opencv/modules/dnn/src/net_openvino.cpp
Oleg Pipikin 6da2ddcf0e Fix for OpenVINO 2024.0
Remove support OpenVINO lower than 2022.1 release
Remove legacy InferenceEngine wrappers
2024-03-18 15:05:50 +04:00

955 lines
32 KiB
C++

// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#include "precomp.hpp"
#include <opencv2/core/utils/fp_control_utils.hpp>
#include <opencv2/core/utils/configuration.private.hpp>
#include <opencv2/core/utils/logger.hpp>
#include "op_inf_engine.hpp"
#ifdef HAVE_INF_ENGINE
#include <openvino/op/util/op_types.hpp>
#endif
#include "net_impl.hpp"
#include "backend.hpp"
#include "factory.hpp"
namespace cv {
namespace dnn {
CV__DNN_INLINE_NS_BEGIN
#ifdef HAVE_INF_ENGINE
// TODO: use "string" target specifier
class NetImplOpenVINO CV_FINAL : public Net::Impl
{
public:
typedef Net::Impl Base;
// this default constructor is used with OpenVINO native loader
// TODO: dedicated Impl?
NetImplOpenVINO()
: Net::Impl()
{
preferableBackend = DNN_BACKEND_INFERENCE_ENGINE_NGRAPH;
}
// constructor to derive execution implementation from the loaded network
explicit NetImplOpenVINO(const Ptr<Net::Impl>& basePtr)
: Net::Impl()
{
basePtr_ = basePtr;
init();
}
void init()
{
CV_TRACE_FUNCTION();
CV_Assert(basePtr_);
Net::Impl& base = *basePtr_;
CV_Assert(!base.netWasAllocated);
netInputLayer = base.netInputLayer;
blobsToKeep = base.blobsToKeep;
layers = base.layers;
for (MapIdToLayerData::iterator it = layers.begin(); it != layers.end(); it++)
{
LayerData& ld = it->second;
ld.resetAllocation();
}
layerNameToId = base.layerNameToId;
outputNameToId = base.outputNameToId;
//blobManager = base.blobManager;
preferableBackend = DNN_BACKEND_INFERENCE_ENGINE_NGRAPH; //base.preferableBackend;
preferableTarget = base.preferableTarget;
hasDynamicShapes = base.hasDynamicShapes;
CV_Assert(base.backendWrappers.empty()); //backendWrappers = base.backendWrappers;
lastLayerId = base.lastLayerId;
netWasAllocated = base.netWasAllocated;
netWasQuantized = base.netWasQuantized;
fusion = base.fusion;
}
//bool isAsync; // FIXIT: drop
bool empty() const override
{
return Base::empty();
}
void setPreferableBackend(Net& net, int backendId) override
{
if (backendId == DNN_BACKEND_INFERENCE_ENGINE || backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
return; // no-op
if (!basePtr_)
CV_Error(Error::StsError, "DNN: Can't switch backend of network created by OpenVINO native loader");
Ptr<Net::Impl>& impl_ptr_ref = accessor::DnnNetAccessor::getImplPtrRef(net);
impl_ptr_ref = basePtr_;
basePtr_->setPreferableBackend(net, backendId);
}
void setPreferableTarget(int targetId) override
{
if (preferableTarget != targetId)
{
preferableTarget = targetId;
clear();
}
}
Ptr<BackendWrapper> wrap(Mat& host) override
{
return Ptr<BackendWrapper>(new NgraphBackendWrapper(preferableTarget, host));
}
void clear() override
{
Base::clear();
}
void validateBackendAndTarget() override
{
CV_TRACE_FUNCTION();
