCV_OPENCL_PROGRAM_CACHE", 0);
initialized = true;
}
return count;
}
struct Context::Impl
{
static Context::Impl* get(Context& context) { return context.p; }
void __init()
{
refcount = 1;
handle = 0;
#ifdef HAVE_OPENCL_SVM
svmInitialized = false;
#endif
}
Impl()
{
__init();
}
void setDefault()
{
CV_Assert(handle == NULL);
cl_device_id d = selectOpenCLDevice();
if (d == NULL)
return;
cl_platform_id pl = NULL;
CV_OclDbgAssert(clGetDeviceInfo(d, CL_DEVICE_PLATFORM, sizeof(cl_platform_id), &pl, NULL) == CL_SUCCESS);
cl_context_properties prop[] =
{
CL_CONTEXT_PLATFORM, (cl_context_properties)pl,
0
};
// !!! in the current implementation force the number of devices to 1 !!!
cl_uint nd = 1;
cl_int status;
handle = clCreateContext(prop, nd, &d, 0, 0, &status);
bool ok = handle != 0 && status == CL_SUCCESS;
if( ok )
{
devices.resize(nd);
devices[0].set(d);
}
else
handle = NULL;
}
Impl(int dtype0)
{
__init();
cl_int retval = 0;
cl_platform_id pl = (cl_platform_id)Platform::getDefault().ptr();
cl_context_properties prop[] =
{
CL_CONTEXT_PLATFORM, (cl_context_properties)pl,
0
};
cl_uint i, nd0 = 0, nd = 0;
int dtype = dtype0 & 15;
CV_OclDbgAssert(clGetDeviceIDs( pl, dtype, 0, 0, &nd0 ) == CL_SUCCESS);
AutoBuffer<void*> dlistbuf(nd0*2+1);
cl_device_id* dlist = (cl_device_id*)(void**)dlistbuf;
cl_device_id* dlist_new = dlist + nd0;
CV_OclDbgAssert(clGetDeviceIDs( pl, dtype, nd0, dlist, &nd0 ) == CL_SUCCESS);
String name0;
for(i = 0; i < nd0; i++)
{
Device d(dlist[i]);
if( !d.available() || !d.compilerAvailable() )
continue;
if( dtype0 == Device::TYPE_DGPU && d.hostUnifiedMemory() )
continue;
if( dtype0 == Device::TYPE_IGPU && !d.hostUnifiedMemory() )
continue;
String name = d.name();
if( nd != 0 && name != name0 )
continue;
name0 = name;
dlist_new[nd++] = dlist[i];
}
if(nd == 0)
return;
// !!! in the current implementation force the number of devices to 1 !!!
nd = 1;
handle = clCreateContext(prop, nd, dlist_new, 0, 0, &retval);
bool ok = handle != 0 && retval == CL_SUCCESS;
if( ok )
{
devices.resize(nd);
for( i = 0; i < nd; i++ )
devices[i].set(dlist_new[i]);
}
}
~Impl()
{
if(handle)
{
clReleaseContext(handle);
handle = NULL;
}
devices.clear();
}
Program getProg(const ProgramSource& src,
const String& buildflags, String& errmsg)
{
size_t limit = getProgramCountLimit();
String key = cv::format("codehash=%08llx ", src.hash()) + Program::getPrefix(buildflags);
{
cv::AutoLock lock(program_cache_mutex);
phash_t::iterator it = phash.find(key);
if (it != phash.end())
{
// TODO LRU cache
CacheList::iterator i = std::find(cacheList.begin(), cacheList.end(), key);
if (i != cacheList.end() && i != cacheList.begin())
{
cacheList.erase(i);
cacheList.push_front(key);
}
return it->second;
}
{ // cleanup program cache
size_t sz = phash.size();
if (limit > 0 && sz >= limit)
{
static bool warningFlag = false;
if (!warningFlag)
{
printf("\nWARNING: OpenCV-OpenCL:\n"
" In-memory cache for OpenCL programs is full, older programs will be unloaded.\n"
" You can change cache size via OPENCV_OPENCL_PROGRAM_CACHE environment variable\n\n");
warningFlag = true;
}
while (!cacheList.empty())
{
size_t c = phash.erase(cacheList.back());
cacheList.pop_back();
if (c != 0)
break;
}
}
}
}
Program prog(src, buildflags, errmsg);
if(prog.ptr())
{
cv::AutoLock lock(program_cache_mutex);
phash.insert(std::pair<std::string, Program>(key, prog));
cacheList.push_front(key);
}
return prog;
}
IMPLEMENT_REFCOUNTABLE();
cl_context handle;
std::vector<Device> devices;
cv::Mutex program_cache_mutex;
typedef std::map<std::string, Program> phash_t;
phash_t phash;
typedef std::list<cv::String> CacheList;
CacheList cacheList;
#ifdef HAVE_OPENCL_SVM
bool svmInitialized;
bool svmAvailable;
bool svmEnabled;
svm::SVMCapabilities svmCapabilities;
svm::SVMFunctions svmFunctions;
void svmInit()
{
CV_Assert(handle != NULL);
const Device& device = devices[0];
cl_device_svm_capabilities deviceCaps = 0;
CV_Assert(((void)0, CL_DEVICE_SVM_CAPABILITIES == CL_DEVICE_SVM_CAPABILITIES_AMD)); // Check assumption
cl_int status = clGetDeviceInfo((cl_device_id)device.ptr(), CL_DEVICE_SVM_CAPABILITIES, sizeof(deviceCaps), &deviceCaps, NULL);
if (status != CL_SUCCESS)
{
CV_OPENCL_SVM_TRACE_ERROR_P("CL_DEVICE_SVM_CAPABILITIES via clGetDeviceInfo failed: %d\n", status);
goto noSVM;
}
CV_OPENCL_SVM_TRACE_P("CL_DEVICE_SVM_CAPABILITIES returned: 0x%x\n", (int)deviceCaps);
CV_Assert(((void)0, CL_DEVICE_SVM_COARSE_GRAIN_BUFFER == CL_DEVICE_SVM_COARSE_GRAIN_BUFFER_AMD)); // Check assumption
svmCapabilities.value_ =
((deviceCaps & CL_DEVICE_SVM_COARSE_GRAIN_BUFFER) ? svm::SVMCapabilities::SVM_COARSE_GRAIN_BUFFER : 0) |
((deviceCaps & CL_DEVICE_SVM_FINE_GRAIN_BUFFER) ? svm::SVMCapabilities::SVM_FINE_GRAIN_BUFFER : 0) |
((deviceCaps & CL_DEVICE_SVM_FINE_GRAIN_SYSTEM) ? svm::SVMCapabilities::SVM_FINE_GRAIN_SYSTEM : 0) |
((deviceCaps & CL_DEVICE_SVM_ATOMICS) ? svm::SVMCapabilities::SVM_ATOMICS : 0);
svmCapabilities.value_ &= svm::getSVMCapabilitiesMask();
if (svmCapabilities.value_ == 0)
{
CV_OPENCL_SVM_TRACE_ERROR_P("svmCapabilities is empty\n");
goto noSVM;
}
try
{
// Try OpenCL 2.0
CV_OPENCL_SVM_TRACE_P("Try SVM from OpenCL 2.0 ...\n");
void* ptr = clSVMAlloc(handle, CL_MEM_READ_WRITE, 100, 0);
if (!ptr)
{
CV_OPENCL_SVM_TRACE_ERROR_P("clSVMAlloc returned NULL...\n");
CV_ErrorNoReturn(Error::StsBadArg, "clSVMAlloc returned NULL");
}
try
{
bool error = false;
cl_command_queue q = (cl_command_queue)Queue::getDefault().ptr();
if (CL_SUCCESS != clEnqueueSVMMap(q, CL_TRUE, CL_MAP_WRITE, ptr, 100, 0, NULL, NULL))
{
CV_OPENCL_SVM_TRACE_ERROR_P("clEnqueueSVMMap failed...\n");
CV_ErrorNoReturn(Error::StsBadArg, "clEnqueueSVMMap FAILED");
}
clFinish(q);
try
{
((int*)ptr)[0] = 100;
}
catch (...)
{
CV_OPENCL_SVM_TRACE_ERROR_P("SVM buffer access test FAILED\n");
error = true;
}
if (CL_SUCCESS != clEnqueueSVMUnmap(q, ptr, 0, NULL, NULL))
{
CV_OPENCL_SVM_TRACE_ERROR_P("clEnqueueSVMUnmap failed...\n");
CV_ErrorNoReturn(Error::StsBadArg, "clEnqueueSVMUnmap FAILED");
}
clFinish(q);
if (error)
{
CV_ErrorNoReturn(Error::StsBadArg, "OpenCL SVM buffer access test was FAILED");
}
}
catch (...)
{
CV_OPENCL_SVM_TRACE_ERROR_P("OpenCL SVM buffer access test was FAILED\n");
clSVMFree(handle, ptr);
throw;
}
clSVMFree(handle, ptr);
svmFunctions.fn_clSVMAlloc = clSVMAlloc;
svmFunctions.fn_clSVMFree = clSVMFree;
svmFunctions.fn_clSetKernelArgSVMPointer = clSetKernelArgSVMPointer;
//svmFunctions.fn_clSetKernelExecInfo = clSetKernelExecInfo;
//svmFunctions.fn_clEnqueueSVMFree = clEnqueueSVMFree;
svmFunctions.fn_clEnqueueSVMMemcpy = clEnqueueSVMMemcpy;
svmFunctions.fn_clEnqueueSVMMemFill = clEnqueueSVMMemFill;
svmFunctions.fn_clEnqueueSVMMap = clEnqueueSVMMap;
svmFunctions.fn_clEnqueueSVMUnmap = clEnqueueSVMUnmap;
}
catch (...)
{
CV_OPENCL_SVM_TRACE_P("clSVMAlloc failed, trying HSA extension...\n");
try
{
// Try HSA extension
String extensions = device.extensions();
if (extensions.find("cl_amd_svm") == String::npos)
{
CV_OPENCL_SVM_TRACE_P("Device extension doesn't have cl_amd_svm: %s\n", extensions.c_str());
goto noSVM;
}
cl_platform_id p = NULL;
status = clGetDeviceInfo((cl_device_id)device.ptr(), CL_DEVICE_PLATFORM, sizeof(cl_platform_id), &p, NULL);
CV_Assert(status == CL_SUCCESS);
svmFunctions.fn_clSVMAlloc = (clSVMAllocAMD_fn)clGetExtensionFunctionAddressForPlatform(p, "clSVMAllocAMD");
svmFunctions.fn_clSVMFree = (clSVMFreeAMD_fn)clGetExtensionFunctionAddressForPlatform(p, "clSVMFreeAMD");
svmFunctions.fn_clSetKernelArgSVMPointer = (clSetKernelArgSVMPointerAMD_fn)clGetExtensionFunctionAddressForPlatform(p, "clSetKernelArgSVMPointerAMD");
//svmFunctions.fn_clSetKernelExecInfo = (clSetKernelExecInfoAMD_fn)clGetExtensionFunctionAddressForPlatform(p, "clSetKernelExecInfoAMD");
//svmFunctions.fn_clEnqueueSVMFree = (clEnqueueSVMFreeAMD_fn)clGetExtensionFunctionAddressForPlatform(p, "clEnqueueSVMFreeAMD");
svmFunctions.fn_clEnqueueSVMMemcpy = (clEnqueueSVMMemcpyAMD_fn)clGetExtensionFunctionAddressForPlatform(p, "clEnqueueSVMMemcpyAMD");
svmFunctions.fn_clEnqueueSVMMemFill = (clEnqueueSVMMemFillAMD_fn)clGetExtensionFunctionAddressForPlatform(p, "clEnqueueSVMMemFillAMD");
svmFunctions.fn_clEnqueueSVMMap = (clEnqueueSVMMapAMD_fn)clGetExtensionFunctionAddressForPlatform(p, "clEnqueueSVMMapAMD");
svmFunctions.fn_clEnqueueSVMUnmap = (clEnqueueSVMUnmapAMD_fn)clGetExtensionFunctionAddressForPlatform(p, "clEnqueueSVMUnmapAMD");
CV_Assert(svmFunctions.isValid());
}
catch (...)
{
CV_OPENCL_SVM_TRACE_P("Something is totally wrong\n");
goto noSVM;
}
}
svmAvailable = true;
svmEnabled = !svm::checkDisableSVM();
svmInitialized = true;
CV_OPENCL_SVM_TRACE_P("OpenCV OpenCL SVM support initialized\n");
return;
noSVM:
CV_OPENCL_SVM_TRACE_P("OpenCL SVM is not detected\n");
svmAvailable = false;
svmEnabled = false;
svmCapabilities.value_ = 0;
svmInitialized = true;
svmFunctions.fn_clSVMAlloc = NULL;
return;
}
#endif
};
Context::Context()
{
p = 0;
}
Context::Context(int dtype)
{
p = 0;
create(dtype);
}
bool Context::create()
{
if( !haveOpenCL() )
return false;
if(p)
p->release();
p = new Impl();
if(!p->handle)
{
delete p;
p = 0;
}
return p != 0;
}
bool Context::create(int dtype0)
{
if( !haveOpenCL() )
return false;
if(p)
p->release();
p = new Impl(dtype0);
if(!p->handle)
{
delete p;
p = 0;
}
return p != 0;
}
Context::~Context()
{
if (p)
{
p->release();
p = NULL;
}
}
Context::Context(const Context& c)
{
p = (Impl*)c.p;
if(p)
p->addref();
}
Context& Context::operator = (const Context& c)
{
Impl* newp = (Impl*)c.p;
if(newp)
newp->addref();
if(p)
p->release();
p = newp;
return *this;
}
void* Context::ptr() const
{
return p == NULL ? NULL : p->handle;
}
size_t Context::ndevices() const
{
return p ? p->devices.size() : 0;
}
const Device& Context::device(size_t idx) const
{
static Device dummy;
return !p || idx >= p->devices.size() ? dummy : p->devices[idx];
}
Context& Context::getDefault(bool initialize)
{
static Context* ctx = new Context();
if(!ctx->p && haveOpenCL())
{
if (!ctx->p)
ctx->p = new Impl();
if (initialize)
{
// do not create new Context right away.
// First, try to retrieve existing context of the same type.
