opencv/modules/contrib/src/octree.cpp

341 lines
11 KiB
C++

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#include <limits>
namespace cv
{
const size_t MAX_STACK_SIZE = 255;
const size_t MAX_LEAFS = 8;
bool checkIfNodeOutsideSphere(const Octree::Node& node, const Point3f& c, float r)
{
if (node.x_max < (c.x - r) || node.y_max < (c.y - r) || node.z_max < (c.z - r))
return true;
if ((c.x + r) < node.x_min || (c.y + r) < node.y_min || (c.z + r) < node.z_min)
return true;
return false;
}
bool checkIfNodeInsideSphere(const Octree::Node& node, const Point3f& c, float r)
{
r *= r;
float d2_xmin = (node.x_min - c.x) * (node.x_min - c.x);
float d2_ymin = (node.y_min - c.y) * (node.y_min - c.y);
float d2_zmin = (node.z_min - c.z) * (node.z_min - c.z);
if (d2_xmin + d2_ymin + d2_zmin > r)
return false;
float d2_zmax = (node.z_max - c.z) * (node.z_max - c.z);
if (d2_xmin + d2_ymin + d2_zmax > r)
return false;
float d2_ymax = (node.y_max - c.y) * (node.y_max - c.y);
if (d2_xmin + d2_ymax + d2_zmin > r)
return false;
if (d2_xmin + d2_ymax + d2_zmax > r)
return false;
float d2_xmax = (node.x_max - c.x) * (node.x_max - c.x);
if (d2_xmax + d2_ymin + d2_zmin > r)
return false;
if (d2_xmax + d2_ymin + d2_zmax > r)
return false;
if (d2_xmax + d2_ymax + d2_zmin > r)
return false;
if (d2_xmax + d2_ymax + d2_zmax > r)
return false;
return true;
}
void fillMinMax(const vector<Point3f>& points, Octree::Node& node)
{
node.x_max = node.y_max = node.z_max = std::numeric_limits<float>::min();
node.x_min = node.y_min = node.z_min = std::numeric_limits<float>::max();
for (size_t i = 0; i < points.size(); ++i)
{
const Point3f& point = points[i];
if (node.x_max < point.x)
node.x_max = point.x;
if (node.y_max < point.y)
node.y_max = point.y;
if (node.z_max < point.z)
node.z_max = point.z;
if (node.x_min > point.x)
node.x_min = point.x;
if (node.y_min > point.y)
node.y_min = point.y;
if (node.z_min > point.z)
node.z_min = point.z;
}
}
size_t findSubboxForPoint(const Point3f& point, const Octree::Node& node)
{
size_t ind_x = point.x < (node.x_max + node.x_min) / 2 ? 0 : 1;
size_t ind_y = point.y < (node.y_max + node.y_min) / 2 ? 0 : 1;
size_t ind_z = point.z < (node.z_max + node.z_min) / 2 ? 0 : 1;
return (ind_x << 2) + (ind_y << 1) + (ind_z << 0);
}
void initChildBox(const Octree::Node& parent, size_t boxIndex, Octree::Node& child)
{
child.x_min = child.x_max = (parent.x_max + parent.x_min) / 2;
child.y_min = child.y_max = (parent.y_max + parent.y_min) / 2;
child.z_min = child.z_max = (parent.z_max + parent.z_min) / 2;
if ((boxIndex >> 0) & 1)
child.z_max = parent.z_max;
else
child.z_min = parent.z_min;
if ((boxIndex >> 1) & 1)
child.y_max = parent.y_max;
else
child.y_min = parent.y_min;
if ((boxIndex >> 2) & 1)
child.x_max = parent.x_max;
else
child.x_min = parent.x_min;
}
////////////////////////////////////////////////////////////////////////////////////////
/////////////////////////// Octree //////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////
Octree::Octree()
{
}
Octree::Octree(const vector<Point3f>& points3d, int maxLevels, int minPoints)
{
buildTree(points3d, maxLevels, minPoints);
}
Octree::~Octree()
{
}
void Octree::getPointsWithinSphere(const Point3f& center, float radius, vector<Point3f>& out) const