CV_Assert(preferableBackend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH);
CV_Check((int)preferableTarget,
preferableTarget == DNN_TARGET_CPU ||
preferableTarget == DNN_TARGET_OPENCL ||
preferableTarget == DNN_TARGET_OPENCL_FP16 ||
preferableTarget == DNN_TARGET_MYRIAD ||
preferableTarget == DNN_TARGET_HDDL ||
preferableTarget == DNN_TARGET_FPGA,
"Unknown OpenVINO target"
);
}
Ptr<Layer> createLayerInstance(const LayerData& ld) const override
{
// try to create layer instance from backend-specific pool (e.g., plugin)
Ptr<Layer> instance = LayerFactory::createLayerInstance(ld.type, const_cast<LayerParams&>(ld.params));
if (!instance)
instance = Base::createLayerInstance(ld);
return instance;
}
void addNgraphOutputs(LayerData& ld);
void initBackend(const std::vector<LayerPin>& blobsToKeep_) override;
void fuseLayers(const std::vector<LayerPin>& blobsToKeep_) override;
void forwardLayer(LayerData& ld) override;
AsyncArray getBlobAsync(const LayerPin& pin) override;
//string dump(bool forceAllocation = false) const override;
static
Net createNetworkFromModelOptimizer(std::shared_ptr<ov::Model>& ieNet);
}; // NetImplOpenVINO
void NetImplOpenVINO::forwardLayer(LayerData& ld)
{
CV_TRACE_FUNCTION();
Ptr<Layer> layer = ld.layerInstance;
if (!ld.skip)
{
auto it = ld.backendNodes.find(preferableBackend);
if (ld.id == 0 || // input layer
it == ld.backendNodes.end() // non-supported layer or its mode
)
{
return Base::forwardLayer(ld);
}
CV_Assert(it != ld.backendNodes.end());
const Ptr<BackendNode>& node = it->second;
CV_Assert(!node.empty());
Ptr<InfEngineNgraphNode> ieNode = node.dynamicCast<InfEngineNgraphNode>();
CV_Assert(!ieNode.empty());
CV_Assert(ieNode->net);
TickMeter tm;
tm.start();
ieNode->net->forward(ld.outputBlobsWrappers, isAsync);
tm.stop();
int64 t = tm.getTimeTicks();
layersTimings[ld.id] = (t > 0) ? t : 1; // zero for skipped layers only
}
else
{
layersTimings[ld.id] = 0;
}
ld.flag = 1;
}
AsyncArray NetImplOpenVINO::getBlobAsync(const LayerPin& pin)
{
CV_TRACE_FUNCTION();
if (!pin.valid())
CV_Error(Error::StsObjectNotFound, "Requested blob not found");
LayerData& ld = layers[pin.lid];
if ((size_t)pin.oid >= ld.outputBlobs.size())
{
CV_Error(Error::StsOutOfRange, format("Layer \"%s\" produce only %d outputs, "
"the #%d was requested",
ld.name.c_str(), (int)ld.outputBlobs.size(), (int)pin.oid));
}
if (preferableTarget != DNN_TARGET_CPU)
{
CV_Assert(!ld.outputBlobsWrappers.empty() && !ld.outputBlobsWrappers[pin.oid].empty());
// Transfer data to CPU if it's require.
ld.outputBlobsWrappers[pin.oid]->copyToHost();
}
CV_Assert(preferableBackend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH);
Ptr<NgraphBackendWrapper> wrapper = ld.outputBlobsWrappers[pin.oid].dynamicCast<NgraphBackendWrapper>();
return std::move(wrapper->futureMat);
}
/** mark input pins as outputs from other subnetworks
* FIXIT must be done by DNN engine not ngraph.