// In its turn, Platform::getContext() may call Context::create()
// if there is no such context.
if (ctx->p->handle == NULL)
ctx->p->setDefault();
}
}
return *ctx;
}
Program Context::getProg(const ProgramSource& prog,
const String& buildopts, String& errmsg)
{
return p ? p->getProg(prog, buildopts, errmsg) : Program();
}
#ifdef HAVE_OPENCL_SVM
bool Context::useSVM() const
{
Context::Impl* i = p;
CV_Assert(i);
if (!i->svmInitialized)
i->svmInit();
return i->svmEnabled;
}
void Context::setUseSVM(bool enabled)
{
Context::Impl* i = p;
CV_Assert(i);
if (!i->svmInitialized)
i->svmInit();
if (enabled && !i->svmAvailable)
{
CV_ErrorNoReturn(Error::StsError, "OpenCL Shared Virtual Memory (SVM) is not supported by OpenCL device");
}
i->svmEnabled = enabled;
}
#else
bool Context::useSVM() const { return false; }
void Context::setUseSVM(bool enabled) { CV_Assert(!enabled); }
#endif
#ifdef HAVE_OPENCL_SVM
namespace svm {
const SVMCapabilities getSVMCapabilitites(const ocl::Context& context)
{
Context::Impl* i = context.p;
CV_Assert(i);
if (!i->svmInitialized)
i->svmInit();
return i->svmCapabilities;
}
CV_EXPORTS const SVMFunctions* getSVMFunctions(const ocl::Context& context)
{
Context::Impl* i = context.p;
CV_Assert(i);
CV_Assert(i->svmInitialized); // getSVMCapabilitites() must be called first
CV_Assert(i->svmFunctions.fn_clSVMAlloc != NULL);
return &i->svmFunctions;
}
CV_EXPORTS bool useSVM(UMatUsageFlags usageFlags)
{
if (checkForceSVMUmatUsage())
return true;
if (checkDisableSVMUMatUsage())
return false;
if ((usageFlags & USAGE_ALLOCATE_SHARED_MEMORY) != 0)
return true;
return false; // don't use SVM by default
}
} // namespace cv::ocl::svm
#endif // HAVE_OPENCL_SVM
static void get_platform_name(cl_platform_id id, String& name)
{
// get platform name string length
size_t sz = 0;
if (CL_SUCCESS != clGetPlatformInfo(id, CL_PLATFORM_NAME, 0, 0, &sz))
CV_ErrorNoReturn(cv::Error::OpenCLApiCallError, "clGetPlatformInfo failed!");
// get platform name string
AutoBuffer<char> buf(sz + 1);
if (CL_SUCCESS != clGetPlatformInfo(id, CL_PLATFORM_NAME, sz, buf, 0))
CV_ErrorNoReturn(cv::Error::OpenCLApiCallError, "clGetPlatformInfo failed!");
// just in case, ensure trailing zero for ASCIIZ string
buf[sz] = 0;
name = (const char*)buf;
}
/*
// Attaches OpenCL context to OpenCV
*/
void attachContext(const String& platformName, void* platformID, void* context, void* deviceID)
{
cl_uint cnt = 0;
if(CL_SUCCESS != clGetPlatformIDs(0, 0, &cnt))
CV_ErrorNoReturn(cv::Error::OpenCLApiCallError, "clGetPlatformIDs failed!");
if (cnt == 0)
CV_ErrorNoReturn(cv::Error::OpenCLApiCallError, "no OpenCL platform available!");
std::vector<cl_platform_id> platforms(cnt);
if(CL_SUCCESS != clGetPlatformIDs(cnt, &platforms[0], 0))
CV_ErrorNoReturn(cv::Error::OpenCLApiCallError, "clGetPlatformIDs failed!");
bool platformAvailable = false;
// check if external platformName contained in list of available platforms in OpenCV
for (unsigned int i = 0; i < cnt; i++)
{
String availablePlatformName;
get_platform_name(platforms[i], availablePlatformName);
// external platform is found in the list of available platforms
if (platformName == availablePlatformName)
{
platformAvailable = true;
break;
}
}
if (!platformAvailable)
CV_ErrorNoReturn(cv::Error::OpenCLApiCallError, "No matched platforms available!");
// check if platformID corresponds to platformName
String actualPlatformName;
get_platform_name((cl_platform_id)platformID, actualPlatformName);
if (platformName != actualPlatformName)
CV_ErrorNoReturn(cv::Error::OpenCLApiCallError, "No matched platforms available!");
// do not initialize OpenCL context
Context ctx = Context::getDefault(false);
// attach supplied context to OpenCV
initializeContextFromHandle(ctx, platformID, context, deviceID);
if(CL_SUCCESS != clRetainContext((cl_context)context))
CV_ErrorNoReturn(cv::Error::OpenCLApiCallError, "clRetainContext failed!");
// clear command queue, if any
getCoreTlsData().get()->oclQueue.finish();
Queue q;
getCoreTlsData().get()->oclQueue = q;
return;
} // attachContext()
void initializeContextFromHandle(Context& ctx, void* platform, void* _context, void* _device)
{
cl_context context = (cl_context)_context;
cl_device_id device = (cl_device_id)_device;
// cleanup old context
Context::Impl * impl = ctx.p;
if (impl->handle)
{
CV_OclDbgAssert(clReleaseContext(impl->handle) == CL_SUCCESS);
}
impl->devices.clear();
impl->handle = context;
impl->devices.resize(1);
impl->devices[0].set(device);
Platform& p = Platform::getDefault();
Platform::Impl* pImpl = p.p;
pImpl->handle = (cl_platform_id)platform;
}
/////////////////////////////////////////// Queue /////////////////////////////////////////////
struct Queue::Impl
{
Impl(const Context& c, const Device& d)
{
refcount = 1;
const Context* pc = &c;
cl_context ch = (cl_context)pc->ptr();
if( !ch )
{
pc = &Context::getDefault();
ch = (cl_context)pc->ptr();
}
cl_device_id dh = (cl_device_id)d.ptr();
if( !dh )
dh = (cl_device_id)pc->device(0).ptr();
cl_int retval = 0;
handle = clCreateCommandQueue(ch, dh, 0, &retval);
CV_OclDbgAssert(retval == CL_SUCCESS);
}
~Impl()
{
#ifdef _WIN32
if (!cv::__termination)
#endif
{
if(handle)
{
clFinish(handle);
clReleaseCommandQueue(handle);
handle = NULL;
}
}
}
IMPLEMENT_REFCOUNTABLE();
cl_command_queue handle;
};
Queue::Queue()
{
p = 0;
}
Queue::Queue(const Context& c, const Device& d)
{
p = 0;
create(c, d);
}
Queue::Queue(const Queue& q)
{
p = q.p;
if(p)
p->addref();
}
Queue& Queue::operator = (const Queue& q)
{
Impl* newp = (Impl*)q.p;
if(newp)
newp->addref();
if(p)
p->release();
p = newp;
return *this;
}
Queue::~Queue()
{
if(p)
p->release();
}
bool Queue::create(const Context& c, const Device& d)
{
if(p)
p->release();
p = new Impl(c, d);
return p->handle != 0;
}
void Queue::finish()
{
if(p && p->handle)
{
CV_OclDbgAssert(clFinish(p->handle) == CL_SUCCESS);
}
}
void* Queue::ptr() const
{
return p ? p->handle : 0;
}
Queue& Queue::getDefault()
{
Queue& q = getCoreTlsData().get()->oclQueue;
if( !q.p && haveOpenCL() )
q.create(Context::getDefault());
return q;
}
static cl_command_queue getQueue(const Queue& q)
{
cl_command_queue qq = (cl_command_queue)q.ptr();
if(!qq)
qq = (cl_command_queue)Queue::getDefault().ptr();
return qq;
}
/////////////////////////////////////////// KernelArg /////////////////////////////////////////////
KernelArg::KernelArg()
: flags(0), m(0), obj(0), sz(0), wscale(1), iwscale(1)
{
}
KernelArg::KernelArg(int _flags, UMat* _m, int _wscale, int _iwscale, const void* _obj, size_t _sz)
: flags(_flags), m(_m), obj(_obj), sz(_sz), wscale(_wscale), iwscale(_iwscale)
{
CV_Assert(_flags == LOCAL || _flags == CONSTANT || _m != NULL);
}
KernelArg KernelArg::Constant(const Mat& m)
{
CV_Assert(m.isContinuous());
return KernelArg(CONSTANT, 0, 0, 0, m.ptr(), m.total()*m.elemSize());
}
/////////////////////////////////////////// Kernel /////////////////////////////////////////////
struct Kernel::Impl
{
Impl(const char* kname, const Program& prog) :
refcount(1), isInProgress(false), nu(0)
{
cl_program ph = (cl_program)prog.ptr();
cl_int retval = 0;
#ifdef ENABLE_INSTRUMENTATION
name = kname;
#endif
handle = ph != 0 ?
clCreateKernel(ph, kname, &retval) : 0;
CV_OclDbgAssert(retval == CL_SUCCESS);
for( int i = 0; i < MAX_ARRS; i++ )
u[i] = 0;
haveTempDstUMats = false;
}
void cleanupUMats()
{
for( int i = 0; i < MAX_ARRS; i++ )
if( u[i] )
{
if( CV_XADD(&u[i]->urefcount, -1) == 1 )
{
u[i]->flags |= UMatData::ASYNC_CLEANUP;
u[i]->currAllocator->deallocate(u[i]);
}
u[i] = 0;
}
nu = 0;
haveTempDstUMats = false;
}
void addUMat(const UMat& m, bool dst)
{
CV_Assert(nu < MAX_ARRS && m.u && m.u->urefcount > 0);
u[nu] = m.u;
CV_XADD(&m.u->urefcount, 1);
nu++;
if(dst && m.u->tempUMat())
haveTempDstUMats = true;
}
void addImage(const Image2D& image)
{
images.push_back(image);
}
void finit(cl_event e)
{
CV_UNUSED(e);
#if 0
printf("event::callback(%p)\n", e); fflush(stdout);
#endif
cleanupUMats();
images.clear();
isInProgress = false;
release();
}
~Impl()
{
if(handle)
clReleaseKernel(handle);
}
IMPLEMENT_REFCOUNTABLE();
#ifdef ENABLE_INSTRUMENTATION
cv::String name;
#endif
cl_kernel handle;
enum { MAX_ARRS = 16 };
UMatData* u[MAX_ARRS];
bool isInProgress;
int nu;
std::list<Image2D> images;
bool haveTempDstUMats;
};
}} // namespace cv::ocl
extern "C" {
static void CL_CALLBACK oclCleanupCallback(cl_event e, cl_int, void *p)
{
((cv::ocl::Kernel::Impl*)p)->finit(e);
}
}
namespace cv { namespace ocl {
Kernel::Kernel()
{
p = 0;
}
Kernel::Kernel(const char* kname, const Program& prog)
{
p = 0;
create(kname, prog);
}
Kernel::Kernel(const char* kname, const ProgramSource& src,
const String& buildopts, String* errmsg)
{
p = 0;
create(kname, src, buildopts, errmsg);
}
Kernel::Kernel(const Kernel& k)
{
p = k.p;
if(p)
p->addref();
}
Kernel& Kernel::operator = (const Kernel& k)
{
Impl* newp = (Impl*)k.p;
if(newp)
newp->addref();
if(p)
p->release();
p = newp;
return *this;
}
Kernel::~Kernel()
{
if(p)
p->release();
}
bool Kernel::create(const char* kname, const Program& prog)
{
if(p)
p->release();
p = new Impl(kname, prog);
if(p->handle == 0)
{
p->release();
p = 0;
}
#ifdef CV_OPENCL_RUN_ASSERT // check kernel compilation fails
CV_Assert(p);
#endif
return p != 0;
}
bool Kernel::create(const char* kname, const ProgramSource& src,
const String& buildopts, String* errmsg)
{
if(p)
{
p->release();
p = 0;
}
String tempmsg;
if( !errmsg ) errmsg = &tempmsg;
const Program& prog = Context::getDefault().getProg(src, buildopts, *errmsg);
return create(kname, prog);
}
void* Kernel::ptr() const
{
return p ? p->handle : 0;
}
bool Kernel::empty() const
{
return ptr() == 0;
}
int Kernel::set(int i, const void* value, size_t sz)
{
if (!p || !p->handle)
return -1;
if (i < 0)
return i;
if( i == 0 )
p->cleanupUMats();
cl_int retval = clSetKernelArg(p->handle, (cl_uint)i, sz, value);
CV_OclDbgAssert(retval == CL_SUCCESS);
if (retval != CL_SUCCESS)
return -1;
return i+1;
}
int Kernel::set(int i, const Image2D& image2D)
{
p->addImage(image2D);
cl_mem h = (cl_mem)image2D.ptr();
return set(i, &h, sizeof(h));
}
int Kernel::set(int i, const UMat& m)
{
return set(i, KernelArg(KernelArg::READ_WRITE, (UMat*)&m));
}
int Kernel::set(int i, const KernelArg& arg)
{
if( !p || !p->handle )
return -1;
if (i < 0)
return i;
if( i == 0 )
p->cleanupUMats();
if( arg.m )
{
int accessFlags = ((arg.flags & KernelArg::READ_ONLY) ? ACCESS_READ : 0) +
((arg.flags & KernelArg::WRITE_ONLY) ? ACCESS_WRITE : 0);
bool ptronly = (arg.flags & KernelArg::PTR_ONLY) != 0;
cl_mem h = (cl_mem)arg.m->handle(accessFlags);
if (!h)
{
p->release();
p = 0;
return -1;
}
#ifdef HAVE_OPENCL_SVM
if ((arg.m->u->allocatorFlags_ & svm::OPENCL_SVM_BUFFER_MASK) != 0)
{
const Context& ctx = Context::getDefault();
const svm::SVMFunctions* svmFns = svm::getSVMFunctions(ctx);
uchar*& svmDataPtr = (uchar*&)arg.m->u->handle;
CV_OPENCL_SVM_TRACE_P("clSetKernelArgSVMPointer: %p\n", svmDataPtr);
#if 1 // TODO
cl_int status = svmFns->fn_clSetKernelArgSVMPointer(p->handle, (cl_uint)i, svmDataPtr);
#else
cl_int status = svmFns->fn_clSetKernelArgSVMPointer(p->handle, (cl_uint)i, &svmDataPtr);
#endif
CV_Assert(status == CL_SUCCESS);
}
else
#endif
{
CV_OclDbgAssert(clSetKernelArg(p->handle, (cl_uint)i, sizeof(h), &h) == CL_SUCCESS);
}
if (ptronly)
{
i++;
}
else if( arg.m->dims <= 2 )
{
UMat2D u2d(*arg.m);
CV_OclDbgAssert(clSetKernelArg(p->handle, (cl_uint)(i+1), sizeof(u2d.step), &u2d.step) == CL_SUCCESS);
CV_OclDbgAssert(clSetKernelArg(p->handle, (cl_uint)(i+2), sizeof(u2d.offset), &u2d.offset) == CL_SUCCESS);
i += 3;
if( !(arg.flags & KernelArg::NO_SIZE) )
{
int cols = u2d.cols*arg.wscale/arg.iwscale;
CV_OclDbgAssert(clSetKernelArg(p->handle, (cl_uint)i, sizeof(u2d.rows), &u2d.rows) == CL_SUCCESS);
CV_OclDbgAssert(clSetKernelArg(p->handle, (cl_uint)(i+1), sizeof(cols), &cols) == CL_SUCCESS);
i += 2;
}
}
else
{
UMat3D u3d(*arg.m);
CV_OclDbgAssert(clSetKernelArg(p->handle, (cl_uint)(i+1), sizeof(u3d.slicestep), &u3d.slicestep) == CL_SUCCESS);
CV_OclDbgAssert(clSetKernelArg(p->handle, (cl_uint)(i+2), sizeof(u3d.step), &u3d.step) == CL_SUCCESS);
CV_OclDbgAssert(clSetKernelArg(p->handle, (cl_uint)(i+3), sizeof(u3d.offset), &u3d.offset) == CL_SUCCESS);
i += 4;
if( !(arg.flags & KernelArg::NO_SIZE) )
{
int cols = u3d.cols*arg.wscale/arg.iwscale;
CV_OclDbgAssert(clSetKernelArg(p->handle, (cl_uint)i, sizeof(u3d.slices), &u3d.slices) == CL_SUCCESS);
CV_OclDbgAssert(clSetKernelArg(p->handle, (cl_uint)(i+1), sizeof(u3d.rows), &u3d.rows) == CL_SUCCESS);
CV_OclDbgAssert(clSetKernelArg(p->handle, (cl_uint)(i+2), sizeof(u3d.cols), &cols) == CL_SUCCESS);
