mirror of
https://github.com/opencv/opencv.git
synced 2025-01-19 06:53:50 +08:00
552 lines
19 KiB
C++
552 lines
19 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// Intel License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of Intel Corporation may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#include "precomp.hpp"
|
|
|
|
|
|
/****************************************************************************************\
|
|
* Image Alignment (ECC algorithm) *
|
|
\****************************************************************************************/
|
|
|
|
using namespace cv;
|
|
|
|
static void image_jacobian_homo_ECC(const Mat& src1, const Mat& src2,
|
|
const Mat& src3, const Mat& src4,
|
|
const Mat& src5, Mat& dst)
|
|
{
|
|
|
|
|
|
CV_Assert(src1.size() == src2.size());
|
|
CV_Assert(src1.size() == src3.size());
|
|
CV_Assert(src1.size() == src4.size());
|
|
|
|
CV_Assert( src1.rows == dst.rows);
|
|
CV_Assert(dst.cols == (src1.cols*8));
|
|
CV_Assert(dst.type() == CV_32FC1);
|
|
|
|
CV_Assert(src5.isContinuous());
|
|
|
|
|
|
const float* hptr = src5.ptr<float>(0);
|
|
|
|
const float h0_ = hptr[0];
|
|
const float h1_ = hptr[3];
|
|
const float h2_ = hptr[6];
|
|
const float h3_ = hptr[1];
|
|
const float h4_ = hptr[4];
|
|
const float h5_ = hptr[7];
|
|
const float h6_ = hptr[2];
|
|
const float h7_ = hptr[5];
|
|
|
|
const int w = src1.cols;
|
|
|
|
|
|
//create denominator for all points as a block
|
|
Mat den_ = src3*h2_ + src4*h5_ + 1.0;//check the time of this! otherwise use addWeighted
|
|
|
|
//create projected points
|
|
Mat hatX_ = -src3*h0_ - src4*h3_ - h6_;
|
|
divide(hatX_, den_, hatX_);
|
|
Mat hatY_ = -src3*h1_ - src4*h4_ - h7_;
|
|
divide(hatY_, den_, hatY_);
|
|
|
|
|
|
//instead of dividing each block with den,
|
|
//just pre-devide the block of gradients (it's more efficient)
|
|
|
|
Mat src1Divided_;
|
|
Mat src2Divided_;
|
|
|
|
divide(src1, den_, src1Divided_);
|
|
divide(src2, den_, src2Divided_);
|
|
|
|
|
|
//compute Jacobian blocks (8 blocks)
|
|
|
|
dst.colRange(0, w) = src1Divided_.mul(src3);//1
|
|
|
|
dst.colRange(w,2*w) = src2Divided_.mul(src3);//2
|
|
|
|
Mat temp_ = (hatX_.mul(src1Divided_)+hatY_.mul(src2Divided_));
|
|
dst.colRange(2*w,3*w) = temp_.mul(src3);//3
|
|
|
|
hatX_.release();
|
|
hatY_.release();
|
|
|
|
dst.colRange(3*w, 4*w) = src1Divided_.mul(src4);//4
|
|
|
|
dst.colRange(4*w, 5*w) = src2Divided_.mul(src4);//5
|
|
|
|
dst.colRange(5*w, 6*w) = temp_.mul(src4);//6
|
|
|
|
src1Divided_.copyTo(dst.colRange(6*w, 7*w));//7
|
|
|
|
src2Divided_.copyTo(dst.colRange(7*w, 8*w));//8
|
|
}
|
|
|
|
static void image_jacobian_euclidean_ECC(const Mat& src1, const Mat& src2,
|
|
const Mat& src3, const Mat& src4,
|
|
const Mat& src5, Mat& dst)
|
|
{
|
|
|
|
CV_Assert( src1.size()==src2.size());
|
|
CV_Assert( src1.size()==src3.size());
|
|
CV_Assert( src1.size()==src4.size());
|
|
|
|
CV_Assert( src1.rows == dst.rows);
|
|
CV_Assert(dst.cols == (src1.cols*3));
|
|
CV_Assert(dst.type() == CV_32FC1);
|
|
|
|
CV_Assert(src5.isContinuous());
|
|
|
|
const float* hptr = src5.ptr<float>(0);
|
|
|
|
const float h0 = hptr[0];//cos(theta)
|
|
const float h1 = hptr[3];//sin(theta)
|
|
|
|