*/
void NetImplOpenVINO::addNgraphOutputs(LayerData& ld)
{
CV_TRACE_FUNCTION();
CV_LOG_DEBUG(NULL, "DNN/IE: layer of new subnet: " << ld.name << "@" << ld.type);
Ptr<InfEngineNgraphNet> layerNet;
auto it = ld.backendNodes.find(preferableBackend);
if (it != ld.backendNodes.end())
{
Ptr<BackendNode> node = it->second;
if (!node.empty())
{
Ptr<InfEngineNgraphNode> ieNode = node.dynamicCast<InfEngineNgraphNode>();
CV_Assert(!ieNode.empty());
CV_Assert(!ieNode->net.empty());
layerNet = ieNode->net;
}
}
for (int i = 0; i < ld.inputBlobsId.size(); ++i)
{
LayerData& inpLd = layers[ld.inputBlobsId[i].lid];
Ptr<BackendNode> inpNode = inpLd.backendNodes[preferableBackend];
if (!inpNode.empty())
{
Ptr<InfEngineNgraphNode> ieInpNode = inpNode.dynamicCast<InfEngineNgraphNode>();
CV_Assert(!ieInpNode.empty());
CV_Assert(!ieInpNode->net.empty());
if (layerNet != ieInpNode->net)
{
CV_LOG_DEBUG(NULL, "DNN/IE: pin output between subnets: " << ieInpNode->node.get_node()->get_friendly_name());
ieInpNode->net->addOutput(ieInpNode);
}
}
}
}
void NetImplOpenVINO::initBackend(const std::vector<LayerPin>& blobsToKeep_)
{
CV_TRACE_FUNCTION();
CV_CheckEQ(preferableBackend, DNN_BACKEND_INFERENCE_ENGINE_NGRAPH, "");
Ptr<InfEngineNgraphNet> net;
for (MapIdToLayerData::const_iterator it = layers.begin(); it != layers.end(); ++it)
{
const LayerData& ld = it->second;
if (ld.id == 0)
{
CV_Assert((netInputLayer->outNames.empty() && ld.outputBlobsWrappers.size() == 1) ||
(netInputLayer->outNames.size() == ld.outputBlobsWrappers.size()));
for (int i = 0; i < ld.outputBlobsWrappers.size(); ++i)
{
std::string outputName = netInputLayer->outNames.empty() ? ld.name : netInputLayer->outNames[i];
outputName = ld.outputBlobsWrappers.size() > 1 ? (outputName + "." + std::to_string(i)) : outputName;
ld.outputBlobsWrappers[i].dynamicCast<NgraphBackendWrapper>()->name = outputName;
}
}
else
{
for (int i = 0; i < ld.outputBlobsWrappers.size(); ++i)
{
std::string outputName = ld.outputBlobsWrappers.size() > 1 ? (ld.name + "." + std::to_string(i)) : ld.name;
ld.outputBlobsWrappers[i].dynamicCast<NgraphBackendWrapper>()->name = outputName;
}
}
}
if (!basePtr_) // model is loaded by OpenVINO
{
Ptr<BackendNode> node = layers[lastLayerId].backendNodes[preferableBackend];
CV_Assert(!node.empty());
Ptr<InfEngineNgraphNode> ieNode = node.dynamicCast<InfEngineNgraphNode>();
CV_Assert(!ieNode.empty());
CV_Assert(ieNode->net);
InfEngineNgraphNet& ienet = *ieNode->net;
ienet.reset();
for (MapIdToLayerData::iterator it = layers.begin(); it != layers.end(); ++it)
{
LayerData& ld = it->second;
if (ld.id == 0)
{
for (int i = 0; i < ld.inputBlobsWrappers.size(); ++i)
{
ld.inputBlobsWrappers[i].dynamicCast<NgraphBackendWrapper>()->name = netInputLayer->outNames[i];
}
}
ienet.addBlobs(ld.inputBlobsWrappers);
ienet.addBlobs(ld.outputBlobsWrappers);
ld.skip = true;
}
layers[lastLayerId].skip = false;
ienet.init((Target)preferableTarget);
return;
}
// Build Inference Engine networks from sets of layers that support this
// backend. Split a whole model on several Inference Engine networks if
// some of layers are not implemented.
for (MapIdToLayerData::iterator it = layers.begin(); it != layers.end(); ++it)
{
LayerData& ld = it->second;
CV_LOG_DEBUG(NULL, "DNN/IE: processing layer " << ld.name << "@" << ld.type << " (" << ld.id << ") ...");
if (ld.id == 0 && ld.skip)
{
CV_LOG_DEBUG(NULL, "DNN/IE: SKIP!");
continue;
}
bool fused = ld.skip;
Ptr<Layer> layer = ld.layerInstance;
if (ld.id == 0)
continue;
ld.skip = true; // Initially skip all Inference Engine supported layers.
// Create a new network if one of inputs from different Inference Engine graph.