i += 3;
}
}
p->addUMat(*arg.m, (accessFlags & ACCESS_WRITE) != 0);
return i;
}
CV_OclDbgAssert(clSetKernelArg(p->handle, (cl_uint)i, arg.sz, arg.obj) == CL_SUCCESS);
return i+1;
}
bool Kernel::run(int dims, size_t _globalsize[], size_t _localsize[],
bool sync, const Queue& q)
{
CV_INSTRUMENT_REGION_OPENCL_RUN(p->name.c_str());
if(!p || !p->handle || p->isInProgress)
return false;
cl_command_queue qq = getQueue(q);
size_t offset[CV_MAX_DIM] = {0}, globalsize[CV_MAX_DIM] = {1,1,1};
size_t total = 1;
CV_Assert(_globalsize != 0);
for (int i = 0; i < dims; i++)
{
size_t val = _localsize ? _localsize[i] :
dims == 1 ? 64 : dims == 2 ? (i == 0 ? 256 : 8) : dims == 3 ? (8>>(int)(i>0)) : 1;
CV_Assert( val > 0 );
total *= _globalsize[i];
globalsize[i] = ((_globalsize[i] + val - 1)/val)*val;
}
if( total == 0 )
return true;
if( p->haveTempDstUMats )
sync = true;
cl_event asyncEvent = 0;
cl_int retval = clEnqueueNDRangeKernel(qq, p->handle, (cl_uint)dims,
offset, globalsize, _localsize, 0, 0,
sync ? 0 : &asyncEvent);
#if CV_OPENCL_SHOW_RUN_ERRORS
if (retval != CL_SUCCESS)
{
printf("OpenCL program returns error: %d\n", retval);
fflush(stdout);
}
#endif
if( sync || retval != CL_SUCCESS )
{
CV_OclDbgAssert(clFinish(qq) == CL_SUCCESS);
p->cleanupUMats();
}
else
{
p->addref();
p->isInProgress = true;
CV_OclDbgAssert(clSetEventCallback(asyncEvent, CL_COMPLETE, oclCleanupCallback, p) == CL_SUCCESS);
}
if (asyncEvent)
clReleaseEvent(asyncEvent);
return retval == CL_SUCCESS;
}
bool Kernel::runTask(bool sync, const Queue& q)
{
if(!p || !p->handle || p->isInProgress)
return false;
cl_command_queue qq = getQueue(q);
cl_event asyncEvent = 0;
cl_int retval = clEnqueueTask(qq, p->handle, 0, 0, sync ? 0 : &asyncEvent);
if( sync || retval != CL_SUCCESS )
{
CV_OclDbgAssert(clFinish(qq) == CL_SUCCESS);
p->cleanupUMats();
}
else
{
p->addref();
p->isInProgress = true;
CV_OclDbgAssert(clSetEventCallback(asyncEvent, CL_COMPLETE, oclCleanupCallback, p) == CL_SUCCESS);
}
if (asyncEvent)
clReleaseEvent(asyncEvent);
return retval == CL_SUCCESS;
}
size_t Kernel::workGroupSize() const
{
if(!p || !p->handle)
return 0;
size_t val = 0, retsz = 0;
cl_device_id dev = (cl_device_id)Device::getDefault().ptr();
return clGetKernelWorkGroupInfo(p->handle, dev, CL_KERNEL_WORK_GROUP_SIZE,
sizeof(val), &val, &retsz) == CL_SUCCESS ? val : 0;
}
size_t Kernel::preferedWorkGroupSizeMultiple() const
{
if(!p || !p->handle)
return 0;
size_t val = 0, retsz = 0;
cl_device_id dev = (cl_device_id)Device::getDefault().ptr();
return clGetKernelWorkGroupInfo(p->handle, dev, CL_KERNEL_PREFERRED_WORK_GROUP_SIZE_MULTIPLE,
sizeof(val), &val, &retsz) == CL_SUCCESS ? val : 0;
}
bool Kernel::compileWorkGroupSize(size_t wsz[]) const
{
if(!p || !p->handle || !wsz)
return 0;
size_t retsz = 0;
cl_device_id dev = (cl_device_id)Device::getDefault().ptr();
return clGetKernelWorkGroupInfo(p->handle, dev, CL_KERNEL_COMPILE_WORK_GROUP_SIZE,
sizeof(wsz[0])*3, wsz, &retsz) == CL_SUCCESS;
}
size_t Kernel::localMemSize() const
{
if(!p || !p->handle)
return 0;
size_t retsz = 0;
cl_ulong val = 0;
cl_device_id dev = (cl_device_id)Device::getDefault().ptr();
return clGetKernelWorkGroupInfo(p->handle, dev, CL_KERNEL_LOCAL_MEM_SIZE,
sizeof(val), &val, &retsz) == CL_SUCCESS ? (size_t)val : 0;
}
/////////////////////////////////////////// Program /////////////////////////////////////////////
struct Program::Impl
{
Impl(const ProgramSource& _src,
const String& _buildflags, String& errmsg)
{
CV_INSTRUMENT_REGION_OPENCL_COMPILE(cv::format("Compile: %" PRIx64 " options: %s", _src.hash(), _buildflags.c_str()).c_str());
refcount = 1;
const Context& ctx = Context::getDefault();
src = _src;
buildflags = _buildflags;
const String& srcstr = src.source();
const char* srcptr = srcstr.c_str();
size_t srclen = srcstr.size();
cl_int retval = 0;
handle = clCreateProgramWithSource((cl_context)ctx.ptr(), 1, &srcptr, &srclen, &retval);
if( handle && retval == CL_SUCCESS )
{
int i, n = (int)ctx.ndevices();
AutoBuffer<void*> deviceListBuf(n+1);
void** deviceList = deviceListBuf;
for( i = 0; i < n; i++ )
deviceList[i] = ctx.device(i).ptr();
Device device = Device::getDefault();
if (device.isAMD())
buildflags += " -D AMD_DEVICE";
else if (device.isIntel())
buildflags += " -D INTEL_DEVICE";
retval = clBuildProgram(handle, n,
(const cl_device_id*)deviceList,
buildflags.c_str(), 0, 0);
#if !CV_OPENCL_ALWAYS_SHOW_BUILD_LOG
if( retval != CL_SUCCESS )
#endif
{
size_t retsz = 0;
cl_int buildInfo_retval = clGetProgramBuildInfo(handle, (cl_device_id)deviceList[0],
CL_PROGRAM_BUILD_LOG, 0, 0, &retsz);
if (buildInfo_retval == CL_SUCCESS && retsz > 1)
{
AutoBuffer<char> bufbuf(retsz + 16);
char* buf = bufbuf;
buildInfo_retval = clGetProgramBuildInfo(handle, (cl_device_id)deviceList[0],
CL_PROGRAM_BUILD_LOG, retsz+1, buf, &retsz);
if (buildInfo_retval == CL_SUCCESS)
{
// TODO It is useful to see kernel name & program file name also
errmsg = String(buf);
printf("OpenCL program build log: %s\n%s\n", buildflags.c_str(), errmsg.c_str());
fflush(stdout);
}
}
if (retval != CL_SUCCESS && handle)
{
clReleaseProgram(handle);
handle = NULL;
}
}
}
}
Impl(const String& _buf, const String& _buildflags)
{
refcount = 1;
handle = 0;
buildflags = _buildflags;
if(_buf.empty())
return;
String prefix0 = Program::getPrefix(buildflags);
const Context& ctx = Context::getDefault();
const Device& dev = Device::getDefault();
const char* pos0 = _buf.c_str();
const char* pos1 = strchr(pos0, '\n');
if(!pos1)
return;
const char* pos2 = strchr(pos1+1, '\n');
if(!pos2)
return;
const char* pos3 = strchr(pos2+1, '\n');
if(!pos3)
return;
size_t prefixlen = (pos3 - pos0)+1;
String prefix(pos0, prefixlen);
if( prefix != prefix0 )
return;
const uchar* bin = (uchar*)(pos3+1);
void* devid = dev.ptr();
size_t codelen = _buf.length() - prefixlen;
cl_int binstatus = 0, retval = 0;
handle = clCreateProgramWithBinary((cl_context)ctx.ptr(), 1, (cl_device_id*)&devid,
&codelen, &bin, &binstatus, &retval);
CV_OclDbgAssert(retval == CL_SUCCESS);
}
String store()
{
if(!handle)
return String();
size_t progsz = 0, retsz = 0;
String prefix = Program::getPrefix(buildflags);
size_t prefixlen = prefix.length();
if(clGetProgramInfo(handle, CL_PROGRAM_BINARY_SIZES, sizeof(progsz), &progsz, &retsz) != CL_SUCCESS)
return String();
AutoBuffer<uchar> bufbuf(prefixlen + progsz + 16);
uchar* buf = bufbuf;
memcpy(buf, prefix.c_str(), prefixlen);
buf += prefixlen;
if(clGetProgramInfo(handle, CL_PROGRAM_BINARIES, sizeof(buf), &buf, &retsz) != CL_SUCCESS)
return String();
buf[progsz] = (uchar)'\0';
return String((const char*)(uchar*)bufbuf, prefixlen + progsz);
}
~Impl()
{
if( handle )
{
#ifdef _WIN32
if (!cv::__termination)
#endif
{
clReleaseProgram(handle);
}
handle = NULL;
}
}
IMPLEMENT_REFCOUNTABLE();
ProgramSource src;
String buildflags;
cl_program handle;
};
Program::Program() { p = 0; }
Program::Program(const ProgramSource& src,
const String& buildflags, String& errmsg)
{
p = 0;
create(src, buildflags, errmsg);
}
Program::Program(const Program& prog)
{
p = prog.p;
if(p)
p->addref();
}
Program& Program::operator = (const Program& prog)
{
Impl* newp = (Impl*)prog.p;
if(newp)
newp->addref();
if(p)
p->release();
p = newp;
return *this;
}
Program::~Program()
{
if(p)
p->release();
}
bool Program::create(const ProgramSource& src,
const String& buildflags, String& errmsg)
{
if(p)
p->release();
p = new Impl(src, buildflags, errmsg);
if(!p->handle)
{
p->release();
p = 0;
}
return p != 0;
}
const ProgramSource& Program::source() const
{
static ProgramSource dummy;
return p ? p->src : dummy;
}
void* Program::ptr() const
{
return p ? p->handle : 0;
}
bool Program::read(const String& bin, const String& buildflags)
{
if(p)
p->release();
p = new Impl(bin, buildflags);
return p->handle != 0;
}
bool Program::write(String& bin) const
{
if(!p)
return false;
bin = p->store();
return !bin.empty();
}
String Program::getPrefix() const
{
if(!p)
return String();
return getPrefix(p->buildflags);
}
String Program::getPrefix(const String& buildflags)
{
const Context& ctx = Context::getDefault();
const Device& dev = ctx.device(0);
return format("name=%s\ndriver=%s\nbuildflags=%s\n",
dev.name().c_str(), dev.driverVersion().c_str(), buildflags.c_str());
}
///////////////////////////////////////// ProgramSource ///////////////////////////////////////////////
struct ProgramSource::Impl
{
Impl(const String& src)
{
init(cv::String(), cv::String(), src, cv::String());
}
Impl(const String& module, const String& name, const String& codeStr, const String& codeHash)
{
init(module, name, codeStr, codeHash);
}
void init(const String& module, const String& name, const String& codeStr, const String& codeHash)
{
refcount = 1;
module_ = module;
name_ = name;
codeStr_ = codeStr;
codeHash_ = codeHash;
isHashUpdated = false;
if (codeHash_.empty())
{
updateHash();
codeHash_ = cv::format("%08llx", hash_);
}
}
void updateHash()
{
hash_ = crc64((uchar*)codeStr_.c_str(), codeStr_.size());
isHashUpdated = true;
}
IMPLEMENT_REFCOUNTABLE();
String module_;
String name_;
String codeStr_;
String codeHash_;
// TODO std::vector<ProgramSource> includes_;
bool isHashUpdated;
ProgramSource::hash_t hash_;
};
ProgramSource::ProgramSource()
{
p = 0;
}
ProgramSource::ProgramSource(const String& module, const String& name, const String& codeStr, const String& codeHash)
{
p = new Impl(module, name, codeStr, codeHash);
}
ProgramSource::ProgramSource(const char* prog)
{
p = new Impl(prog);
}
ProgramSource::ProgramSource(const String& prog)
{
p = new Impl(prog);
}
ProgramSource::~ProgramSource()
{
if(p)
p->release();
}
ProgramSource::ProgramSource(const ProgramSource& prog)
{
p = prog.p;
if(p)
p->addref();
}
ProgramSource& ProgramSource::operator = (const ProgramSource& prog)
{
Impl* newp = (Impl*)prog.p;
if(newp)
newp->addref();
if(p)
p->release();
p = newp;
return *this;
}
const String& ProgramSource::source() const
{
CV_Assert(p);
return p->codeStr_;
}
ProgramSource::hash_t ProgramSource::hash() const
{
CV_Assert(p);
if (!p->isHashUpdated)
p->updateHash();
return p->hash_;
}
internal::ProgramEntry::operator ProgramSource&() const
{
if (this->pProgramSource == NULL)
{
cv::AutoLock lock(cv::getInitializationMutex());
if (this->pProgramSource == NULL)
{
ProgramSource* ps = new ProgramSource(this->module, this->name, this->programCode, this->programHash);
const_cast<ProgramEntry*>(this)->pProgramSource = ps;
}
}
return *this->pProgramSource;
}
//////////////////////////////////////////// OpenCLAllocator //////////////////////////////////////////////////
template<typename T>
class OpenCLBufferPool
{
protected:
~OpenCLBufferPool() { }
public:
virtual T allocate(size_t size) = 0;
virtual void release(T buffer) = 0;
};
template <typename Derived, typename BufferEntry, typename T>
class OpenCLBufferPoolBaseImpl : public BufferPoolController, public OpenCLBufferPool<T>
{
private:
inline Derived& derived() { return *static_cast<Derived*>(this); }
protected:
Mutex mutex_;
size_t currentReservedSize;
size_t maxReservedSize;
std::list<BufferEntry> allocatedEntries_; // Allocated and used entries
std::list<BufferEntry> reservedEntries_; // LRU order. Allocated, but not used entries
// synchronized
bool _findAndRemoveEntryFromAllocatedList(CV_OUT BufferEntry& entry, T buffer)
{
typename std::list<BufferEntry>::iterator i = allocatedEntries_.begin();
for (; i != allocatedEntries_.end(); ++i)
{
BufferEntry& e = *i;
if (e.clBuffer_ == buffer)
{
entry = e;
allocatedEntries_.erase(i);
return true;
}
}
return false;
}
// synchronized
bool _findAndRemoveEntryFromReservedList(CV_OUT BufferEntry& entry, const size_t size)
{
if (reservedEntries_.empty())
return false;
typename std::list<BufferEntry>::iterator i = reservedEntries_.begin();
typename std::list<BufferEntry>::iterator result_pos = reservedEntries_.end();
BufferEntry result;
size_t minDiff = (size_t)(-1);
for (; i != reservedEntries_.end(); ++i)
{
BufferEntry& e = *i;
if (e.capacity_ >= size)
{
size_t diff = e.capacity_ - size;
if (diff < std::max((size_t)4096, size / 8) && (result_pos == reservedEntries_.end() || diff < minDiff))
{
minDiff = diff;
result_pos = i;
result = e;
if (diff == 0)
break;
}
}
}
if (result_pos != reservedEntries_.end())
{
//CV_DbgAssert(result == *result_pos);
reservedEntries_.erase(result_pos);
entry = result;
currentReservedSize -= entry.capacity_;
allocatedEntries_.push_back(entry);
return true;
}
return false;
}
// synchronized
void _checkSizeOfReservedEntries()
{
while (currentReservedSize > maxReservedSize)