const int w = src1.cols;
|
|
|
|
//create -sin(theta)*X -cos(theta)*Y for all points as a block -> hatX
|
|
Mat hatX = -(src3*h1) - (src4*h0);
|
|
|
|
//create cos(theta)*X -sin(theta)*Y for all points as a block -> hatY
|
|
Mat hatY = (src3*h0) - (src4*h1);
|
|
|
|
|
|
//compute Jacobian blocks (3 blocks)
|
|
dst.colRange(0, w) = (src1.mul(hatX))+(src2.mul(hatY));//1
|
|
|
|
src1.copyTo(dst.colRange(w, 2*w));//2
|
|
src2.copyTo(dst.colRange(2*w, 3*w));//3
|
|
}
|
|
|
|
|
|
static void image_jacobian_affine_ECC(const Mat& src1, const Mat& src2,
|
|
const Mat& src3, const Mat& src4,
|
|
Mat& dst)
|
|
{
|
|
|
|
CV_Assert(src1.size() == src2.size());
|
|
CV_Assert(src1.size() == src3.size());
|
|
CV_Assert(src1.size() == src4.size());
|
|
|
|
CV_Assert(src1.rows == dst.rows);
|
|
CV_Assert(dst.cols == (6*src1.cols));
|
|
|
|
CV_Assert(dst.type() == CV_32FC1);
|
|
|
|
|
|
const int w = src1.cols;
|
|
|
|
//compute Jacobian blocks (6 blocks)
|
|
|
|
dst.colRange(0,w) = src1.mul(src3);//1
|
|
dst.colRange(w,2*w) = src2.mul(src3);//2
|
|
dst.colRange(2*w,3*w) = src1.mul(src4);//3
|
|
dst.colRange(3*w,4*w) = src2.mul(src4);//4
|
|
src1.copyTo(dst.colRange(4*w,5*w));//5
|
|
src2.copyTo(dst.colRange(5*w,6*w));//6
|
|
}
|
|
|
|
|
|
static void image_jacobian_translation_ECC(const Mat& src1, const Mat& src2, Mat& dst)
|
|
{
|
|
|
|
CV_Assert( src1.size()==src2.size());
|
|
|
|
CV_Assert( src1.rows == dst.rows);
|
|
CV_Assert(dst.cols == (src1.cols*2));
|
|
CV_Assert(dst.type() == CV_32FC1);
|
|
|
|
const int w = src1.cols;
|
|
|
|
//compute Jacobian blocks (2 blocks)
|
|
src1.copyTo(dst.colRange(0, w));
|
|
src2.copyTo(dst.colRange(w, 2*w));
|
|
}
|
|
|
|
|
|
static void project_onto_jacobian_ECC(const Mat& src1, const Mat& src2, Mat& dst)
|
|
{
|
|
/* this functions is used for two types of projections. If src1.cols ==src.cols
|
|
it does a blockwise multiplication (like in the outer product of vectors)
|
|
of the blocks in matrices src1 and src2 and dst
|
|
has size (number_of_blcks x number_of_blocks), otherwise dst is a vector of size
|
|
(number_of_blocks x 1) since src2 is "multiplied"(dot) with each block of src1.
|
|
|
|
The number_of_blocks is equal to the number of parameters we are lloking for
|
|
(i.e. rtanslation:2, euclidean: 3, affine: 6, homography: 8)
|
|
|
|
*/
|
|
CV_Assert(src1.rows == src2.rows);
|
|
CV_Assert((src1.cols % src2.cols) == 0);
|
|
int w;
|
|
|
|
float* dstPtr = dst.ptr<float>(0);
|
|
|
|
if (src1.cols !=src2.cols){//dst.cols==1
|
|
w = src2.cols;
|
|
for (int i=0; i<dst.rows; i++){
|
|
dstPtr[i] = (float) src2.dot(src1.colRange(i*w,(i+1)*w));
|
|
}
|
|
}
|
|
|
|
else {
|
|
CV_Assert(dst.cols == dst.rows); //dst is square (and symmetric)
|
|
w = src2.cols/dst.cols;
|
|
Mat mat;
|
|
for (int i=0; i<dst.rows; i++){
|
|
|
|
mat = Mat(src1.colRange(i*w, (i+1)*w));
|
|
dstPtr[i*(dst.rows+1)] = (float) pow(norm(mat),2); //diagonal elements
|
|
|
|
for (int j=i+1; j<dst.cols; j++){ //j starts from i+1
|
|
dstPtr[i*dst.cols+j] = (float) mat.dot(src2.colRange(j*w, (j+1)*w));
|
|
dstPtr[j*dst.cols+i] = dstPtr[i*dst.cols+j]; //due to symmetry
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