std::vector<Ptr<BackendNode>> inputNodes;
for (int i = 0; i < ld.inputBlobsId.size(); ++i)
{
// Layer_Test_ROIPooling.Accuracy has 2 inputs inpLD = 0, 0 -> has 4 inputNodes (input, rois, input, rois)
if (inputNodes.size() == ld.inputBlobsId.size())
{
break;
}
LayerData& inpLd = layers[ld.inputBlobsId[i].lid];
Ptr<BackendNode> inpNode = inpLd.backendNodes[preferableBackend];
if (!inpNode.empty())
{
Ptr<InfEngineNgraphNode> ieInpNode = inpNode.dynamicCast<InfEngineNgraphNode>();
CV_Assert(!ieInpNode.empty());
CV_Assert(!ieInpNode->net.empty());
if (ieInpNode->net == net && !fused)
{
inputNodes.push_back(inpNode);
continue;
}
}
if (net.empty())
{
net = Ptr<InfEngineNgraphNet>(new InfEngineNgraphNet(*this));
}
if (!fused)
{
std::vector<std::string> inputNames;
std::vector<cv::Mat> inputs;
auto curr_pos = inpLd.consumers.begin();
auto compare = [&ld](const LayerPin& lp) { return lp.lid == ld.id; };
auto cons = curr_pos;
while ((cons = std::find_if(curr_pos, inpLd.consumers.end(), compare)) !=
inpLd.consumers.end()) {
int cons_inp = cons->oid;
Ptr<NgraphBackendWrapper> inpWrapper = inpLd.outputBlobsWrappers[cons_inp].
dynamicCast<NgraphBackendWrapper>();
CV_Assert(!inpWrapper.empty());
auto iter = std::find(inputNames.begin(), inputNames.end(),
inpWrapper->name);
if (iter == inputNames.end())
{
inputNames.push_back(inpWrapper->name);
inputs.push_back(inpLd.outputBlobs[cons_inp]);
}
curr_pos = cons + 1;
}
auto inps = net->setInputs(inputs, inputNames);
for (auto& inp : inps)
{
inputNodes.emplace_back(Ptr<BackendNode>(new InfEngineNgraphNode(inp)));
}
}
}
Ptr<BackendNode> node;
if (!net.empty())
{
if (fused)
{
bool inPlace = ld.inputBlobsId.size() == 1 && ld.outputBlobs.size() == 1 &&
ld.inputBlobs[0]->data == ld.outputBlobs[0].data;
CV_Assert(inPlace);
node = layers[ld.inputBlobsId[0].lid].backendNodes[preferableBackend];
ld.inputBlobsWrappers = layers[ld.inputBlobsId[0].lid].inputBlobsWrappers;
}
}
else
{
net = Ptr<InfEngineNgraphNet>(new InfEngineNgraphNet(*this));
}
if (!fused)
{
CV_Assert(ld.inputBlobsId.size() == inputNodes.size());
for (int i = 0; i < ld.inputBlobsId.size(); ++i)
{
int lid = ld.inputBlobsId[i].lid;
int oid = ld.inputBlobsId[i].oid;
auto ieInpNode = inputNodes[i].dynamicCast<InfEngineNgraphNode>();
const auto& ngraph_input_node = ieInpNode->node.get_node_shared_ptr();
CV_LOG_DEBUG(NULL, "DNN/IE: bind output port " << lid << ":" << oid << " (" << ngraph_input_node->get_friendly_name() << ":" << ngraph_input_node->get_type_info().name << ")");
if ((oid == 0 && ngraph_input_node->get_output_size() == 1) || lid == 0)
continue;
// Handle parameters from other subnets. Output port is not used in this case
if ((ov::op::util::is_parameter(ngraph_input_node) || ov::op::util::is_constant(ngraph_input_node)) &&
ngraph_input_node->get_output_size() == 1)
{
inputNodes[i] = Ptr<BackendNode>(new InfEngineNgraphNode(ngraph_input_node));
continue;
}
CV_CheckLT((size_t)oid, ngraph_input_node->get_output_size(), "");
inputNodes[i] = new InfEngineNgraphNode(ngraph_input_node->output(oid));
}
if (layer->supportBackend(preferableBackend))
{
CV_LOG_DEBUG(NULL, "DNN/IE: wrap layer " << ld.name << "@" << ld.type << " - outputs: " << ld.outputBlobsWrappers.size());
node = layer->initNgraph(ld.inputBlobsWrappers, inputNodes);
#if 0 // FIXIT doesn't work with multiple outputs (set name is applied to the same node)
for (int i = 0; i < ld.outputBlobsWrappers.size(); ++i)
{
InferenceEngine::DataPtr dataPtr = ngraphDataNode(ld.outputBlobsWrappers[i]);
node.dynamicCast<InfEngineNgraphNode>()->setName(dataPtr->getName());
}
#else
node.dynamicCast<InfEngineNgraphNode>()->setName(layer->name);
#endif
}
else
{
CV_LOG_DEBUG(NULL, "DNN/IE: layer is not supported: " << ld.name << "@" << ld.type);
node = Ptr<BackendNode>(new InfEngineNgraphNode(inputNodes,
ld.layerInstance, ld.inputBlobs, ld.outputBlobs, ld.internals));
}
}
else if (node.empty())
{
CV_LOG_DEBUG(NULL, "DNN/IE: node.empty() bypass...");
continue;
}
ld.backendNodes[preferableBackend] = node;
Ptr<InfEngineNgraphNode> ieNode = node.dynamicCast<InfEngineNgraphNode>();
CV_Assert(!ieNode.empty());
ieNode->net = net;
for (const auto& pin : blobsToKeep_)
{
if (pin.lid == ld.id)
{
ieNode->net->addOutput(ieNode);
break;
}
}
net->addBlobs(ld.inputBlobsWrappers);
net->addBlobs(ld.outputBlobsWrappers);
addNgraphOutputs(ld);
}
// User may choose to return only intermediate blobs but not network's result (see Test_TFLite.max_unpooling)
// Such layers should not be skipped when forwardLayer is called.