{
CV_DbgAssert(!reservedEntries_.empty());
const BufferEntry& entry = reservedEntries_.back();
CV_DbgAssert(currentReservedSize >= entry.capacity_);
currentReservedSize -= entry.capacity_;
derived()._releaseBufferEntry(entry);
reservedEntries_.pop_back();
}
}
inline size_t _allocationGranularity(size_t size)
{
// heuristic values
if (size < 1024*1024)
return 4096; // don't work with buffers smaller than 4Kb (hidden allocation overhead issue)
else if (size < 16*1024*1024)
return 64*1024;
else
return 1024*1024;
}
public:
OpenCLBufferPoolBaseImpl()
: currentReservedSize(0),
maxReservedSize(0)
{
// nothing
}
virtual ~OpenCLBufferPoolBaseImpl()
{
freeAllReservedBuffers();
CV_Assert(reservedEntries_.empty());
}
public:
virtual T allocate(size_t size)
{
AutoLock locker(mutex_);
BufferEntry entry;
if (maxReservedSize > 0 && _findAndRemoveEntryFromReservedList(entry, size))
{
CV_DbgAssert(size <= entry.capacity_);
LOG_BUFFER_POOL("Reuse reserved buffer: %p\n", entry.clBuffer_);
}
else
{
derived()._allocateBufferEntry(entry, size);
}
return entry.clBuffer_;
}
virtual void release(T buffer)
{
AutoLock locker(mutex_);
BufferEntry entry;
CV_Assert(_findAndRemoveEntryFromAllocatedList(entry, buffer));
if (maxReservedSize == 0 || entry.capacity_ > maxReservedSize / 8)
{
derived()._releaseBufferEntry(entry);
}
else
{
reservedEntries_.push_front(entry);
currentReservedSize += entry.capacity_;
_checkSizeOfReservedEntries();
}
}
virtual size_t getReservedSize() const { return currentReservedSize; }
virtual size_t getMaxReservedSize() const { return maxReservedSize; }
virtual void setMaxReservedSize(size_t size)
{
AutoLock locker(mutex_);
size_t oldMaxReservedSize = maxReservedSize;
maxReservedSize = size;
if (maxReservedSize < oldMaxReservedSize)
{
typename std::list<BufferEntry>::iterator i = reservedEntries_.begin();
for (; i != reservedEntries_.end();)
{
const BufferEntry& entry = *i;
if (entry.capacity_ > maxReservedSize / 8)
{
CV_DbgAssert(currentReservedSize >= entry.capacity_);
currentReservedSize -= entry.capacity_;
derived()._releaseBufferEntry(entry);
i = reservedEntries_.erase(i);
continue;
}
++i;
}
_checkSizeOfReservedEntries();
}
}
virtual void freeAllReservedBuffers()
{
AutoLock locker(mutex_);
typename std::list<BufferEntry>::const_iterator i = reservedEntries_.begin();
for (; i != reservedEntries_.end(); ++i)
{
const BufferEntry& entry = *i;
derived()._releaseBufferEntry(entry);
}
reservedEntries_.clear();
currentReservedSize = 0;
}
};
struct CLBufferEntry
{
cl_mem clBuffer_;
size_t capacity_;
CLBufferEntry() : clBuffer_((cl_mem)NULL), capacity_(0) { }
};
class OpenCLBufferPoolImpl : public OpenCLBufferPoolBaseImpl<OpenCLBufferPoolImpl, CLBufferEntry, cl_mem>
{
public:
typedef struct CLBufferEntry BufferEntry;
protected:
int createFlags_;
public:
OpenCLBufferPoolImpl(int createFlags = 0)
: createFlags_(createFlags)
{
}
void _allocateBufferEntry(BufferEntry& entry, size_t size)
{
CV_DbgAssert(entry.clBuffer_ == NULL);
entry.capacity_ = alignSize(size, (int)_allocationGranularity(size));
Context& ctx = Context::getDefault();
cl_int retval = CL_SUCCESS;
entry.clBuffer_ = clCreateBuffer((cl_context)ctx.ptr(), CL_MEM_READ_WRITE|createFlags_, entry.capacity_, 0, &retval);
CV_Assert(retval == CL_SUCCESS);
CV_Assert(entry.clBuffer_ != NULL);
if(retval == CL_SUCCESS)
{
CV_IMPL_ADD(CV_IMPL_OCL);
}
LOG_BUFFER_POOL("OpenCL allocate %lld (0x%llx) bytes: %p\n",
(long long)entry.capacity_, (long long)entry.capacity_, entry.clBuffer_);
allocatedEntries_.push_back(entry);
}
void _releaseBufferEntry(const BufferEntry& entry)
{
CV_Assert(entry.capacity_ != 0);
CV_Assert(entry.clBuffer_ != NULL);
LOG_BUFFER_POOL("OpenCL release buffer: %p, %lld (0x%llx) bytes\n",
entry.clBuffer_, (long long)entry.capacity_, (long long)entry.capacity_);
clReleaseMemObject(entry.clBuffer_);
}
};
#ifdef HAVE_OPENCL_SVM
struct CLSVMBufferEntry
{
void* clBuffer_;
size_t capacity_;
CLSVMBufferEntry() : clBuffer_(NULL), capacity_(0) { }
};
class OpenCLSVMBufferPoolImpl : public OpenCLBufferPoolBaseImpl<OpenCLSVMBufferPoolImpl, CLSVMBufferEntry, void*>
{
public:
typedef struct CLSVMBufferEntry BufferEntry;
public:
OpenCLSVMBufferPoolImpl()
{
}
void _allocateBufferEntry(BufferEntry& entry, size_t size)
{
CV_DbgAssert(entry.clBuffer_ == NULL);
entry.capacity_ = alignSize(size, (int)_allocationGranularity(size));
Context& ctx = Context::getDefault();
const svm::SVMCapabilities svmCaps = svm::getSVMCapabilitites(ctx);
bool isFineGrainBuffer = svmCaps.isSupportFineGrainBuffer();
cl_svm_mem_flags memFlags = CL_MEM_READ_WRITE |
(isFineGrainBuffer ? CL_MEM_SVM_FINE_GRAIN_BUFFER : 0);
const svm::SVMFunctions* svmFns = svm::getSVMFunctions(ctx);
CV_DbgAssert(svmFns->isValid());
CV_OPENCL_SVM_TRACE_P("clSVMAlloc: %d\n", (int)entry.capacity_);
void *buf = svmFns->fn_clSVMAlloc((cl_context)ctx.ptr(), memFlags, entry.capacity_, 0);
CV_Assert(buf);
entry.clBuffer_ = buf;
{
CV_IMPL_ADD(CV_IMPL_OCL);
}
LOG_BUFFER_POOL("OpenCL SVM allocate %lld (0x%llx) bytes: %p\n",
(long long)entry.capacity_, (long long)entry.capacity_, entry.clBuffer_);
allocatedEntries_.push_back(entry);
}
void _releaseBufferEntry(const BufferEntry& entry)
{
CV_Assert(entry.capacity_ != 0);
CV_Assert(entry.clBuffer_ != NULL);
LOG_BUFFER_POOL("OpenCL release SVM buffer: %p, %lld (0x%llx) bytes\n",
entry.clBuffer_, (long long)entry.capacity_, (long long)entry.capacity_);
Context& ctx = Context::getDefault();
const svm::SVMFunctions* svmFns = svm::getSVMFunctions(ctx);
CV_DbgAssert(svmFns->isValid());
CV_OPENCL_SVM_TRACE_P("clSVMFree: %p\n", entry.clBuffer_);
svmFns->fn_clSVMFree((cl_context)ctx.ptr(), entry.clBuffer_);
}
};
#endif
#if defined _MSC_VER
#pragma warning(disable:4127) // conditional expression is constant
#endif
template <bool readAccess, bool writeAccess>
class AlignedDataPtr
{
protected:
const size_t size_;
uchar* const originPtr_;
const size_t alignment_;
uchar* ptr_;
uchar* allocatedPtr_;
public:
AlignedDataPtr(uchar* ptr, size_t size, size_t alignment)
: size_(size), originPtr_(ptr), alignment_(alignment), ptr_(ptr), allocatedPtr_(NULL)
{
CV_DbgAssert((alignment & (alignment - 1)) == 0); // check for 2^n
if (((size_t)ptr_ & (alignment - 1)) != 0)
{
allocatedPtr_ = new uchar[size_ + alignment - 1];
ptr_ = (uchar*)(((uintptr_t)allocatedPtr_ + (alignment - 1)) & ~(alignment - 1));
if (readAccess)
{
memcpy(ptr_, originPtr_, size_);
}
}
}
uchar* getAlignedPtr() const
{
CV_DbgAssert(((size_t)ptr_ & (alignment_ - 1)) == 0);
return ptr_;
}
~AlignedDataPtr()
{
if (allocatedPtr_)
{
if (writeAccess)
{
memcpy(originPtr_, ptr_, size_);
}
delete[] allocatedPtr_;
allocatedPtr_ = NULL;
}
ptr_ = NULL;
}
private:
AlignedDataPtr(const AlignedDataPtr&); // disabled
AlignedDataPtr& operator=(const AlignedDataPtr&); // disabled
};
template <bool readAccess, bool writeAccess>
class AlignedDataPtr2D
{
protected:
const size_t size_;
uchar* const originPtr_;
const size_t alignment_;
uchar* ptr_;
uchar* allocatedPtr_;
size_t rows_;
size_t cols_;
size_t step_;
public:
AlignedDataPtr2D(uchar* ptr, size_t rows, size_t cols, size_t step, size_t alignment)
: size_(rows*step), originPtr_(ptr), alignment_(alignment), ptr_(ptr), allocatedPtr_(NULL), rows_(rows), cols_(cols), step_(step)
{
CV_DbgAssert((alignment & (alignment - 1)) == 0); // check for 2^n
if (((size_t)ptr_ & (alignment - 1)) != 0)
{
allocatedPtr_ = new uchar[size_ + alignment - 1];
ptr_ = (uchar*)(((uintptr_t)allocatedPtr_ + (alignment - 1)) & ~(alignment - 1));
if (readAccess)
{
for (size_t i = 0; i < rows_; i++)
memcpy(ptr_ + i*step_, originPtr_ + i*step_, cols_);
}
}
}
uchar* getAlignedPtr() const
{
CV_DbgAssert(((size_t)ptr_ & (alignment_ - 1)) == 0);
return ptr_;
}
~AlignedDataPtr2D()
{
if (allocatedPtr_)
{
if (writeAccess)
{
for (size_t i = 0; i < rows_; i++)
memcpy(originPtr_ + i*step_, ptr_ + i*step_, cols_);
}
delete[] allocatedPtr_;
allocatedPtr_ = NULL;
}
ptr_ = NULL;
}
private:
AlignedDataPtr2D(const AlignedDataPtr2D&); // disabled
AlignedDataPtr2D& operator=(const AlignedDataPtr2D&); // disabled
};
#if defined _MSC_VER
#pragma warning(default:4127) // conditional expression is constant
#endif
#ifndef CV_OPENCL_DATA_PTR_ALIGNMENT
#define CV_OPENCL_DATA_PTR_ALIGNMENT 16
#endif
class OpenCLAllocator : public MatAllocator
{
mutable OpenCLBufferPoolImpl bufferPool;
mutable OpenCLBufferPoolImpl bufferPoolHostPtr;
#ifdef HAVE_OPENCL_SVM
mutable OpenCLSVMBufferPoolImpl bufferPoolSVM;
#endif
enum AllocatorFlags
{
ALLOCATOR_FLAGS_BUFFER_POOL_USED = 1 << 0,
ALLOCATOR_FLAGS_BUFFER_POOL_HOST_PTR_USED = 1 << 1
#ifdef HAVE_OPENCL_SVM
,ALLOCATOR_FLAGS_BUFFER_POOL_SVM_USED = 1 << 2
#endif
};
public:
OpenCLAllocator()
: bufferPool(0),
bufferPoolHostPtr(CL_MEM_ALLOC_HOST_PTR)
{
size_t defaultPoolSize, poolSize;
defaultPoolSize = ocl::Device::getDefault().isIntel() ? 1 << 27 : 0;
poolSize = utils::getConfigurationParameterSizeT("OPENCV_OPENCL_BUFFERPOOL_LIMIT", defaultPoolSize);
bufferPool.setMaxReservedSize(poolSize);
poolSize = utils::getConfigurationParameterSizeT("OPENCV_OPENCL_HOST_PTR_BUFFERPOOL_LIMIT", defaultPoolSize);
bufferPoolHostPtr.setMaxReservedSize(poolSize);
#ifdef HAVE_OPENCL_SVM
poolSize = utils::getConfigurationParameterSizeT("OPENCV_OPENCL_SVM_BUFFERPOOL_LIMIT", defaultPoolSize);
bufferPoolSVM.setMaxReservedSize(poolSize);
#endif
matStdAllocator = Mat::getDefaultAllocator();
}
~OpenCLAllocator()
{
flushCleanupQueue();
}
UMatData* defaultAllocate(int dims, const int* sizes, int type, void* data, size_t* step,
int flags, UMatUsageFlags usageFlags) const
{
UMatData* u = matStdAllocator->allocate(dims, sizes, type, data, step, flags, usageFlags);
return u;
}
void getBestFlags(const Context& ctx, int /*flags*/, UMatUsageFlags usageFlags, int& createFlags, int& flags0) const
{
const Device& dev = ctx.device(0);
createFlags = 0;
if ((usageFlags & USAGE_ALLOCATE_HOST_MEMORY) != 0)
createFlags |= CL_MEM_ALLOC_HOST_PTR;
if( dev.hostUnifiedMemory() )
flags0 = 0;
else
flags0 = UMatData::COPY_ON_MAP;
}
UMatData* allocate(int dims, const int* sizes, int type,
void* data, size_t* step, int flags, UMatUsageFlags usageFlags) const
{
if(!useOpenCL())
return defaultAllocate(dims, sizes, type, data, step, flags, usageFlags);
CV_Assert(data == 0);
size_t total = CV_ELEM_SIZE(type);
for( int i = dims-1; i >= 0; i-- )
{
if( step )
step[i] = total;
total *= sizes[i];
}
Context& ctx = Context::getDefault();
flushCleanupQueue();
int createFlags = 0, flags0 = 0;
getBestFlags(ctx, flags, usageFlags, createFlags, flags0);
void* handle = NULL;
int allocatorFlags = 0;
#ifdef HAVE_OPENCL_SVM
const svm::SVMCapabilities svmCaps = svm::getSVMCapabilitites(ctx);
if (ctx.useSVM() && svm::useSVM(usageFlags) && !svmCaps.isNoSVMSupport())
{
allocatorFlags = ALLOCATOR_FLAGS_BUFFER_POOL_SVM_USED;
handle = bufferPoolSVM.allocate(total);
// this property is constant, so single buffer pool can be used here
bool isFineGrainBuffer = svmCaps.isSupportFineGrainBuffer();
allocatorFlags |= isFineGrainBuffer ? svm::OPENCL_SVM_FINE_GRAIN_BUFFER : svm::OPENCL_SVM_COARSE_GRAIN_BUFFER;
}
else
#endif
if (createFlags == 0)
{
allocatorFlags = ALLOCATOR_FLAGS_BUFFER_POOL_USED;
handle = bufferPool.allocate(total);
}
else if (createFlags == CL_MEM_ALLOC_HOST_PTR)
{
allocatorFlags = ALLOCATOR_FLAGS_BUFFER_POOL_HOST_PTR_USED;
handle = bufferPoolHostPtr.allocate(total);
}
else
{
CV_Assert(handle != NULL); // Unsupported, throw
}
if (!handle)
return defaultAllocate(dims, sizes, type, data, step, flags, usageFlags);
UMatData* u = new UMatData(this);
u->data = 0;
u->size = total;
u->handle = handle;
u->flags = flags0;
u->allocatorFlags_ = allocatorFlags;
CV_DbgAssert(!u->tempUMat()); // for bufferPool.release() consistency in deallocate()
u->markHostCopyObsolete(true);
return u;
}
bool allocate(UMatData* u, int accessFlags, UMatUsageFlags usageFlags) const
{
if(!u)
return false;
flushCleanupQueue();
UMatDataAutoLock lock(u);
if(u->handle == 0)
{
CV_Assert(u->origdata != 0);
Context& ctx = Context::getDefault();
int createFlags = 0, flags0 = 0;
getBestFlags(ctx, accessFlags, usageFlags, createFlags, flags0);
cl_context ctx_handle = (cl_context)ctx.ptr();
int allocatorFlags = 0;
int tempUMatFlags = 0;
void* handle = NULL;
cl_int retval = CL_SUCCESS;
#ifdef HAVE_OPENCL_SVM
svm::SVMCapabilities svmCaps = svm::getSVMCapabilitites(ctx);
bool useSVM = ctx.useSVM() && svm::useSVM(usageFlags);
if (useSVM && svmCaps.isSupportFineGrainSystem())
{
allocatorFlags = svm::OPENCL_SVM_FINE_GRAIN_SYSTEM;
tempUMatFlags = UMatData::TEMP_UMAT;
handle = u->origdata;
