mirror of
https://github.com/opencv/opencv.git
synced 2025-01-21 00:20:59 +08:00
53711ec29d
Added some asserts.
319 lines
9.2 KiB
C++
319 lines
9.2 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// Intel License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of Intel Corporation may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#include "test_precomp.hpp"
|
|
#include "opencv2/highgui.hpp"
|
|
|
|
using namespace cv;
|
|
using namespace cv::ml;
|
|
using cv::ml::SVMSGD;
|
|
using cv::ml::TrainData;
|
|
|
|
|
|
|
|
class CV_SVMSGDTrainTest : public cvtest::BaseTest
|
|
{
|
|
public:
|
|
enum TrainDataType
|
|
{
|
|
UNIFORM_SAME_SCALE,
|
|
UNIFORM_DIFFERENT_SCALES
|
|
};
|
|
|
|
CV_SVMSGDTrainTest(const Mat &_weights, float shift, TrainDataType type, double precision = 0.01);
|
|
private:
|
|
virtual void run( int start_from );
|
|
static float decisionFunction(const Mat &sample, const Mat &weights, float shift);
|
|
void makeData(int samplesCount, const Mat &weights, float shift, RNG &rng, Mat &samples, Mat & responses);
|
|
void generateSameBorders(int featureCount);
|
|
void generateDifferentBorders(int featureCount);
|
|
|
|
TrainDataType type;
|
|
double precision;
|
|
std::vector<std::pair<float,float> > borders;
|
|
cv::Ptr<TrainData> data;
|
|
cv::Mat testSamples;
|
|
cv::Mat testResponses;
|
|
static const int TEST_VALUE_LIMIT = 500;
|
|
};
|
|
|
|
void CV_SVMSGDTrainTest::generateSameBorders(int featureCount)
|
|
{
|
|
float lowerLimit = -TEST_VALUE_LIMIT;
|
|
float upperLimit = TEST_VALUE_LIMIT;
|
|
|
|
for (int featureIndex = 0; featureIndex < featureCount; featureIndex++)
|
|
{
|
|
borders.push_back(std::pair<float,float>(lowerLimit, upperLimit));
|
|
}
|
|
}
|
|
|
|
void CV_SVMSGDTrainTest::generateDifferentBorders(int featureCount)
|
|
{
|
|
float lowerLimit = -TEST_VALUE_LIMIT;
|
|
float upperLimit = TEST_VALUE_LIMIT;
|
|
cv::RNG rng(0);
|
|
|
|
for (int featureIndex = 0; featureIndex < featureCount; featureIndex++)
|
|
{
|
|
int crit = rng.uniform(0, 2);
|
|
|
|
if (crit > 0)
|
|
{
|
|
borders.push_back(std::pair<float,float>(lowerLimit, upperLimit));
|
|
}
|
|
else
|
|
{
|
|
borders.push_back(std::pair<float,float>(lowerLimit/1000, upperLimit/1000));
|
|
}
|
|
}
|
|
}
|
|
|
|
float CV_SVMSGDTrainTest::decisionFunction(const Mat &sample, const Mat &weights, float shift)
|
|
{
|
|
return static_cast<float>(sample.dot(weights)) + shift;
|
|
}
|
|
|
|
void CV_SVMSGDTrainTest::makeData(int samplesCount, const Mat &weights, float shift, RNG &rng, Mat &samples, Mat & responses)
|
|
{
|
|
int featureCount = weights.cols;
|
|
|
|
samples.create(samplesCount, featureCount, CV_32FC1);
|
|
for (int featureIndex = 0; featureIndex < featureCount; featureIndex++)
|
|
{
|
|
rng.fill(samples.col(featureIndex), RNG::UNIFORM, borders[featureIndex].first, borders[featureIndex].second);
|
|
}
|
|
|
|
responses.create(samplesCount, 1, CV_32FC1);
|
|
|
|
for (int i = 0 ; i < samplesCount; i++)
|
|
{
|
|
responses.at<float>(i) = decisionFunction(samples.row(i), weights, shift) > 0 ? 1.f : -1.f;
|
|
}
|
|
|
|
}
|
|
|
|
CV_SVMSGDTrainTest::CV_SVMSGDTrainTest(const Mat &weights, float shift, TrainDataType _type, double _precision)
|
|
{
|
|
type = _type;
|
|
precision = _precision;
|
|
|
|
int featureCount = weights.cols;
|
|
|
|
switch(type)
|
|
{
|
|
case UNIFORM_SAME_SCALE:
|
|
generateSameBorders(featureCount);
|
|
break;
|
|
case UNIFORM_DIFFERENT_SCALES:
|
|
generateDifferentBorders(featureCount);
|
|
break;
|
|
default:
|
|
CV_Error(CV_StsBadArg, "Unknown train data type");
|
|
}
|
|
|
|
RNG rng(0);
|
|
|
|
Mat trainSamples;
|
|
Mat trainResponses;
|
|
int trainSamplesCount = 10000;
|
|
makeData(trainSamplesCount, weights, shift, rng, trainSamples, trainResponses);
|
|
data = TrainData::create(trainSamples, cv::ml::ROW_SAMPLE, trainResponses);
|
|
|
|
int testSamplesCount = 100000;
|
|
makeData(testSamplesCount, weights, shift, rng, testSamples, testResponses);
|
|
}
|
|
|
|
