opencv/modules/legacy/src/optflowbm.cpp
2013-04-01 15:24:32 +04:00

303 lines
9.6 KiB
C++

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
static inline int cmpBlocks(const uchar* A, const uchar* B, int Bstep, CvSize blockSize )
{
int x, s = 0;
for( ; blockSize.height--; A += blockSize.width, B += Bstep )
{
for( x = 0; x <= blockSize.width - 4; x += 4 )
s += std::abs(A[x] - B[x]) + std::abs(A[x+1] - B[x+1]) +
std::abs(A[x+2] - B[x+2]) + std::abs(A[x+3] - B[x+3]);
for( ; x < blockSize.width; x++ )
s += std::abs(A[x] - B[x]);
}
return s;
}
CV_IMPL void
cvCalcOpticalFlowBM( const void* srcarrA, const void* srcarrB,
CvSize blockSize, CvSize shiftSize,
CvSize maxRange, int usePrevious,
void* velarrx, void* velarry )
{
CvMat stubA, *srcA = cvGetMat( srcarrA, &stubA );
CvMat stubB, *srcB = cvGetMat( srcarrB, &stubB );
CvMat stubx, *velx = cvGetMat( velarrx, &stubx );
CvMat stuby, *vely = cvGetMat( velarry, &stuby );
if( !CV_ARE_TYPES_EQ( srcA, srcB ))
CV_Error( CV_StsUnmatchedFormats, "Source images have different formats" );
if( !CV_ARE_TYPES_EQ( velx, vely ))
CV_Error( CV_StsUnmatchedFormats, "Destination images have different formats" );
CvSize velSize(
(srcA->width - blockSize.width + shiftSize.width)/shiftSize.width,
(srcA->height - blockSize.height + shiftSize.height)/shiftSize.height
);
if( !CV_ARE_SIZES_EQ( srcA, srcB ) ||
!CV_ARE_SIZES_EQ( velx, vely ) ||
velx->width != velSize.width ||
vely->height != velSize.height )
CV_Error( CV_StsUnmatchedSizes, "" );
if( CV_MAT_TYPE( srcA->type ) != CV_8UC1 ||
CV_MAT_TYPE( velx->type ) != CV_32FC1 )
CV_Error( CV_StsUnsupportedFormat, "Source images must have 8uC1 type and "
"destination images must have 32fC1 type" );
if( srcA->step != srcB->step || velx->step != vely->step )
CV_Error( CV_BadStep, "two source or two destination images have different steps" );
const int SMALL_DIFF=2;
const int BIG_DIFF=128;
// scanning scheme coordinates
std::vector<CvPoint> _ss((2 * maxRange.width + 1) * (2 * maxRange.height + 1));
CvPoint* ss = &_ss[0];
int ss_count = 0;
int blWidth = blockSize.width, blHeight = blockSize.height;
int blSize = blWidth*blHeight;
int acceptLevel = blSize * SMALL_DIFF;
int escapeLevel = blSize * BIG_DIFF;
int i, j;
std::vector<uchar> _blockA(cvAlign(blSize + 16, 16));
uchar* blockA = (uchar*)cvAlignPtr(&_blockA[0], 16);
// Calculate scanning scheme
int min_count = MIN( maxRange.width, maxRange.height );
// use spiral search pattern
//
// 9 10 11 12
// 8 1 2 13
// 7 * 3 14
// 6 5 4 15
//... 20 19 18 17
//
for( i = 0; i < min_count; i++ )
{
// four cycles along sides
int x = -i-1, y = x;
// upper side
for( j = -i; j <= i + 1; j++, ss_count++ )
{
ss[ss_count].x = ++x;
ss[ss_count].y = y;
}
// right side
for( j = -i; j <= i + 1; j++, ss_count++ )
{
ss[ss_count].x = x;