CV_OPENCL_SVM_TRACE_P("Use fine grain system: %d (%p)\n", (int)u->size, handle);
}
else if (useSVM && (svmCaps.isSupportFineGrainBuffer() || svmCaps.isSupportCoarseGrainBuffer()))
{
if (!(accessFlags & ACCESS_FAST)) // memcpy used
{
bool isFineGrainBuffer = svmCaps.isSupportFineGrainBuffer();
cl_svm_mem_flags memFlags = createFlags |
(isFineGrainBuffer ? CL_MEM_SVM_FINE_GRAIN_BUFFER : 0);
const svm::SVMFunctions* svmFns = svm::getSVMFunctions(ctx);
CV_DbgAssert(svmFns->isValid());
CV_OPENCL_SVM_TRACE_P("clSVMAlloc + copy: %d\n", (int)u->size);
handle = svmFns->fn_clSVMAlloc((cl_context)ctx.ptr(), memFlags, u->size, 0);
CV_Assert(handle);
cl_command_queue q = NULL;
if (!isFineGrainBuffer)
{
q = (cl_command_queue)Queue::getDefault().ptr();
CV_OPENCL_SVM_TRACE_P("clEnqueueSVMMap: %p (%d)\n", handle, (int)u->size);
cl_int status = svmFns->fn_clEnqueueSVMMap(q, CL_TRUE, CL_MAP_WRITE,
handle, u->size,
0, NULL, NULL);
CV_Assert(status == CL_SUCCESS);
}
memcpy(handle, u->origdata, u->size);
if (!isFineGrainBuffer)
{
CV_OPENCL_SVM_TRACE_P("clEnqueueSVMUnmap: %p\n", handle);
cl_int status = svmFns->fn_clEnqueueSVMUnmap(q, handle, 0, NULL, NULL);
CV_Assert(status == CL_SUCCESS);
}
tempUMatFlags = UMatData::TEMP_UMAT | UMatData::TEMP_COPIED_UMAT;
allocatorFlags |= isFineGrainBuffer ? svm::OPENCL_SVM_FINE_GRAIN_BUFFER
: svm::OPENCL_SVM_COARSE_GRAIN_BUFFER;
}
}
else
#endif
{
tempUMatFlags = UMatData::TEMP_UMAT;
if (u->origdata == cv::alignPtr(u->origdata, 4)) // There are OpenCL runtime issues for less aligned data
{
handle = clCreateBuffer(ctx_handle, CL_MEM_USE_HOST_PTR|createFlags,
u->size, u->origdata, &retval);
}
if((!handle || retval < 0) && !(accessFlags & ACCESS_FAST))
{
handle = clCreateBuffer(ctx_handle, CL_MEM_COPY_HOST_PTR|CL_MEM_READ_WRITE|createFlags,
u->size, u->origdata, &retval);
tempUMatFlags |= UMatData::TEMP_COPIED_UMAT;
}
}
if(!handle || retval != CL_SUCCESS)
return false;
u->handle = handle;
u->prevAllocator = u->currAllocator;
u->currAllocator = this;
u->flags |= tempUMatFlags;
u->allocatorFlags_ = allocatorFlags;
}
if(accessFlags & ACCESS_WRITE)
u->markHostCopyObsolete(true);
return true;
}
/*void sync(UMatData* u) const
{
cl_command_queue q = (cl_command_queue)Queue::getDefault().ptr();
UMatDataAutoLock lock(u);
if( u->hostCopyObsolete() && u->handle && u->refcount > 0 && u->origdata)
{
if( u->tempCopiedUMat() )
{
clEnqueueReadBuffer(q, (cl_mem)u->handle, CL_TRUE, 0,
u->size, u->origdata, 0, 0, 0);
}
else
{
cl_int retval = 0;
void* data = clEnqueueMapBuffer(q, (cl_mem)u->handle, CL_TRUE,
(CL_MAP_READ | CL_MAP_WRITE),
0, u->size, 0, 0, 0, &retval);
clEnqueueUnmapMemObject(q, (cl_mem)u->handle, data, 0, 0, 0);
clFinish(q);
}
u->markHostCopyObsolete(false);
}
else if( u->copyOnMap() && u->deviceCopyObsolete() && u->data )
{
clEnqueueWriteBuffer(q, (cl_mem)u->handle, CL_TRUE, 0,
u->size, u->data, 0, 0, 0);
}
}*/
void deallocate(UMatData* u) const
{
if(!u)
return;
CV_Assert(u->urefcount == 0);
CV_Assert(u->refcount == 0 && "UMat deallocation error: some derived Mat is still alive");
CV_Assert(u->handle != 0);
CV_Assert(u->mapcount == 0);
if (u->flags & UMatData::ASYNC_CLEANUP)
addToCleanupQueue(u);
else
deallocate_(u);
}
void deallocate_(UMatData* u) const
{
if(u->tempUMat())
{
CV_Assert(u->origdata);
// UMatDataAutoLock lock(u);
if (u->hostCopyObsolete())
{
#ifdef HAVE_OPENCL_SVM
if ((u->allocatorFlags_ & svm::OPENCL_SVM_BUFFER_MASK) != 0)
{
Context& ctx = Context::getDefault();
const svm::SVMFunctions* svmFns = svm::getSVMFunctions(ctx);
CV_DbgAssert(svmFns->isValid());
if( u->tempCopiedUMat() )
{
CV_DbgAssert((u->allocatorFlags_ & svm::OPENCL_SVM_BUFFER_MASK) == svm::OPENCL_SVM_FINE_GRAIN_BUFFER ||
(u->allocatorFlags_ & svm::OPENCL_SVM_BUFFER_MASK) == svm::OPENCL_SVM_COARSE_GRAIN_BUFFER);
bool isFineGrainBuffer = (u->allocatorFlags_ & svm::OPENCL_SVM_BUFFER_MASK) == svm::OPENCL_SVM_FINE_GRAIN_BUFFER;
cl_command_queue q = NULL;
if (!isFineGrainBuffer)
{
CV_DbgAssert(((u->allocatorFlags_ & svm::OPENCL_SVM_BUFFER_MAP) == 0));
q = (cl_command_queue)Queue::getDefault().ptr();
CV_OPENCL_SVM_TRACE_P("clEnqueueSVMMap: %p (%d)\n", u->handle, (int)u->size);
cl_int status = svmFns->fn_clEnqueueSVMMap(q, CL_FALSE, CL_MAP_READ,
u->handle, u->size,
0, NULL, NULL);
CV_Assert(status == CL_SUCCESS);
}
clFinish(q);
memcpy(u->origdata, u->handle, u->size);
if (!isFineGrainBuffer)
{
CV_OPENCL_SVM_TRACE_P("clEnqueueSVMUnmap: %p\n", u->handle);
cl_int status = svmFns->fn_clEnqueueSVMUnmap(q, u->handle, 0, NULL, NULL);
CV_Assert(status == CL_SUCCESS);
}
}
else
{
CV_DbgAssert((u->allocatorFlags_ & svm::OPENCL_SVM_BUFFER_MASK) == svm::OPENCL_SVM_FINE_GRAIN_SYSTEM);
// nothing
}
}
else
#endif
{
cl_command_queue q = (cl_command_queue)Queue::getDefault().ptr();
if( u->tempCopiedUMat() )
{
AlignedDataPtr<false, true> alignedPtr(u->origdata, u->size, CV_OPENCL_DATA_PTR_ALIGNMENT);
CV_OclDbgAssert(clEnqueueReadBuffer(q, (cl_mem)u->handle, CL_TRUE, 0,
u->size, alignedPtr.getAlignedPtr(), 0, 0, 0) == CL_SUCCESS);
}
else
{
cl_int retval = 0;
if (u->tempUMat())
{
CV_Assert(u->mapcount == 0);
void* data = clEnqueueMapBuffer(q, (cl_mem)u->handle, CL_TRUE,
(CL_MAP_READ | CL_MAP_WRITE),
0, u->size, 0, 0, 0, &retval);
CV_Assert(u->origdata == data);
CV_OclDbgAssert(retval == CL_SUCCESS);
if (u->originalUMatData)
{
CV_Assert(u->originalUMatData->data == data);
}
CV_OclDbgAssert(clEnqueueUnmapMemObject(q, (cl_mem)u->handle, data, 0, 0, 0) == CL_SUCCESS);
CV_OclDbgAssert(clFinish(q) == CL_SUCCESS);
}
}
}
u->markHostCopyObsolete(false);
}
else
{
// nothing
}
#ifdef HAVE_OPENCL_SVM
if ((u->allocatorFlags_ & svm::OPENCL_SVM_BUFFER_MASK) != 0)
{
if( u->tempCopiedUMat() )
{
Context& ctx = Context::getDefault();
const svm::SVMFunctions* svmFns = svm::getSVMFunctions(ctx);
CV_DbgAssert(svmFns->isValid());
CV_OPENCL_SVM_TRACE_P("clSVMFree: %p\n", u->handle);
svmFns->fn_clSVMFree((cl_context)ctx.ptr(), u->handle);
}
}
else
#endif
{
clReleaseMemObject((cl_mem)u->handle);
}
u->handle = 0;
u->markDeviceCopyObsolete(true);
u->currAllocator = u->prevAllocator;
u->prevAllocator = NULL;
if(u->data && u->copyOnMap() && u->data != u->origdata)
fastFree(u->data);
u->data = u->origdata;
u->currAllocator->deallocate(u);
u = NULL;
}
else
{
CV_Assert(u->origdata == NULL);
if(u->data && u->copyOnMap() && u->data != u->origdata)
{
fastFree(u->data);
u->data = 0;
u->markHostCopyObsolete(true);
}
if (u->allocatorFlags_ & ALLOCATOR_FLAGS_BUFFER_POOL_USED)
{
bufferPool.release((cl_mem)u->handle);
}
else if (u->allocatorFlags_ & ALLOCATOR_FLAGS_BUFFER_POOL_HOST_PTR_USED)
{
bufferPoolHostPtr.release((cl_mem)u->handle);
}
#ifdef HAVE_OPENCL_SVM
else if (u->allocatorFlags_ & ALLOCATOR_FLAGS_BUFFER_POOL_SVM_USED)
{
if ((u->allocatorFlags_ & svm::OPENCL_SVM_BUFFER_MASK) == svm::OPENCL_SVM_FINE_GRAIN_SYSTEM)
{
//nothing
}
else if ((u->allocatorFlags_ & svm::OPENCL_SVM_BUFFER_MASK) == svm::OPENCL_SVM_FINE_GRAIN_BUFFER ||
(u->allocatorFlags_ & svm::OPENCL_SVM_BUFFER_MASK) == svm::OPENCL_SVM_COARSE_GRAIN_BUFFER)
{
Context& ctx = Context::getDefault();
const svm::SVMFunctions* svmFns = svm::getSVMFunctions(ctx);
CV_DbgAssert(svmFns->isValid());
cl_command_queue q = (cl_command_queue)Queue::getDefault().ptr();
if ((u->allocatorFlags_ & svm::OPENCL_SVM_BUFFER_MAP) != 0)
{
CV_OPENCL_SVM_TRACE_P("clEnqueueSVMUnmap: %p\n", u->handle);
cl_int status = svmFns->fn_clEnqueueSVMUnmap(q, u->handle, 0, NULL, NULL);
CV_Assert(status == CL_SUCCESS);
}
}
bufferPoolSVM.release((void*)u->handle);
}
#endif
else
{
clReleaseMemObject((cl_mem)u->handle);
}
u->handle = 0;
u->markDeviceCopyObsolete(true);
delete u;
u = NULL;
}
CV_Assert(u == NULL);
}
// synchronized call (external UMatDataAutoLock, see UMat::getMat)
void map(UMatData* u, int accessFlags) const
{
CV_Assert(u && u->handle);
if(accessFlags & ACCESS_WRITE)
u->markDeviceCopyObsolete(true);
cl_command_queue q = (cl_command_queue)Queue::getDefault().ptr();
{
if( !u->copyOnMap() )
{
// TODO
// because there can be other map requests for the same UMat with different access flags,
// we use the universal (read-write) access mode.
#ifdef HAVE_OPENCL_SVM
if ((u->allocatorFlags_ & svm::OPENCL_SVM_BUFFER_MASK) != 0)
{
if ((u->allocatorFlags_ & svm::OPENCL_SVM_BUFFER_MASK) == svm::OPENCL_SVM_COARSE_GRAIN_BUFFER)
{
Context& ctx = Context::getDefault();
const svm::SVMFunctions* svmFns = svm::getSVMFunctions(ctx);
CV_DbgAssert(svmFns->isValid());
if ((u->allocatorFlags_ & svm::OPENCL_SVM_BUFFER_MAP) == 0)
{
CV_OPENCL_SVM_TRACE_P("clEnqueueSVMMap: %p (%d)\n", u->handle, (int)u->size);
cl_int status = svmFns->fn_clEnqueueSVMMap(q, CL_FALSE, CL_MAP_READ | CL_MAP_WRITE,
u->handle, u->size,
0, NULL, NULL);
CV_Assert(status == CL_SUCCESS);
u->allocatorFlags_ |= svm::OPENCL_SVM_BUFFER_MAP;
}
}
clFinish(q);
u->data = (uchar*)u->handle;
u->markHostCopyObsolete(false);
u->markDeviceMemMapped(true);
return;
}
#endif
cl_int retval = CL_SUCCESS;
if (!u->deviceMemMapped())
{
CV_Assert(u->refcount == 1);
CV_Assert(u->mapcount++ == 0);
u->data = (uchar*)clEnqueueMapBuffer(q, (cl_mem)u->handle, CL_TRUE,
(CL_MAP_READ | CL_MAP_WRITE),
0, u->size, 0, 0, 0, &retval);
}
if (u->data && retval == CL_SUCCESS)
{
u->markHostCopyObsolete(false);
u->markDeviceMemMapped(true);
return;
}
// TODO Is it really a good idea and was it tested well?
// if map failed, switch to copy-on-map mode for the particular buffer
u->flags |= UMatData::COPY_ON_MAP;
}
if(!u->data)
{
u->data = (uchar*)fastMalloc(u->size);
u->markHostCopyObsolete(true);
}
}
if( (accessFlags & ACCESS_READ) != 0 && u->hostCopyObsolete() )
{
AlignedDataPtr<false, true> alignedPtr(u->data, u->size, CV_OPENCL_DATA_PTR_ALIGNMENT);
#ifdef HAVE_OPENCL_SVM
CV_DbgAssert((u->allocatorFlags_ & svm::OPENCL_SVM_BUFFER_MASK) == 0);
#endif
CV_Assert( clEnqueueReadBuffer(q, (cl_mem)u->handle, CL_TRUE, 0,
u->size, alignedPtr.getAlignedPtr(), 0, 0, 0) == CL_SUCCESS );
u->markHostCopyObsolete(false);
}
}
void unmap(UMatData* u) const
{
if(!u)
return;
CV_Assert(u->handle != 0);
UMatDataAutoLock autolock(u);
cl_command_queue q = (cl_command_queue)Queue::getDefault().ptr();
cl_int retval = 0;
if( !u->copyOnMap() && u->deviceMemMapped() )
{
CV_Assert(u->data != NULL);
#ifdef HAVE_OPENCL_SVM
if ((u->allocatorFlags_ & svm::OPENCL_SVM_BUFFER_MASK) != 0)
{
if ((u->allocatorFlags_ & svm::OPENCL_SVM_BUFFER_MASK) == svm::OPENCL_SVM_COARSE_GRAIN_BUFFER)
{
Context& ctx = Context::getDefault();
const svm::SVMFunctions* svmFns = svm::getSVMFunctions(ctx);
CV_DbgAssert(svmFns->isValid());
CV_DbgAssert((u->allocatorFlags_ & svm::OPENCL_SVM_BUFFER_MAP) != 0);
{
CV_OPENCL_SVM_TRACE_P("clEnqueueSVMUnmap: %p\n", u->handle);
cl_int status = svmFns->fn_clEnqueueSVMUnmap(q, u->handle,
0, NULL, NULL);
CV_Assert(status == CL_SUCCESS);
clFinish(q);
u->allocatorFlags_ &= ~svm::OPENCL_SVM_BUFFER_MAP;
}
}
if (u->refcount == 0)
u->data = 0;
u->markDeviceCopyObsolete(false);
u->markHostCopyObsolete(true);
return;
}
#endif
if (u->refcount == 0)
{
CV_Assert(u->mapcount-- == 1);
CV_Assert((retval = clEnqueueUnmapMemObject(q,
(cl_mem)u->handle, u->data, 0, 0, 0)) == CL_SUCCESS);
if (Device::getDefault().isAMD())
{
// required for multithreaded applications (see stitching test)
CV_OclDbgAssert(clFinish(q) == CL_SUCCESS);
}
u->markDeviceMemMapped(false);
u->data = 0;
u->markDeviceCopyObsolete(false);
u->markHostCopyObsolete(true);
}
}
else if( u->copyOnMap() && u->deviceCopyObsolete() )
{
AlignedDataPtr<true, false> alignedPtr(u->data, u->size, CV_OPENCL_DATA_PTR_ALIGNMENT);
#ifdef HAVE_OPENCL_SVM
CV_DbgAssert((u->allocatorFlags_ & svm::OPENCL_SVM_BUFFER_MASK) == 0);
#endif
CV_Assert( (retval = clEnqueueWriteBuffer(q, (cl_mem)u->handle, CL_TRUE, 0,
u->size, alignedPtr.getAlignedPtr(), 0, 0, 0)) == CL_SUCCESS );
u->markDeviceCopyObsolete(false);
u->markHostCopyObsolete(true);
}
}
bool checkContinuous(int dims, const size_t sz[],
const size_t srcofs[], const size_t srcstep[],
const size_t dstofs[], const size_t dststep[],
size_t& total, size_t new_sz[],
size_t& srcrawofs, size_t new_srcofs[], size_t new_srcstep[],
size_t& dstrawofs, size_t new_dstofs[], size_t new_dststep[]) const
{
bool iscontinuous = true;
srcrawofs = srcofs ? srcofs[dims-1] : 0;
dstrawofs = dstofs ? dstofs[dims-1] : 0;
total = sz[dims-1];
for( int i = dims-2; i >= 0; i-- )
{
if( i >= 0 && (total != srcstep[i] || total != dststep[i]) )
iscontinuous = false;
total *= sz[i];
if( srcofs )
srcrawofs += srcofs[i]*srcstep[i];
if( dstofs )
dstrawofs += dstofs[i]*dststep[i];
}
if( !iscontinuous )
{
// OpenCL uses {x, y, z} order while OpenCV uses {z, y, x} order.