void CV_SVMSGDTrainTest::run( int /*start_from*/ )
|
|
{
|
|
cv::Ptr<SVMSGD> svmsgd = SVMSGD::create();
|
|
|
|
svmsgd->train(data);
|
|
|
|
Mat responses;
|
|
|
|
svmsgd->predict(testSamples, responses);
|
|
|
|
int errCount = 0;
|
|
int testSamplesCount = testSamples.rows;
|
|
|
|
CV_Assert((responses.type() == CV_32FC1) && (testResponses.type() == CV_32FC1));
|
|
for (int i = 0; i < testSamplesCount; i++)
|
|
{
|
|
if (responses.at<float>(i) * testResponses.at<float>(i) < 0)
|
|
errCount++;
|
|
}
|
|
|
|
float err = (float)errCount / testSamplesCount;
|
|
|
|
if ( err > precision )
|
|
{
|
|
ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY);
|
|
}
|
|
}
|
|
|
|
void makeWeightsAndShift(int featureCount, Mat &weights, float &shift)
|
|
{
|
|
weights.create(1, featureCount, CV_32FC1);
|
|
cv::RNG rng(0);
|
|
double lowerLimit = -1;
|
|
double upperLimit = 1;
|
|
|
|
rng.fill(weights, RNG::UNIFORM, lowerLimit, upperLimit);
|
|
shift = static_cast<float>(rng.uniform(-featureCount, featureCount));
|
|
}
|
|
|
|
|
|
TEST(ML_SVMSGD, trainSameScale2)
|
|
{
|
|
int featureCount = 2;
|
|
|
|
Mat weights;
|
|
|
|
float shift = 0;
|
|
makeWeightsAndShift(featureCount, weights, shift);
|
|
|
|
CV_SVMSGDTrainTest test(weights, shift, CV_SVMSGDTrainTest::UNIFORM_SAME_SCALE);
|
|
test.safe_run();
|
|
}
|
|
|
|
TEST(ML_SVMSGD, trainSameScale5)
|
|
{
|
|
int featureCount = 5;
|
|
|
|
Mat weights;
|
|
|
|
float shift = 0;
|
|
makeWeightsAndShift(featureCount, weights, shift);
|
|
|
|
CV_SVMSGDTrainTest test(weights, shift, CV_SVMSGDTrainTest::UNIFORM_SAME_SCALE);
|
|
test.safe_run();
|
|
}
|
|
|
|
TEST(ML_SVMSGD, trainSameScale100)
|
|
{
|
|
int featureCount = 100;
|
|
|
|
Mat weights;
|
|
|
|
float shift = 0;
|
|
makeWeightsAndShift(featureCount, weights, shift);
|
|
|
|
CV_SVMSGDTrainTest test(weights, shift, CV_SVMSGDTrainTest::UNIFORM_SAME_SCALE, 0.02);
|
|
test.safe_run();
|
|
}
|
|
|
|
TEST(ML_SVMSGD, trainDifferentScales2)
|
|
{
|
|
int featureCount = 2;
|
|
|
|
Mat weights;
|
|
|
|
float shift = 0;
|
|
makeWeightsAndShift(featureCount, weights, shift);
|
|
|
|
CV_SVMSGDTrainTest test(weights, shift, CV_SVMSGDTrainTest::UNIFORM_DIFFERENT_SCALES, 0.01);
|
|
test.safe_run();
|
|
}
|
|
|
|
TEST(ML_SVMSGD, trainDifferentScales5)
|
|
{
|
|
int featureCount = 5;
|
|
|
|
Mat weights;
|
|
|
|
float shift = 0;
|
|
makeWeightsAndShift(featureCount, weights, shift);
|
|
|
|
CV_SVMSGDTrainTest test(weights, shift, CV_SVMSGDTrainTest::UNIFORM_DIFFERENT_SCALES, 0.01);
|
|
test.safe_run();
|
|
}
|
|
|
|
TEST(ML_SVMSGD, trainDifferentScales100)
|
|
{
|
|
int featureCount = 100;
|
|
|
|
Mat weights;
|
|
|
|
float shift = 0;
|
|
makeWeightsAndShift(featureCount, weights, shift);
|
|
|
|
CV_SVMSGDTrainTest test(weights, shift, CV_SVMSGDTrainTest::UNIFORM_DIFFERENT_SCALES, 0.01);
|
|
test.safe_run();
|
|
}
|
|
|
|
TEST(ML_SVMSGD, twoPoints)
|
|
{
|
|
Mat samples(2, 2, CV_32FC1);
|
|
samples.at<float>(0,0) = 0;
|
|
samples.at<float>(0,1) = 0;
|
|
samples.at<float>(1,0) = 1000;
|
|
samples.at<float>(1,1) = 1;
|
|
|
|
Mat responses(2, 1, CV_32FC1);
|
|
responses.at<float>(0) = -1;
|
|
responses.at<float>(1) = 1;
|
|
|
|
cv::Ptr<TrainData> trainData = TrainData::create(samples, cv::ml::ROW_SAMPLE, responses);
|
|
|
|
Mat realWeights(1, 2, CV_32FC1);
|
|
realWeights.at<float>(0) = 1000;
|
|
realWeights.at<float>(1) = 1;
|
|
|
|
float realShift = -500000.5;
|
|
|
|
float normRealWeights = static_cast<float>(norm(realWeights));
|
|
realWeights /= normRealWeights;
|
|
realShift /= normRealWeights;
|
|
|
|
cv::Ptr<SVMSGD> svmsgd = SVMSGD::create();
|
|
svmsgd->setOptimalParameters();
|
|
svmsgd->train( trainData );
|
|
|
|
Mat foundWeights = svmsgd->getWeights();
|
|
float foundShift = svmsgd->getShift();
|
|
|
|
float normFoundWeights = static_cast<float>(norm(foundWeights));
|
|
foundWeights /= normFoundWeights;
|
|
foundShift /= normFoundWeights;
|
|
CV_Assert((norm(foundWeights - realWeights) < 0.001) && (abs((foundShift - realShift) / realShift) < 0.05));
|
|
}
|