// Also, perform a sanity check that there is no double inferred networks (a single skip=false per unique net instance)
std::set<Ptr<InfEngineNgraphNet>> uniqueNets;
if (!blobsToKeep_.empty())
{
LayerPin latestLayerPin = getLatestLayerPin(blobsToKeep_);
for (MapIdToLayerData::iterator it = layers.begin(); it != layers.end(); ++it)
{
LayerData& ld = it->second;
auto iter = ld.backendNodes.find(preferableBackend);
if (iter == ld.backendNodes.end())
continue;
Ptr<BackendNode>& node = iter->second;
if (node.empty())
continue;
Ptr<InfEngineNgraphNode> ieNode = node.dynamicCast<InfEngineNgraphNode>();
if (ieNode.empty())
continue;
if (ld.id == latestLayerPin.lid) {
ld.skip = false;
uniqueNets.insert(ieNode->net);
break;
}
}
}
// Initialize all networks.
for (MapIdToLayerData::reverse_iterator it = layers.rbegin(); it != layers.rend(); ++it)
{
LayerData& ld = it->second;
auto iter = ld.backendNodes.find(preferableBackend);
if (iter == ld.backendNodes.end())
continue;
Ptr<BackendNode>& node = iter->second;
if (node.empty())
continue;
Ptr<InfEngineNgraphNode> ieNode = node.dynamicCast<InfEngineNgraphNode>();
if (ieNode.empty())
continue;
CV_Assert(!ieNode->net.empty());
if (!ieNode->net->isInitialized())
{
ieNode->net->addOutput(ieNode);
ieNode->net->createNet((Target)preferableTarget);
if (uniqueNets.find(ieNode->net) == uniqueNets.end()) {
ld.skip = false;
uniqueNets.insert(ieNode->net);
}
}
}
CV_Assert(uniqueNets.size() == 1);
}
#if 0
#define printf_(args) printf args
#else
#define printf_(args)
#endif
void NetImplOpenVINO::fuseLayers(const std::vector<LayerPin>& blobsToKeep_)
{
CV_TRACE_FUNCTION();
if(!fusion)
return;
CV_Check((int)preferableBackend, preferableBackend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH, "");
#if 0 // FIXIT mode without fusion is broken due to unsupported layers and handling of "custom" nodes
return;
#endif
// scan through all the layers. If there is convolution layer followed by the activation layer,
// we try to embed this activation into the convolution and disable separate execution of the activation
// FIXIT replace by layersToKeep to avoid hacks like "LayerPin(lid, 0)"
std::set<LayerPin> pinsToKeep(blobsToKeep_.begin(),
blobsToKeep_.end());
for (MapIdToLayerData::const_iterator it = layers.begin(); it != layers.end(); it++)
{
int lid = it->first;
LayerData& ld = layers[lid];
if (ld.skip)
{
printf_(("skipped %s: %s\n", ld.layerInstance->name.c_str(), ld.layerInstance->type.c_str()));
continue;
}
printf_(("analyzing %s: %s\n", ld.layerInstance->name.c_str(), ld.layerInstance->type.c_str()));
// the optimization #1. try to fuse batch norm, scaling and/or activation layers
// with the current layer if they follow it. Normally, the are fused with the convolution layer,
// but some of them (like activation) may be fused with fully-connected, elemwise (+) and
// some other layers.