if( dims == 2 )
{
new_sz[0] = sz[1]; new_sz[1] = sz[0]; new_sz[2] = 1;
// we assume that new_... arrays are initialized by caller
// with 0's, so there is no else branch
if( srcofs )
{
new_srcofs[0] = srcofs[1];
new_srcofs[1] = srcofs[0];
new_srcofs[2] = 0;
}
if( dstofs )
{
new_dstofs[0] = dstofs[1];
new_dstofs[1] = dstofs[0];
new_dstofs[2] = 0;
}
new_srcstep[0] = srcstep[0]; new_srcstep[1] = 0;
new_dststep[0] = dststep[0]; new_dststep[1] = 0;
}
else
{
// we could check for dims == 3 here,
// but from user perspective this one is more informative
CV_Assert(dims <= 3);
new_sz[0] = sz[2]; new_sz[1] = sz[1]; new_sz[2] = sz[0];
if( srcofs )
{
new_srcofs[0] = srcofs[2];
new_srcofs[1] = srcofs[1];
new_srcofs[2] = srcofs[0];
}
if( dstofs )
{
new_dstofs[0] = dstofs[2];
new_dstofs[1] = dstofs[1];
new_dstofs[2] = dstofs[0];
}
new_srcstep[0] = srcstep[1]; new_srcstep[1] = srcstep[0];
new_dststep[0] = dststep[1]; new_dststep[1] = dststep[0];
}
}
return iscontinuous;
}
void download(UMatData* u, void* dstptr, int dims, const size_t sz[],
const size_t srcofs[], const size_t srcstep[],
const size_t dststep[]) const
{
if(!u)
return;
UMatDataAutoLock autolock(u);
if( u->data && !u->hostCopyObsolete() )
{
Mat::getDefaultAllocator()->download(u, dstptr, dims, sz, srcofs, srcstep, dststep);
return;
}
CV_Assert( u->handle != 0 );
cl_command_queue q = (cl_command_queue)Queue::getDefault().ptr();
size_t total = 0, new_sz[] = {0, 0, 0};
size_t srcrawofs = 0, new_srcofs[] = {0, 0, 0}, new_srcstep[] = {0, 0, 0};
size_t dstrawofs = 0, new_dstofs[] = {0, 0, 0}, new_dststep[] = {0, 0, 0};
bool iscontinuous = checkContinuous(dims, sz, srcofs, srcstep, 0, dststep,
total, new_sz,
srcrawofs, new_srcofs, new_srcstep,
dstrawofs, new_dstofs, new_dststep);
#ifdef HAVE_OPENCL_SVM
if ((u->allocatorFlags_ & svm::OPENCL_SVM_BUFFER_MASK) != 0)
{
CV_DbgAssert(u->data == NULL || u->data == u->handle);
Context& ctx = Context::getDefault();
const svm::SVMFunctions* svmFns = svm::getSVMFunctions(ctx);
CV_DbgAssert(svmFns->isValid());
CV_DbgAssert((u->allocatorFlags_ & svm::OPENCL_SVM_BUFFER_MAP) == 0);
if ((u->allocatorFlags_ & svm::OPENCL_SVM_BUFFER_MASK) == svm::OPENCL_SVM_COARSE_GRAIN_BUFFER)
{
CV_OPENCL_SVM_TRACE_P("clEnqueueSVMMap: %p (%d)\n", u->handle, (int)u->size);
cl_int status = svmFns->fn_clEnqueueSVMMap(q, CL_FALSE, CL_MAP_READ,
u->handle, u->size,
0, NULL, NULL);
CV_Assert(status == CL_SUCCESS);
}
clFinish(q);
if( iscontinuous )
{
memcpy(dstptr, (uchar*)u->handle + srcrawofs, total);
}
else
{
// This code is from MatAllocator::download()
int isz[CV_MAX_DIM];
uchar* srcptr = (uchar*)u->handle;
for( int i = 0; i < dims; i++ )
{
CV_Assert( sz[i] <= (size_t)INT_MAX );
if( sz[i] == 0 )
return;
if( srcofs )
srcptr += srcofs[i]*(i <= dims-2 ? srcstep[i] : 1);
isz[i] = (int)sz[i];
}
Mat src(dims, isz, CV_8U, srcptr, srcstep);
Mat dst(dims, isz, CV_8U, dstptr, dststep);
const Mat* arrays[] = { &src, &dst };
uchar* ptrs[2];
NAryMatIterator it(arrays, ptrs, 2);
size_t j, planesz = it.size;
for( j = 0; j < it.nplanes; j++, ++it )
memcpy(ptrs[1], ptrs[0], planesz);
}
if ((u->allocatorFlags_ & svm::OPENCL_SVM_BUFFER_MASK) == svm::OPENCL_SVM_COARSE_GRAIN_BUFFER)
{
CV_OPENCL_SVM_TRACE_P("clEnqueueSVMUnmap: %p\n", u->handle);
cl_int status = svmFns->fn_clEnqueueSVMUnmap(q, u->handle,
0, NULL, NULL);
CV_Assert(status == CL_SUCCESS);
clFinish(q);
}
}
else
#endif
{
if( iscontinuous )
{
AlignedDataPtr<false, true> alignedPtr((uchar*)dstptr, total, CV_OPENCL_DATA_PTR_ALIGNMENT);
CV_Assert(clEnqueueReadBuffer(q, (cl_mem)u->handle, CL_TRUE,
srcrawofs, total, alignedPtr.getAlignedPtr(), 0, 0, 0) >= 0 );
}
else
{
AlignedDataPtr2D<false, true> alignedPtr((uchar*)dstptr, new_sz[1], new_sz[0], new_dststep[0], CV_OPENCL_DATA_PTR_ALIGNMENT);
uchar* ptr = alignedPtr.getAlignedPtr();
CV_Assert( clEnqueueReadBufferRect(q, (cl_mem)u->handle, CL_TRUE,
new_srcofs, new_dstofs, new_sz,
new_srcstep[0], 0,
new_dststep[0], 0,
ptr, 0, 0, 0) >= 0 );
}
}
}
void upload(UMatData* u, const void* srcptr, int dims, const size_t sz[],
const size_t dstofs[], const size_t dststep[],
const size_t srcstep[]) const
{
if(!u)
return;
// there should be no user-visible CPU copies of the UMat which we are going to copy to
CV_Assert(u->refcount == 0 || u->tempUMat());
size_t total = 0, new_sz[] = {0, 0, 0};
size_t srcrawofs = 0, new_srcofs[] = {0, 0, 0}, new_srcstep[] = {0, 0, 0};
size_t dstrawofs = 0, new_dstofs[] = {0, 0, 0}, new_dststep[] = {0, 0, 0};
bool iscontinuous = checkContinuous(dims, sz, 0, srcstep, dstofs, dststep,
total, new_sz,
srcrawofs, new_srcofs, new_srcstep,
dstrawofs, new_dstofs, new_dststep);
UMatDataAutoLock autolock(u);
// if there is cached CPU copy of the GPU matrix,
// we could use it as a destination.
// we can do it in 2 cases:
// 1. we overwrite the whole content
// 2. we overwrite part of the matrix, but the GPU copy is out-of-date
if( u->data && (u->hostCopyObsolete() < u->deviceCopyObsolete() || total == u->size))
{
Mat::getDefaultAllocator()->upload(u, srcptr, dims, sz, dstofs, dststep, srcstep);
u->markHostCopyObsolete(false);
u->markDeviceCopyObsolete(true);
return;
}
CV_Assert( u->handle != 0 );
cl_command_queue q = (cl_command_queue)Queue::getDefault().ptr();
#ifdef HAVE_OPENCL_SVM
if ((u->allocatorFlags_ & svm::OPENCL_SVM_BUFFER_MASK) != 0)
{
CV_DbgAssert(u->data == NULL || u->data == u->handle);
Context& ctx = Context::getDefault();
const svm::SVMFunctions* svmFns = svm::getSVMFunctions(ctx);
CV_DbgAssert(svmFns->isValid());
CV_DbgAssert((u->allocatorFlags_ & svm::OPENCL_SVM_BUFFER_MAP) == 0);
if ((u->allocatorFlags_ & svm::OPENCL_SVM_BUFFER_MASK) == svm::OPENCL_SVM_COARSE_GRAIN_BUFFER)
{
CV_OPENCL_SVM_TRACE_P("clEnqueueSVMMap: %p (%d)\n", u->handle, (int)u->size);
cl_int status = svmFns->fn_clEnqueueSVMMap(q, CL_FALSE, CL_MAP_WRITE,
u->handle, u->size,
0, NULL, NULL);
CV_Assert(status == CL_SUCCESS);
}
clFinish(q);
if( iscontinuous )
{
memcpy((uchar*)u->handle + dstrawofs, srcptr, total);
}
else
{
// This code is from MatAllocator::upload()
int isz[CV_MAX_DIM];
uchar* dstptr = (uchar*)u->handle;
for( int i = 0; i < dims; i++ )
{
CV_Assert( sz[i] <= (size_t)INT_MAX );
if( sz[i] == 0 )
return;
if( dstofs )
dstptr += dstofs[i]*(i <= dims-2 ? dststep[i] : 1);
isz[i] = (int)sz[i];
}
Mat src(dims, isz, CV_8U, (void*)srcptr, srcstep);
Mat dst(dims, isz, CV_8U, dstptr, dststep);
const Mat* arrays[] = { &src, &dst };
uchar* ptrs[2];
NAryMatIterator it(arrays, ptrs, 2);
size_t j, planesz = it.size;
for( j = 0; j < it.nplanes; j++, ++it )
memcpy(ptrs[1], ptrs[0], planesz);
}
if ((u->allocatorFlags_ & svm::OPENCL_SVM_BUFFER_MASK) == svm::OPENCL_SVM_COARSE_GRAIN_BUFFER)
{
CV_OPENCL_SVM_TRACE_P("clEnqueueSVMUnmap: %p\n", u->handle);
cl_int status = svmFns->fn_clEnqueueSVMUnmap(q, u->handle,
0, NULL, NULL);
CV_Assert(status == CL_SUCCESS);
clFinish(q);
}
}
else
#endif
{
if( iscontinuous )
{
AlignedDataPtr<true, false> alignedPtr((uchar*)srcptr, total, CV_OPENCL_DATA_PTR_ALIGNMENT);
CV_Assert(clEnqueueWriteBuffer(q, (cl_mem)u->handle, CL_TRUE,
dstrawofs, total, alignedPtr.getAlignedPtr(), 0, 0, 0) >= 0);
}
else
{
AlignedDataPtr2D<true, false> alignedPtr((uchar*)srcptr, new_sz[1], new_sz[0], new_srcstep[0], CV_OPENCL_DATA_PTR_ALIGNMENT);
uchar* ptr = alignedPtr.getAlignedPtr();
CV_Assert(clEnqueueWriteBufferRect(q, (cl_mem)u->handle, CL_TRUE,
new_dstofs, new_srcofs, new_sz,
new_dststep[0], 0,
new_srcstep[0], 0,
ptr, 0, 0, 0) >= 0 );
}
}
u->markHostCopyObsolete(true);
#ifdef HAVE_OPENCL_SVM
if ((u->allocatorFlags_ & svm::OPENCL_SVM_BUFFER_MASK) == svm::OPENCL_SVM_FINE_GRAIN_BUFFER ||
(u->allocatorFlags_ & svm::OPENCL_SVM_BUFFER_MASK) == svm::OPENCL_SVM_FINE_GRAIN_SYSTEM)
{
// nothing
}
else
#endif
{
u->markHostCopyObsolete(true);
}
u->markDeviceCopyObsolete(false);
}
void copy(UMatData* src, UMatData* dst, int dims, const size_t sz[],
const size_t srcofs[], const size_t srcstep[],
const size_t dstofs[], const size_t dststep[], bool _sync) const
{
if(!src || !dst)
return;
size_t total = 0, new_sz[] = {0, 0, 0};
size_t srcrawofs = 0, new_srcofs[] = {0, 0, 0}, new_srcstep[] = {0, 0, 0};
size_t dstrawofs = 0, new_dstofs[] = {0, 0, 0}, new_dststep[] = {0, 0, 0};
bool iscontinuous = checkContinuous(dims, sz, srcofs, srcstep, dstofs, dststep,
total, new_sz,
srcrawofs, new_srcofs, new_srcstep,
dstrawofs, new_dstofs, new_dststep);
UMatDataAutoLock src_autolock(src);
UMatDataAutoLock dst_autolock(dst);
if( !src->handle || (src->data && src->hostCopyObsolete() < src->deviceCopyObsolete()) )
{
upload(dst, src->data + srcrawofs, dims, sz, dstofs, dststep, srcstep);
return;
}
if( !dst->handle || (dst->data && dst->hostCopyObsolete() < dst->deviceCopyObsolete()) )
{
download(src, dst->data + dstrawofs, dims, sz, srcofs, srcstep, dststep);
dst->markHostCopyObsolete(false);
#ifdef HAVE_OPENCL_SVM
if ((dst->allocatorFlags_ & svm::OPENCL_SVM_BUFFER_MASK) == svm::OPENCL_SVM_FINE_GRAIN_BUFFER ||
(dst->allocatorFlags_ & svm::OPENCL_SVM_BUFFER_MASK) == svm::OPENCL_SVM_FINE_GRAIN_SYSTEM)
{
// nothing
}
else
#endif
{
dst->markDeviceCopyObsolete(true);
}
return;
}
// there should be no user-visible CPU copies of the UMat which we are going to copy to
CV_Assert(dst->refcount == 0);
cl_command_queue q = (cl_command_queue)Queue::getDefault().ptr();
cl_int retval = CL_SUCCESS;
#ifdef HAVE_OPENCL_SVM
if ((src->allocatorFlags_ & svm::OPENCL_SVM_BUFFER_MASK) != 0 ||
(dst->allocatorFlags_ & svm::OPENCL_SVM_BUFFER_MASK) != 0)
{
if ((src->allocatorFlags_ & svm::OPENCL_SVM_BUFFER_MASK) != 0 &&
(dst->allocatorFlags_ & svm::OPENCL_SVM_BUFFER_MASK) != 0)
{
Context& ctx = Context::getDefault();
const svm::SVMFunctions* svmFns = svm::getSVMFunctions(ctx);
CV_DbgAssert(svmFns->isValid());
if( iscontinuous )
{
CV_OPENCL_SVM_TRACE_P("clEnqueueSVMMemcpy: %p <-- %p (%d)\n",
(uchar*)dst->handle + dstrawofs, (uchar*)src->handle + srcrawofs, (int)total);
cl_int status = svmFns->fn_clEnqueueSVMMemcpy(q, CL_TRUE,
(uchar*)dst->handle + dstrawofs, (uchar*)src->handle + srcrawofs,
total, 0, NULL, NULL);
CV_Assert(status == CL_SUCCESS);
}
else
{
clFinish(q);
// This code is from MatAllocator::download()/upload()
int isz[CV_MAX_DIM];
uchar* srcptr = (uchar*)src->handle;
for( int i = 0; i < dims; i++ )
{
CV_Assert( sz[i] <= (size_t)INT_MAX );
if( sz[i] == 0 )
return;
if( srcofs )
srcptr += srcofs[i]*(i <= dims-2 ? srcstep[i] : 1);