ss[ss_count].y = ++y;
}
// bottom side
for( j = -i; j <= i + 1; j++, ss_count++ )
{
ss[ss_count].x = --x;
ss[ss_count].y = y;
}
// left side
for( j = -i; j <= i + 1; j++, ss_count++ )
{
ss[ss_count].x = x;
ss[ss_count].y = --y;
}
}
// the rest part
if( maxRange.width < maxRange.height )
{
int xleft = -min_count;
// cycle by neighbor rings
for( i = min_count; i < maxRange.height; i++ )
{
// two cycles by x
int y = -(i + 1);
int x = xleft;
// upper side
for( j = -maxRange.width; j <= maxRange.width; j++, ss_count++, x++ )
{
ss[ss_count].x = x;
ss[ss_count].y = y;
}
x = xleft;
y = -y;
// bottom side
for( j = -maxRange.width; j <= maxRange.width; j++, ss_count++, x++ )
{
ss[ss_count].x = x;
ss[ss_count].y = y;
}
}
}
else if( maxRange.width > maxRange.height )
{
int yupper = -min_count;
// cycle by neighbor rings
for( i = min_count; i < maxRange.width; i++ )
{
// two cycles by y
int x = -(i + 1);
int y = yupper;
// left side
for( j = -maxRange.height; j <= maxRange.height; j++, ss_count++, y++ )
{
ss[ss_count].x = x;
ss[ss_count].y = y;
}
y = yupper;
x = -x;
// right side
for( j = -maxRange.height; j <= maxRange.height; j++, ss_count++, y++ )
{
ss[ss_count].x = x;
ss[ss_count].y = y;
}
}
}
int maxX = srcB->cols - blockSize.width, maxY = srcB->rows - blockSize.height;
const uchar* Adata = srcA->data.ptr;
const uchar* Bdata = srcB->data.ptr;
int Astep = srcA->step, Bstep = srcB->step;
// compute the flow
for( i = 0; i < velx->rows; i++ )
{
float* vx = (float*)(velx->data.ptr + velx->step*i);
float* vy = (float*)(vely->data.ptr + vely->step*i);
for( j = 0; j < velx->cols; j++ )
{
int X1 = j*shiftSize.width, Y1 = i*shiftSize.height, X2, Y2;
int offX = 0, offY = 0;
if( usePrevious )
{
offX = cvRound(vx[j]);
offY = cvRound(vy[j]);
}
int k;
for( k = 0; k < blHeight; k++ )
memcpy( blockA + k*blWidth, Adata + Astep*(Y1 + k) + X1, blWidth );
X2 = X1 + offX;
Y2 = Y1 + offY;
int dist = INT_MAX;
if( 0 <= X2 && X2 <= maxX && 0 <= Y2 && Y2 <= maxY )
dist = cmpBlocks( blockA, Bdata + Bstep*Y2 + X2, Bstep, blockSize );
int countMin = 1;
int sumx = offX, sumy = offY;
if( dist > acceptLevel )
{
// do brute-force search
for( k = 0; k < ss_count; k++ )
{
int dx = offX + ss[k].x;
int dy = offY + ss[k].y;
X2 = X1 + dx;
Y2 = Y1 + dy;
if( !(0 <= X2 && X2 <= maxX && 0 <= Y2 && Y2 <= maxY) )
continue;
int tmpDist = cmpBlocks( blockA, Bdata + Bstep*Y2 + X2, Bstep, blockSize );
if( tmpDist < acceptLevel )
{
sumx = dx; sumy = dy;
countMin = 1;
break;
}
if( tmpDist < dist )
{
dist = tmpDist;
sumx = dx; sumy = dy;
countMin = 1;
}
else if( tmpDist == dist )
{
sumx += dx; sumy += dy;
countMin++;
}
}
if( dist > escapeLevel )
{
sumx = offX;
sumy = offY;
countMin = 1;
}
}
vx[j] = (float)sumx/countMin;
vy[j] = (float)sumy/countMin;
}
}
}
/* End of file. */