Ptr<Layer>& currLayer = ld.layerInstance;
if (ld.consumers.size() == 1 && pinsToKeep.count(LayerPin(lid, 0)) == 0)
{
LayerData* nextData = &layers[ld.consumers[0].lid];
LayerPin lpNext(ld.consumers[0].lid, 0);
while (nextData)
{
if (preferableBackend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && pinsToKeep.count(lpNext) != 0)
{
CV_LOG_DEBUG(NULL, "DNN/IE: skip fusing with 'output' node: " << nextData->name << "@" << nextData->type);
break;
}
/* we use `tryFuse` member of convolution layer to fuse eltwise later
* it's not intended to be fused here; hence, we stop when we encounter eltwise
*/
Ptr<Layer> nextLayer = nextData->layerInstance;
if (currLayer->tryFuse(nextLayer))
{
printf_(("\tfused with %s\n", nextLayer->name.c_str()));
nextData->skip = true;
ld.outputBlobs = layers[lpNext.lid].outputBlobs;
ld.outputBlobsWrappers = layers[lpNext.lid].outputBlobsWrappers;
if (nextData->consumers.size() == 1)
{
int nextLayerId = nextData->consumers[0].lid;
nextData = &layers[nextLayerId];
lpNext = LayerPin(nextLayerId, 0);
}
else
{
nextData = 0;
break;
}
}
else
break;
}
}
}
}
void switchToOpenVINOBackend(Net& net)
{
CV_TRACE_FUNCTION();
Ptr<Net::Impl>& impl_ptr_ref = accessor::DnnNetAccessor::getImplPtrRef(net);
CV_Assert(impl_ptr_ref);
CV_LOG_INFO(NULL, "DNN: switching to OpenVINO backend... (networkID=" << impl_ptr_ref->networkId << ")");
Ptr<NetImplOpenVINO> openvino_impl_ptr = makePtr<NetImplOpenVINO>(impl_ptr_ref);
impl_ptr_ref = openvino_impl_ptr;
}
/*static*/
Net NetImplOpenVINO::createNetworkFromModelOptimizer(std::shared_ptr<ov::Model>& ieNet)
{
CV_TRACE_FUNCTION();
CV_TRACE_REGION("register_inputs");
std::vector<String> inputsNames;
std::vector<MatShape> inp_shapes;
for (auto& it : ieNet->get_parameters())
{
inputsNames.push_back(it->get_friendly_name());
std::vector<size_t> dims = it->get_shape();
inp_shapes.push_back(std::vector<int>(dims.begin(), dims.end()));
}
// nGraph models produce output "Result" layers which have "/sink_port" suffix in their names.
// Their inputs are actual model outputs and we change friendly name to it.
// By this workaround, we produce similar outputs names comparing to ieNet.getOutputsInfo()
for (int i = 0; i < ieNet->get_output_size(); ++i) {
auto res = ieNet->output(i);
const std::string& name = res.get_any_name();
if (res.get_node()->get_friendly_name() != name)
res.get_node()->set_friendly_name(name);
}
Net cvNet;
Ptr<NetImplOpenVINO> openvino_impl_ptr = makePtr<NetImplOpenVINO>();
NetImplOpenVINO& openvino_impl = *openvino_impl_ptr;
accessor::DnnNetAccessor::getImplPtrRef(cvNet) = openvino_impl_ptr;
cvNet.setInputsNames(inputsNames);
// set empty input to determine input shapes
for (int inp_id = 0; inp_id < inputsNames.size(); ++inp_id)
{
cvNet.setInputShape(inputsNames[inp_id], inp_shapes[inp_id]);
}
CV_TRACE_REGION_NEXT("backendNode");
Ptr<BackendNode> backendNode;
{
auto fake_node = std::make_shared<ov::op::v0::Parameter>(ov::element::f32, ov::Shape {});
Ptr<InfEngineNgraphNode> backendNodeNGraph(new InfEngineNgraphNode(fake_node));
backendNodeNGraph->net = Ptr<InfEngineNgraphNet>(new InfEngineNgraphNet(openvino_impl, ieNet));
backendNode = backendNodeNGraph;
}
CV_TRACE_REGION_NEXT("register_outputs");