isz[i] = (int)sz[i];
}
Mat m_src(dims, isz, CV_8U, srcptr, srcstep);
uchar* dstptr = (uchar*)dst->handle;
for( int i = 0; i < dims; i++ )
{
if( dstofs )
dstptr += dstofs[i]*(i <= dims-2 ? dststep[i] : 1);
}
Mat m_dst(dims, isz, CV_8U, dstptr, dststep);
const Mat* arrays[] = { &m_src, &m_dst };
uchar* ptrs[2];
NAryMatIterator it(arrays, ptrs, 2);
size_t j, planesz = it.size;
for( j = 0; j < it.nplanes; j++, ++it )
memcpy(ptrs[1], ptrs[0], planesz);
}
}
else
{
if ((src->allocatorFlags_ & svm::OPENCL_SVM_BUFFER_MASK) != 0)
{
map(src, ACCESS_READ);
upload(dst, src->data + srcrawofs, dims, sz, dstofs, dststep, srcstep);
unmap(src);
}
else
{
map(dst, ACCESS_WRITE);
download(src, dst->data + dstrawofs, dims, sz, srcofs, srcstep, dststep);
unmap(dst);
}
}
}
else
#endif
{
if( iscontinuous )
{
CV_Assert( (retval = clEnqueueCopyBuffer(q, (cl_mem)src->handle, (cl_mem)dst->handle,
srcrawofs, dstrawofs, total, 0, 0, 0)) == CL_SUCCESS );
}
else
{
CV_Assert( (retval = clEnqueueCopyBufferRect(q, (cl_mem)src->handle, (cl_mem)dst->handle,
new_srcofs, new_dstofs, new_sz,
new_srcstep[0], 0,
new_dststep[0], 0,
0, 0, 0)) == CL_SUCCESS );
}
}
if (retval == CL_SUCCESS)
{
CV_IMPL_ADD(CV_IMPL_OCL)
}
#ifdef HAVE_OPENCL_SVM
if ((dst->allocatorFlags_ & svm::OPENCL_SVM_BUFFER_MASK) == svm::OPENCL_SVM_FINE_GRAIN_BUFFER ||
(dst->allocatorFlags_ & svm::OPENCL_SVM_BUFFER_MASK) == svm::OPENCL_SVM_FINE_GRAIN_SYSTEM)
{
// nothing
}
else
#endif
{
dst->markHostCopyObsolete(true);
}
dst->markDeviceCopyObsolete(false);
if( _sync )
{
CV_OclDbgAssert(clFinish(q) == CL_SUCCESS);
}
}
BufferPoolController* getBufferPoolController(const char* id) const {
#ifdef HAVE_OPENCL_SVM
if ((svm::checkForceSVMUmatUsage() && (id == NULL || strcmp(id, "OCL") == 0)) || (id != NULL && strcmp(id, "SVM") == 0))
{
return &bufferPoolSVM;
}
#endif
if (id != NULL && strcmp(id, "HOST_ALLOC") == 0)
{
return &bufferPoolHostPtr;
}
if (id != NULL && strcmp(id, "OCL") != 0)
{
CV_ErrorNoReturn(cv::Error::StsBadArg, "getBufferPoolController(): unknown BufferPool ID\n");
}
return &bufferPool;
}
MatAllocator* matStdAllocator;
mutable cv::Mutex cleanupQueueMutex;
mutable std::deque<UMatData*> cleanupQueue;
void flushCleanupQueue() const
{
if (!cleanupQueue.empty())
{
std::deque<UMatData*> q;
{
cv::AutoLock lock(cleanupQueueMutex);
q.swap(cleanupQueue);
}
for (std::deque<UMatData*>::const_iterator i = q.begin(); i != q.end(); ++i)
{
deallocate_(*i);
}
}
}
void addToCleanupQueue(UMatData* u) const
{
//TODO: Validation check: CV_Assert(!u->tempUMat());
{
cv::AutoLock lock(cleanupQueueMutex);
cleanupQueue.push_back(u);
}
}
};
MatAllocator* getOpenCLAllocator()
{
CV_SINGLETON_LAZY_INIT(MatAllocator, new OpenCLAllocator())
}
}} // namespace cv::ocl
namespace cv {
// three funcs below are implemented in umatrix.cpp
void setSize( UMat& m, int _dims, const int* _sz, const size_t* _steps,
bool autoSteps = false );
void updateContinuityFlag(UMat& m);
void finalizeHdr(UMat& m);
} // namespace cv
namespace cv { namespace ocl {
/*
// Convert OpenCL buffer memory to UMat
*/
void convertFromBuffer(void* cl_mem_buffer, size_t step, int rows, int cols, int type, UMat& dst)
{
int d = 2;
int sizes[] = { rows, cols };
CV_Assert(0 <= d && d <= CV_MAX_DIM);
dst.release();
dst.flags = (type & Mat::TYPE_MASK) | Mat::MAGIC_VAL;
dst.usageFlags = USAGE_DEFAULT;
setSize(dst, d, sizes, 0, true);
dst.offset = 0;
cl_mem memobj = (cl_mem)cl_mem_buffer;
cl_mem_object_type mem_type = 0;
CV_Assert(clGetMemObjectInfo(memobj, CL_MEM_TYPE, sizeof(cl_mem_object_type), &mem_type, 0) == CL_SUCCESS);
CV_Assert(CL_MEM_OBJECT_BUFFER == mem_type);
size_t total = 0;
CV_Assert(clGetMemObjectInfo(memobj, CL_MEM_SIZE, sizeof(size_t), &total, 0) == CL_SUCCESS);
CV_Assert(clRetainMemObject(memobj) == CL_SUCCESS);
CV_Assert((int)step >= cols * CV_ELEM_SIZE(type));
CV_Assert(total >= rows * step);
// attach clBuffer to UMatData
dst.u = new UMatData(getOpenCLAllocator());
dst.u->data = 0;
dst.u->allocatorFlags_ = 0; // not allocated from any OpenCV buffer pool
dst.u->flags = 0;
dst.u->handle = cl_mem_buffer;
dst.u->origdata = 0;
dst.u->prevAllocator = 0;
dst.u->size = total;
finalizeHdr(dst);
dst.addref();
return;
} // convertFromBuffer()
/*
// Convert OpenCL image2d_t memory to UMat
*/
void convertFromImage(void* cl_mem_image, UMat& dst)
{
cl_mem clImage = (cl_mem)cl_mem_image;
cl_mem_object_type mem_type = 0;
CV_Assert(clGetMemObjectInfo(clImage, CL_MEM_TYPE, sizeof(cl_mem_object_type), &mem_type, 0) == CL_SUCCESS);
CV_Assert(CL_MEM_OBJECT_IMAGE2D == mem_type);
cl_image_format fmt = { 0, 0 };
CV_Assert(clGetImageInfo(clImage, CL_IMAGE_FORMAT, sizeof(cl_image_format), &fmt, 0) == CL_SUCCESS);
int depth = CV_8U;
switch (fmt.image_channel_data_type)
{
case CL_UNORM_INT8:
case CL_UNSIGNED_INT8:
depth = CV_8U;
break;
case CL_SNORM_INT8:
case CL_SIGNED_INT8:
depth = CV_8S;
break;
case CL_UNORM_INT16:
case CL_UNSIGNED_INT16:
depth = CV_16U;
break;
case CL_SNORM_INT16:
case CL_SIGNED_INT16:
depth = CV_16S;
break;
case CL_SIGNED_INT32:
depth = CV_32S;
break;
case CL_FLOAT:
depth = CV_32F;
break;
default:
CV_Error(cv::Error::OpenCLApiCallError, "Not supported image_channel_data_type");
}
int type = CV_8UC1;
switch (fmt.image_channel_order)
{
case CL_R:
type = CV_MAKE_TYPE(depth, 1);
break;
case CL_RGBA:
case CL_BGRA:
case CL_ARGB:
type = CV_MAKE_TYPE(depth, 4);
break;
default:
CV_Error(cv::Error::OpenCLApiCallError, "Not supported image_channel_order");
break;
}
size_t step = 0;
CV_Assert(clGetImageInfo(clImage, CL_IMAGE_ROW_PITCH, sizeof(size_t), &step, 0) == CL_SUCCESS);
size_t w = 0;
CV_Assert(clGetImageInfo(clImage, CL_IMAGE_WIDTH, sizeof(size_t), &w, 0) == CL_SUCCESS);
size_t h = 0;
CV_Assert(clGetImageInfo(clImage, CL_IMAGE_HEIGHT, sizeof(size_t), &h, 0) == CL_SUCCESS);
dst.create((int)h, (int)w, type);
cl_mem clBuffer = (cl_mem)dst.handle(ACCESS_READ);
cl_command_queue q = (cl_command_queue)Queue::getDefault().ptr();
size_t offset = 0;
size_t src_origin[3] = { 0, 0, 0 };
size_t region[3] = { w, h, 1 };
CV_Assert(clEnqueueCopyImageToBuffer(q, clImage, clBuffer, src_origin, region, offset, 0, NULL, NULL) == CL_SUCCESS);
CV_Assert(clFinish(q) == CL_SUCCESS);
return;
} // convertFromImage()
///////////////////////////////////////////// Utility functions /////////////////////////////////////////////////
static void getDevices(std::vector<cl_device_id>& devices, cl_platform_id platform)
{
cl_uint numDevices = 0;
CV_OclDbgAssert(clGetDeviceIDs(platform, (cl_device_type)Device::TYPE_ALL,
0, NULL, &numDevices) == CL_SUCCESS);
if (numDevices == 0)
{
devices.clear();
return;
}
devices.resize((size_t)numDevices);
CV_OclDbgAssert(clGetDeviceIDs(platform, (cl_device_type)Device::TYPE_ALL,
numDevices, &devices[0], &numDevices) == CL_SUCCESS);
}
struct PlatformInfo::Impl
{
Impl(void* id)
{
refcount = 1;
handle = *(cl_platform_id*)id;
getDevices(devices, handle);
}
String getStrProp(cl_platform_info prop) const
{
char buf[1024];
size_t sz=0;
return clGetPlatformInfo(handle, prop, sizeof(buf)-16, buf, &sz) == CL_SUCCESS &&
sz < sizeof(buf) ? String(buf) : String();
}
IMPLEMENT_REFCOUNTABLE();
std::vector<cl_device_id> devices;
cl_platform_id handle;
};
PlatformInfo::PlatformInfo()
{
p = 0;
}
PlatformInfo::PlatformInfo(void* platform_id)
{
p = new Impl(platform_id);
}
PlatformInfo::~PlatformInfo()
{
if(p)
p->release();
}
PlatformInfo::PlatformInfo(const PlatformInfo& i)
{
if (i.p)
i.p->addref();
p = i.p;
}
PlatformInfo& PlatformInfo::operator =(const PlatformInfo& i)
{
if (i.p != p)
{
if (i.p)
i.p->addref();
if (p)
p->release();
p = i.p;
}
return *this;
}
int PlatformInfo::deviceNumber() const
{
return p ? (int)p->devices.size() : 0;
}
void PlatformInfo::getDevice(Device& device, int d) const
{
CV_Assert(p && d < (int)p->devices.size() );
if(p)
device.set(p->devices[d]);
}
String PlatformInfo::name() const
{
return p ? p->getStrProp(CL_PLATFORM_NAME) : String();
}
String PlatformInfo::vendor() const
{
return p ? p->getStrProp(CL_PLATFORM_VENDOR) : String();
}
String PlatformInfo::version() const
{
return p ? p->getStrProp(CL_PLATFORM_VERSION) : String();
}
static void getPlatforms(std::vector<cl_platform_id>& platforms)
{
cl_uint numPlatforms = 0;
CV_OclDbgAssert(clGetPlatformIDs(0, NULL, &numPlatforms) == CL_SUCCESS);
if (numPlatforms == 0)
{
platforms.clear();
return;
}
platforms.resize((size_t)numPlatforms);
CV_OclDbgAssert(clGetPlatformIDs(numPlatforms, &platforms[0], &numPlatforms) == CL_SUCCESS);
}
void getPlatfomsInfo(std::vector<PlatformInfo>& platformsInfo)
{
std::vector<cl_platform_id> platforms;
getPlatforms(platforms);
for (size_t i = 0; i < platforms.size(); i++)
platformsInfo.push_back( PlatformInfo((void*)&platforms[i]) );
}
const char* typeToStr(int type)
{
static const char* tab[]=
{
"uchar", "uchar2", "uchar3", "uchar4", 0, 0, 0, "uchar8", 0, 0, 0, 0, 0, 0, 0, "uchar16",
"char", "char2", "char3", "char4", 0, 0, 0, "char8", 0, 0, 0, 0, 0, 0, 0, "char16",
"ushort", "ushort2", "ushort3", "ushort4",0, 0, 0, "ushort8", 0, 0, 0, 0, 0, 0, 0, "ushort16",
"short", "short2", "short3", "short4", 0, 0, 0, "short8", 0, 0, 0, 0, 0, 0, 0, "short16",
"int", "int2", "int3", "int4", 0, 0, 0, "int8", 0, 0, 0, 0, 0, 0, 0, "int16",
"float", "float2", "float3", "float4", 0, 0, 0, "float8", 0, 0, 0, 0, 0, 0, 0, "float16",
"double", "double2", "double3", "double4", 0, 0, 0, "double8", 0, 0, 0, 0, 0, 0, 0, "double16",
"?", "?", "?", "?", "?", "?", "?", "?", "?", "?", "?", "?", "?", "?", "?", "?"
};
int cn = CV_MAT_CN(type), depth = CV_MAT_DEPTH(type);
return cn > 16 ? "?" : tab[depth*16 + cn-1];
}
const char* memopTypeToStr(int type)
{
static const char* tab[] =
{
"uchar", "uchar2", "uchar3", "uchar4", 0, 0, 0, "uchar8", 0, 0, 0, 0, 0, 0, 0, "uchar16",
"char", "char2", "char3", "char4", 0, 0, 0, "char8", 0, 0, 0, 0, 0, 0, 0, "char16",
"ushort", "ushort2", "ushort3", "ushort4",0, 0, 0, "ushort8", 0, 0, 0, 0, 0, 0, 0, "ushort16",
"short", "short2", "short3", "short4", 0, 0, 0, "short8", 0, 0, 0, 0, 0, 0, 0, "short16",
"int", "int2", "int3", "int4", 0, 0, 0, "int8", 0, 0, 0, 0, 0, 0, 0, "int16",
"int", "int2", "int3", "int4", 0, 0, 0, "int8", 0, 0, 0, 0, 0, 0, 0, "int16",
"ulong", "ulong2", "ulong3", "ulong4", 0, 0, 0, "ulong8", 0, 0, 0, 0, 0, 0, 0, "ulong16",
"?", "?", "?", "?", "?", "?", "?", "?", "?", "?", "?", "?", "?", "?", "?", "?"