{
out.clear();
if (nodes.empty())
return;
int stack[MAX_STACK_SIZE];
int pos = 0;
stack[pos] = 0;
while (pos >= 0)
{
const Node& cur = nodes[stack[pos--]];
if (checkIfNodeOutsideSphere(cur, center, radius))
continue;
if (checkIfNodeInsideSphere(cur, center, radius))
{
size_t sz = out.size();
out.resize(sz + cur.end - cur.begin);
for (int i = cur.begin; i < cur.end; ++i)
out[sz++] = points[i];
continue;
}
if (cur.isLeaf)
{
double r2 = radius * radius;
size_t sz = out.size();
out.resize(sz + (cur.end - cur.begin));
for (int i = cur.begin; i < cur.end; ++i)
{
const Point3f& point = points[i];
double dx = (point.x - center.x);
double dy = (point.y - center.y);
double dz = (point.z - center.z);
double dist2 = dx * dx + dy * dy + dz * dz;
if (dist2 < r2)
out[sz++] = point;
};
out.resize(sz);
continue;
}
if (cur.children[0])
stack[++pos] = cur.children[0];
if (cur.children[1])
stack[++pos] = cur.children[1];
if (cur.children[2])
stack[++pos] = cur.children[2];
if (cur.children[3])
stack[++pos] = cur.children[3];
if (cur.children[4])
stack[++pos] = cur.children[4];
if (cur.children[5])
stack[++pos] = cur.children[5];
if (cur.children[6])
stack[++pos] = cur.children[6];
if (cur.children[7])
stack[++pos] = cur.children[7];
}
}
void Octree::buildTree(const vector<Point3f>& points3d, int maxLevels, int minPoints)
{
assert((size_t)maxLevels * 8 < MAX_STACK_SIZE);
points.resize(points3d.size());
std::copy(points3d.begin(), points3d.end(), points.begin());
this->minPoints = minPoints;
nodes.clear();
nodes.push_back(Node());
Node& root = nodes[0];
fillMinMax(points, root);
root.isLeaf = true;
root.maxLevels = maxLevels;
root.begin = 0;
root.end = (int)points.size();
for (size_t i = 0; i < MAX_LEAFS; i++)
root.children[i] = 0;
if (maxLevels != 1 && (root.end - root.begin) > minPoints)
{
root.isLeaf = false;
buildNext(0);
}
}
void Octree::buildNext(size_t nodeInd)
{
size_t size = nodes[nodeInd].end - nodes[nodeInd].begin;
vector<size_t> boxBorders(MAX_LEAFS+1, 0);
vector<size_t> boxIndices(size);
vector<Point3f> tempPoints(size);
for (int i = nodes[nodeInd].begin, j = 0; i < nodes[nodeInd].end; ++i, ++j)
{
const Point3f& p = points[i];
size_t subboxInd = findSubboxForPoint(p, nodes[nodeInd]);
boxBorders[subboxInd+1]++;
boxIndices[j] = subboxInd;
tempPoints[j] = p;
}
for (size_t i = 1; i < boxBorders.size(); ++i)
boxBorders[i] += boxBorders[i-1];
vector<size_t> writeInds(boxBorders.begin(), boxBorders.end());
for (size_t i = 0; i < size; ++i)
{
size_t boxIndex = boxIndices[i];
Point3f& curPoint = tempPoints[i];
size_t copyTo = nodes[nodeInd].begin + writeInds[boxIndex]++;
points[copyTo] = curPoint;
}
for (size_t i = 0; i < MAX_LEAFS; ++i)
{
if (boxBorders[i] == boxBorders[i+1])
continue;
nodes.push_back(Node());
Node& child = nodes.back();
initChildBox(nodes[nodeInd], i, child);
child.isLeaf = true;
child.maxLevels = nodes[nodeInd].maxLevels - 1;
child.begin = nodes[nodeInd].begin + (int)boxBorders[i+0];
child.end = nodes[nodeInd].begin + (int)boxBorders[i+1];
for (size_t k = 0; k < MAX_LEAFS; k++)
child.children[k] = 0;
nodes[nodeInd].children[i] = (int)(nodes.size() - 1);
if (child.maxLevels != 1 && (child.end - child.begin) > minPoints)
{
child.isLeaf = false;
buildNext(nodes.size() - 1);
}
}
}
}