std::vector<std::shared_ptr<ov::Node>> ngraphOperations = ieNet->get_ops();
for (auto& it : ieNet->get_results())
{
CV_TRACE_REGION("output");
const auto& outputName = it->get_friendly_name();
LayerParams lp;
int lid = cvNet.addLayer(outputName, "", lp);
LayerData& ld = openvino_impl.layers[lid];
{
Ptr<Layer> cvLayer(new NgraphBackendLayer(ieNet));
cvLayer->name = outputName;
cvLayer->type = "_unknown_";
auto process_layer = [&](const std::string& name) -> bool
{
CV_TRACE_REGION("ngraph_function");
for (const auto& op : ngraphOperations)
{
CV_Assert(op);
if (op->get_friendly_name() == name)
{
const std::string typeName = op->get_type_info().name;
cvLayer->type = typeName;
return true;
}
}
return false;
};
bool found = process_layer(outputName);
if (!found)
{
auto pos = outputName.rfind('.'); // cut port number: ".0"
if (pos != std::string::npos)
{
std::string layerName = outputName.substr(0, pos);
found = process_layer(layerName);
}
}
if (!found)
CV_LOG_WARNING(NULL, "DNN/IE: Can't determine output layer type: '" << outputName << "'");
ld.layerInstance = cvLayer;
ld.backendNodes[DNN_BACKEND_INFERENCE_ENGINE_NGRAPH] = backendNode;
}
for (int i = 0; i < inputsNames.size(); ++i)
cvNet.connect(0, i, lid, i);
}
CV_TRACE_REGION_NEXT("finalize");
cvNet.setPreferableBackend(DNN_BACKEND_INFERENCE_ENGINE_NGRAPH);
return cvNet;
}
static
Net openvino_readNetwork(const String& modelPath, const String& binPath)
{
FPDenormalsIgnoreHintScope fp_denormals_ignore_scope;
ov::Core& ie = getCore("");
std::shared_ptr<ov::Model> ieNet;
try
{
ieNet = ie.read_model(modelPath, binPath);
}
catch (const std::exception& e)
{
CV_Error(Error::StsError, std::string("DNN: OpenVINO failed to read model '") + modelPath + "': " + e.what());
}
return NetImplOpenVINO::createNetworkFromModelOptimizer(ieNet);
}
static
Net openvino_readNetwork(
const uchar* bufferModelConfigPtr, size_t bufferModelConfigSize,
const uchar* bufferWeightsPtr, size_t bufferWeightsSize
)
{
FPDenormalsIgnoreHintScope fp_denormals_ignore_scope;
ov::Core& ie = getCore("");
std::string model; model.assign((char*)bufferModelConfigPtr, bufferModelConfigSize);
std::shared_ptr<ov::Model> ieNet;
try
{
ov::Tensor weights_blob(ov::element::u8, {bufferWeightsSize}, (void*)bufferWeightsPtr);
ieNet = ie.read_model(model, weights_blob);
}
catch (const std::exception& e)
{
CV_Error(Error::StsError, std::string("DNN: OpenVINO failed to read model: ") + e.what());
}
return NetImplOpenVINO::createNetworkFromModelOptimizer(ieNet);
}
#endif // HAVE_INF_ENGINE
Net Net::readFromModelOptimizer(const String& xml, const String& bin)
{
CV_TRACE_FUNCTION();
#if defined(HAVE_INF_ENGINE)
return openvino_readNetwork(xml, bin);
#elif defined(ENABLE_PLUGINS)
auto& networkBackend = dnn_backend::createPluginDNNNetworkBackend("openvino");
return networkBackend.readNetwork(std::string(), xml, bin);
#else
CV_UNUSED(xml); CV_UNUSED(bin);
CV_Error(Error::StsError, "Build OpenCV with Inference Engine to enable loading models from Model Optimizer.");
#endif
}
Net Net::readFromModelOptimizer(const std::vector<uchar>& bufferModelConfig, const std::vector<uchar>& bufferWeights)
{
CV_TRACE_FUNCTION();
CV_Assert(!bufferModelConfig.empty());
CV_Assert(!bufferWeights.empty());