};
int cn = CV_MAT_CN(type), depth = CV_MAT_DEPTH(type);
return cn > 16 ? "?" : tab[depth*16 + cn-1];
}
const char* vecopTypeToStr(int type)
{
static const char* tab[] =
{
"uchar", "short", "uchar3", "int", 0, 0, 0, "int2", 0, 0, 0, 0, 0, 0, 0, "int4",
"char", "short", "char3", "int", 0, 0, 0, "int2", 0, 0, 0, 0, 0, 0, 0, "int4",
"ushort", "int", "ushort3", "int2",0, 0, 0, "int4", 0, 0, 0, 0, 0, 0, 0, "int8",
"short", "int", "short3", "int2", 0, 0, 0, "int4", 0, 0, 0, 0, 0, 0, 0, "int8",
"int", "int2", "int3", "int4", 0, 0, 0, "int8", 0, 0, 0, 0, 0, 0, 0, "int16",
"int", "int2", "int3", "int4", 0, 0, 0, "int8", 0, 0, 0, 0, 0, 0, 0, "int16",
"ulong", "ulong2", "ulong3", "ulong4", 0, 0, 0, "ulong8", 0, 0, 0, 0, 0, 0, 0, "ulong16",
"?", "?", "?", "?", "?", "?", "?", "?", "?", "?", "?", "?", "?", "?", "?", "?"
};
int cn = CV_MAT_CN(type), depth = CV_MAT_DEPTH(type);
return cn > 16 ? "?" : tab[depth*16 + cn-1];
}
const char* convertTypeStr(int sdepth, int ddepth, int cn, char* buf)
{
if( sdepth == ddepth )
return "noconvert";
const char *typestr = typeToStr(CV_MAKETYPE(ddepth, cn));
if( ddepth >= CV_32F ||
(ddepth == CV_32S && sdepth < CV_32S) ||
(ddepth == CV_16S && sdepth <= CV_8S) ||
(ddepth == CV_16U && sdepth == CV_8U))
{
sprintf(buf, "convert_%s", typestr);
}
else if( sdepth >= CV_32F )
sprintf(buf, "convert_%s%s_rte", typestr, (ddepth < CV_32S ? "_sat" : ""));
else
sprintf(buf, "convert_%s_sat", typestr);
return buf;
}
template <typename T>
static std::string kerToStr(const Mat & k)
{
int width = k.cols - 1, depth = k.depth();
const T * const data = k.ptr<T>();
std::ostringstream stream;
stream.precision(10);
if (depth <= CV_8S)
{
for (int i = 0; i < width; ++i)
stream << "DIG(" << (int)data[i] << ")";
stream << "DIG(" << (int)data[width] << ")";
}
else if (depth == CV_32F)
{
stream.setf(std::ios_base::showpoint);
for (int i = 0; i < width; ++i)
stream << "DIG(" << data[i] << "f)";
stream << "DIG(" << data[width] << "f)";
}
else
{
for (int i = 0; i < width; ++i)
stream << "DIG(" << data[i] << ")";
stream << "DIG(" << data[width] << ")";
}
return stream.str();
}
String kernelToStr(InputArray _kernel, int ddepth, const char * name)
{
Mat kernel = _kernel.getMat().reshape(1, 1);
int depth = kernel.depth();
if (ddepth < 0)
ddepth = depth;
if (ddepth != depth)
kernel.convertTo(kernel, ddepth);
typedef std::string (* func_t)(const Mat &);
static const func_t funcs[] = { kerToStr<uchar>, kerToStr<char>, kerToStr<ushort>, kerToStr<short>,
kerToStr<int>, kerToStr<float>, kerToStr<double>, 0 };
const func_t func = funcs[ddepth];
CV_Assert(func != 0);
return cv::format(" -D %s=%s", name ? name : "COEFF", func(kernel).c_str());
}
#define PROCESS_SRC(src) \
do \
{ \
if (!src.empty()) \
{ \
CV_Assert(src.isMat() || src.isUMat()); \
Size csize = src.size(); \
int ctype = src.type(), ccn = CV_MAT_CN(ctype), cdepth = CV_MAT_DEPTH(ctype), \
ckercn = vectorWidths[cdepth], cwidth = ccn * csize.width; \
if (cwidth < ckercn || ckercn <= 0) \
return 1; \
cols.push_back(cwidth); \
if (strat == OCL_VECTOR_OWN && ctype != ref_type) \
return 1; \
offsets.push_back(src.offset()); \
steps.push_back(src.step()); \
dividers.push_back(ckercn * CV_ELEM_SIZE1(ctype)); \
kercns.push_back(ckercn); \
} \
} \
while ((void)0, 0)
int predictOptimalVectorWidth(InputArray src1, InputArray src2, InputArray src3,
InputArray src4, InputArray src5, InputArray src6,
InputArray src7, InputArray src8, InputArray src9,
OclVectorStrategy strat)
{
const ocl::Device & d = ocl::Device::getDefault();
int vectorWidths[] = { d.preferredVectorWidthChar(), d.preferredVectorWidthChar(),
d.preferredVectorWidthShort(), d.preferredVectorWidthShort(),
d.preferredVectorWidthInt(), d.preferredVectorWidthFloat(),
d.preferredVectorWidthDouble(), -1 };
// if the device says don't use vectors
if (vectorWidths[0] == 1)
{
// it's heuristic
vectorWidths[CV_8U] = vectorWidths[CV_8S] = 4;
vectorWidths[CV_16U] = vectorWidths[CV_16S] = 2;
vectorWidths[CV_32S] = vectorWidths[CV_32F] = vectorWidths[CV_64F] = 1;
}
return checkOptimalVectorWidth(vectorWidths, src1, src2, src3, src4, src5, src6, src7, src8, src9, strat);
}
int checkOptimalVectorWidth(const int *vectorWidths,
InputArray src1, InputArray src2, InputArray src3,
InputArray src4, InputArray src5, InputArray src6,
InputArray src7, InputArray src8, InputArray src9,
OclVectorStrategy strat)
{
CV_Assert(vectorWidths);
int ref_type = src1.type();
std::vector<size_t> offsets, steps, cols;
std::vector<int> dividers, kercns;
PROCESS_SRC(src1);
PROCESS_SRC(src2);
PROCESS_SRC(src3);
PROCESS_SRC(src4);
PROCESS_SRC(src5);
PROCESS_SRC(src6);
PROCESS_SRC(src7);
PROCESS_SRC(src8);
PROCESS_SRC(src9);
size_t size = offsets.size();
for (size_t i = 0; i < size; ++i)
while (offsets[i] % dividers[i] != 0 || steps[i] % dividers[i] != 0 || cols[i] % kercns[i] != 0)
dividers[i] >>= 1, kercns[i] >>= 1;
// default strategy
int kercn = *std::min_element(kercns.begin(), kercns.end());
return kercn;
}
int predictOptimalVectorWidthMax(InputArray src1, InputArray src2, InputArray src3,
InputArray src4, InputArray src5, InputArray src6,
InputArray src7, InputArray src8, InputArray src9)
{
return predictOptimalVectorWidth(src1, src2, src3, src4, src5, src6, src7, src8, src9, OCL_VECTOR_MAX);
}
#undef PROCESS_SRC
// TODO Make this as a method of OpenCL "BuildOptions" class
void buildOptionsAddMatrixDescription(String& buildOptions, const String& name, InputArray _m)
{
if (!buildOptions.empty())
buildOptions += " ";
int type = _m.type(), depth = CV_MAT_DEPTH(type);
buildOptions += format(
"-D %s_T=%s -D %s_T1=%s -D %s_CN=%d -D %s_TSIZE=%d -D %s_T1SIZE=%d -D %s_DEPTH=%d",
name.c_str(), ocl::typeToStr(type),
name.c_str(), ocl::typeToStr(CV_MAKE_TYPE(depth, 1)),
name.c_str(), (int)CV_MAT_CN(type),
name.c_str(), (int)CV_ELEM_SIZE(type),
name.c_str(), (int)CV_ELEM_SIZE1(type),
name.c_str(), (int)depth
);
}
struct Image2D::Impl
{
Impl(const UMat &src, bool norm, bool alias)
{
handle = 0;
refcount = 1;
init(src, norm, alias);
}
~Impl()
{
if (handle)
clReleaseMemObject(handle);
}
static cl_image_format getImageFormat(int depth, int cn, bool norm)
{
cl_image_format format;
static const int channelTypes[] = { CL_UNSIGNED_INT8, CL_SIGNED_INT8, CL_UNSIGNED_INT16,
CL_SIGNED_INT16, CL_SIGNED_INT32, CL_FLOAT, -1, -1 };
static const int channelTypesNorm[] = { CL_UNORM_INT8, CL_SNORM_INT8, CL_UNORM_INT16,
CL_SNORM_INT16, -1, -1, -1, -1 };
static const int channelOrders[] = { -1, CL_R, CL_RG, -1, CL_RGBA };
int channelType = norm ? channelTypesNorm[depth] : channelTypes[depth];
int channelOrder = channelOrders[cn];
format.image_channel_data_type = (cl_channel_type)channelType;
format.image_channel_order = (cl_channel_order)channelOrder;
return format;
}
static bool isFormatSupported(cl_image_format format)
{
if (!haveOpenCL())
CV_Error(Error::OpenCLApiCallError, "OpenCL runtime not found!");
cl_context context = (cl_context)Context::getDefault().ptr();
// Figure out how many formats are supported by this context.
cl_uint numFormats = 0;
cl_int err = clGetSupportedImageFormats(context, CL_MEM_READ_WRITE,
CL_MEM_OBJECT_IMAGE2D, numFormats,
NULL, &numFormats);
AutoBuffer<cl_image_format> formats(numFormats);
err = clGetSupportedImageFormats(context, CL_MEM_READ_WRITE,
CL_MEM_OBJECT_IMAGE2D, numFormats,
formats, NULL);
CV_OclDbgAssert(err == CL_SUCCESS);
for (cl_uint i = 0; i < numFormats; ++i)
{
if (!memcmp(&formats[i], &format, sizeof(format)))
{
return true;
}
}
return false;
}
void init(const UMat &src, bool norm, bool alias)
{
if (!haveOpenCL())
CV_Error(Error::OpenCLApiCallError, "OpenCL runtime not found!");
CV_Assert(!src.empty());
CV_Assert(ocl::Device::getDefault().imageSupport());
int err, depth = src.depth(), cn = src.channels();
CV_Assert(cn <= 4);
cl_image_format format = getImageFormat(depth, cn, norm);
if (!isFormatSupported(format))
CV_Error(Error::OpenCLApiCallError, "Image format is not supported");
if (alias && !src.handle(ACCESS_RW))
CV_Error(Error::OpenCLApiCallError, "Incorrect UMat, handle is null");
cl_context context = (cl_context)Context::getDefault().ptr();
cl_command_queue queue = (cl_command_queue)Queue::getDefault().ptr();
#ifdef CL_VERSION_1_2
// this enables backwards portability to
// run on OpenCL 1.1 platform if library binaries are compiled with OpenCL 1.2 support
const Device & d = ocl::Device::getDefault();
int minor = d.deviceVersionMinor(), major = d.deviceVersionMajor();
CV_Assert(!alias || canCreateAlias(src));
if (1 < major || (1 == major && 2 <= minor))
{
cl_image_desc desc;
desc.image_type = CL_MEM_OBJECT_IMAGE2D;
desc.image_width = src.cols;
desc.image_height = src.rows;
desc.image_depth = 0;
desc.image_array_size = 1;
desc.image_row_pitch = alias ? src.step[0] : 0;
desc.image_slice_pitch = 0;
desc.buffer = alias ? (cl_mem)src.handle(ACCESS_RW) : 0;
desc.num_mip_levels = 0;
desc.num_samples = 0;
handle = clCreateImage(context, CL_MEM_READ_WRITE, &format, &desc, NULL, &err);
}
else
#endif
{
CV_SUPPRESS_DEPRECATED_START
CV_Assert(!alias); // This is an OpenCL 1.2 extension
handle = clCreateImage2D(context, CL_MEM_READ_WRITE, &format, src.cols, src.rows, 0, NULL, &err);
CV_SUPPRESS_DEPRECATED_END
}
CV_OclDbgAssert(err == CL_SUCCESS);
size_t origin[] = { 0, 0, 0 };
size_t region[] = { static_cast<size_t>(src.cols), static_cast<size_t>(src.rows), 1 };
cl_mem devData;
if (!alias && !src.isContinuous())
{
devData = clCreateBuffer(context, CL_MEM_READ_ONLY, src.cols * src.rows * src.elemSize(), NULL, &err);
CV_OclDbgAssert(err == CL_SUCCESS);
const size_t roi[3] = {static_cast<size_t>(src.cols) * src.elemSize(), static_cast<size_t>(src.rows), 1};
CV_Assert(clEnqueueCopyBufferRect(queue, (cl_mem)src.handle(ACCESS_READ), devData, origin, origin,
roi, src.step, 0, src.cols * src.elemSize(), 0, 0, NULL, NULL) == CL_SUCCESS);
CV_OclDbgAssert(clFlush(queue) == CL_SUCCESS);
}
else
{
devData = (cl_mem)src.handle(ACCESS_READ);
}
CV_Assert(devData != NULL);
if (!alias)
{
CV_OclDbgAssert(clEnqueueCopyBufferToImage(queue, devData, handle, 0, origin, region, 0, NULL, 0) == CL_SUCCESS);
if (!src.isContinuous())
{
CV_OclDbgAssert(clFlush(queue) == CL_SUCCESS);
CV_OclDbgAssert(clReleaseMemObject(devData) == CL_SUCCESS);
}
}
}
IMPLEMENT_REFCOUNTABLE();
cl_mem handle;
};
Image2D::Image2D()
{
p = NULL;
}
Image2D::Image2D(const UMat &src, bool norm, bool alias)
{
p = new Impl(src, norm, alias);
}
bool Image2D::canCreateAlias(const UMat &m)
{
bool ret = false;
const Device & d = ocl::Device::getDefault();
if (d.imageFromBufferSupport() && !m.empty())
{
// This is the required pitch alignment in pixels
uint pitchAlign = d.imagePitchAlignment();
if (pitchAlign && !(m.step % (pitchAlign * m.elemSize())))
{
// We don't currently handle the case where the buffer was created
// with CL_MEM_USE_HOST_PTR
if (!m.u->tempUMat())
{
ret = true;
}
}
}
return ret;
}
bool Image2D::isFormatSupported(int depth, int cn, bool norm)
{
cl_image_format format = Impl::getImageFormat(depth, cn, norm);
return Impl::isFormatSupported(format);
}
Image2D::Image2D(const Image2D & i)
{
p = i.p;
if (p)
p->addref();
}
Image2D & Image2D::operator = (const Image2D & i)
{
if (i.p != p)
{
if (i.p)
i.p->addref();
if (p)
p->release();
p = i.p;
}
return *this;
}
Image2D::~Image2D()
{
if (p)
p->release();
}
void* Image2D::ptr() const
{
return p ? p->handle : 0;
}
bool internal::isOpenCLForced()
{
static bool initialized = false;
static bool value = false;
if (!initialized)
{
value = utils::getConfigurationParameterBool("OPENCV_OPENCL_FORCE", false);
initialized = true;
}
return value;
}
bool internal::isPerformanceCheckBypassed()
{
static bool initialized = false;
static bool value = false;
if (!initialized)
{
value = utils::getConfigurationParameterBool("OPENCV_OPENCL_PERF_CHECK_BYPASS", false);
initialized = true;
}
return value;
}
bool internal::isCLBuffer(UMat& u)
{
void* h = u.handle(ACCESS_RW);
if (!h)
return true;
CV_DbgAssert(u.u->currAllocator == getOpenCLAllocator());
#if 1
if ((u.u->allocatorFlags_ & 0xffff0000) != 0) // OpenCL SVM flags are stored here
return false;
#else
cl_mem_object_type type = 0;
cl_int ret = clGetMemObjectInfo((cl_mem)h, CL_MEM_TYPE, sizeof(type), &type, NULL);
if (ret != CL_SUCCESS || type != CL_MEM_OBJECT_BUFFER)
return false;
#endif
return true;
}
}}