return readFromModelOptimizer(bufferModelConfig.data(), bufferModelConfig.size(),
bufferWeights.data(), bufferWeights.size());
}
Net Net::readFromModelOptimizer(
const uchar* bufferModelConfigPtr, size_t bufferModelConfigSize,
const uchar* bufferWeightsPtr, size_t bufferWeightsSize
)
{
CV_TRACE_FUNCTION();
#if defined(HAVE_INF_ENGINE)
return openvino_readNetwork(bufferModelConfigPtr, bufferModelConfigSize, bufferWeightsPtr, bufferWeightsSize);
#elif defined(ENABLE_PLUGINS)
auto& networkBackend = dnn_backend::createPluginDNNNetworkBackend("openvino");
return networkBackend.readNetwork(std::string(), bufferModelConfigPtr, bufferModelConfigSize, bufferWeightsPtr, bufferWeightsSize);
#else
CV_UNUSED(bufferModelConfigPtr); CV_UNUSED(bufferWeightsPtr);
CV_UNUSED(bufferModelConfigSize); CV_UNUSED(bufferModelConfigSize);
CV_Error(Error::StsError, "Build OpenCV with Inference Engine to enable loading models from Model Optimizer.");
#endif
}
CV__DNN_INLINE_NS_END
}} // namespace cv::dnn
#ifdef BUILD_PLUGIN
#define ABI_VERSION 0
#define API_VERSION 0
#include "plugin_api.hpp"
namespace cv { namespace dnn_backend {
using namespace cv::dnn;
class NetworkBackendOpenVINO : public NetworkBackend
{
public:
void switchBackend(Net& net) CV_OVERRIDE
{
cv::dnn::switchToOpenVINOBackend(net);
}
Net readNetwork(const std::string& loaderID, const std::string& model, const std::string& config) CV_OVERRIDE
{
if (!loaderID.empty()) // only auto ("") is supported
{
CV_Error(Error::StsError, "DNN/OpenVINO: unsupported network loader ID: " + loaderID);
}
return openvino_readNetwork(model, config);
}
Net readNetwork(
const std::string& loaderID,
const uchar* bufferModelConfigPtr, size_t bufferModelConfigSize,
const uchar* bufferWeightsPtr, size_t bufferWeightsSize
) CV_OVERRIDE
{
if (!loaderID.empty()) // only auto ("") is supported
{
CV_Error(Error::StsError, "DNN/OpenVINO: unsupported network loader ID: " + loaderID);
}
return openvino_readNetwork(bufferModelConfigPtr, bufferModelConfigSize, bufferWeightsPtr, bufferWeightsSize);
}
bool checkTarget(Target target) CV_OVERRIDE
{
return openvino::checkTarget(target);
}
};
static
std::shared_ptr<NetworkBackendOpenVINO>& getInstanceNetworkBackendOpenVINO()
{
static std::shared_ptr<NetworkBackendOpenVINO> g_instance = std::make_shared<NetworkBackendOpenVINO>();
return g_instance;
}
}} // namespace
static
CvResult cv_getInstanceNetworkBackend(CV_OUT CvPluginDNNNetworkBackend* handle) CV_NOEXCEPT
{
try
{
if (!handle)
return CV_ERROR_FAIL;
*handle = cv::dnn_backend::getInstanceNetworkBackendOpenVINO().get();
return CV_ERROR_OK;
}
catch (...)
{
return CV_ERROR_FAIL;
}
}
static const OpenCV_DNN_Plugin_API plugin_api =
{
{
sizeof(OpenCV_DNN_Plugin_API), ABI_VERSION, API_VERSION,
CV_VERSION_MAJOR, CV_VERSION_MINOR, CV_VERSION_REVISION, CV_VERSION_STATUS,
"OpenVINO OpenCV DNN plugin (" CVAUX_STR(INF_ENGINE_RELEASE) ")"
},
{
/* 1*/cv_getInstanceNetworkBackend
}
};
const OpenCV_DNN_Plugin_API* CV_API_CALL opencv_dnn_plugin_init_v0(int requested_abi_version, int requested_api_version, void* /*reserved=NULL*/) CV_NOEXCEPT
{
if (requested_abi_version == ABI_VERSION && requested_api_version <= API_VERSION)
return &plugin_api;
return NULL;
}
#endif // BUILD_PLUGIN