static void update_warping_matrix_ECC (Mat& map_matrix, const Mat& update, const int motionType)
|
|
{
|
|
CV_Assert (map_matrix.type() == CV_32FC1);
|
|
CV_Assert (update.type() == CV_32FC1);
|
|
|
|
CV_Assert (motionType == MOTION_TRANSLATION || motionType == MOTION_EUCLIDEAN ||
|
|
motionType == MOTION_AFFINE || motionType == MOTION_HOMOGRAPHY);
|
|
|
|
if (motionType == MOTION_HOMOGRAPHY)
|
|
CV_Assert (map_matrix.rows == 3 && update.rows == 8);
|
|
else if (motionType == MOTION_AFFINE)
|
|
CV_Assert(map_matrix.rows == 2 && update.rows == 6);
|
|
else if (motionType == MOTION_EUCLIDEAN)
|
|
CV_Assert (map_matrix.rows == 2 && update.rows == 3);
|
|
else
|
|
CV_Assert (map_matrix.rows == 2 && update.rows == 2);
|
|
|
|
CV_Assert (update.cols == 1);
|
|
|
|
CV_Assert( map_matrix.isContinuous());
|
|
CV_Assert( update.isContinuous() );
|
|
|
|
|
|
float* mapPtr = map_matrix.ptr<float>(0);
|
|
const float* updatePtr = update.ptr<float>(0);
|
|
|
|
|
|
if (motionType == MOTION_TRANSLATION){
|
|
mapPtr[2] += updatePtr[0];
|
|
mapPtr[5] += updatePtr[1];
|
|
}
|
|
if (motionType == MOTION_AFFINE) {
|
|
mapPtr[0] += updatePtr[0];
|
|
mapPtr[3] += updatePtr[1];
|
|
mapPtr[1] += updatePtr[2];
|
|
mapPtr[4] += updatePtr[3];
|
|
mapPtr[2] += updatePtr[4];
|
|
mapPtr[5] += updatePtr[5];
|
|
}
|
|
if (motionType == MOTION_HOMOGRAPHY) {
|
|
mapPtr[0] += updatePtr[0];
|
|
mapPtr[3] += updatePtr[1];
|
|
mapPtr[6] += updatePtr[2];
|
|
mapPtr[1] += updatePtr[3];
|
|
mapPtr[4] += updatePtr[4];
|
|
mapPtr[7] += updatePtr[5];
|
|
mapPtr[2] += updatePtr[6];
|
|
mapPtr[5] += updatePtr[7];
|
|
}
|
|
if (motionType == MOTION_EUCLIDEAN) {
|
|
double new_theta = updatePtr[0];
|
|
new_theta += asin(mapPtr[3]);
|
|
|
|
mapPtr[2] += updatePtr[1];
|
|
mapPtr[5] += updatePtr[2];
|
|
mapPtr[0] = mapPtr[4] = (float) cos(new_theta);
|
|
mapPtr[3] = (float) sin(new_theta);
|
|
mapPtr[1] = -mapPtr[3];
|
|
}
|
|
}
|
|
|
|
|
|
double cv::findTransformECC(InputArray templateImage,
|
|
InputArray inputImage,
|
|
InputOutputArray warpMatrix,
|
|
int motionType,
|
|
TermCriteria criteria,
|
|
InputArray inputMask)
|
|
{
|
|
|
|
|
|
Mat src = templateImage.getMat();//template iamge
|
|
Mat dst = inputImage.getMat(); //input image (to be warped)
|
|
Mat map = warpMatrix.getMat(); //warp (transformation)
|
|
|
|
CV_Assert(!src.empty());
|
|
CV_Assert(!dst.empty());
|
|
|
|
|
|
if( ! (src.type()==dst.type()))
|
|
CV_Error( Error::StsUnmatchedFormats, "Both input images must have the same data type" );
|
|
|
|
//accept only 1-channel images
|
|
if( src.type() != CV_8UC1 && src.type()!= CV_32FC1)
|
|
CV_Error( Error::StsUnsupportedFormat, "Images must have 8uC1 or 32fC1 type");
|
|
|
|
if( map.type() != CV_32FC1)
|
|
CV_Error( Error::StsUnsupportedFormat, "warpMatrix must be single-channel floating-point matrix");
|
|
|
|
CV_Assert (map.cols == 3);
|
|
CV_Assert (map.rows == 2 || map.rows ==3);
|
|
|
|
CV_Assert (motionType == MOTION_AFFINE || motionType == MOTION_HOMOGRAPHY ||
|
|
motionType == MOTION_EUCLIDEAN || motionType == MOTION_TRANSLATION);
|
|
|
|
if (motionType == MOTION_HOMOGRAPHY){
|
|
CV_Assert (map.rows ==3);
|
|
}
|
|
|
|
CV_Assert (criteria.type & TermCriteria::COUNT || criteria.type & TermCriteria::EPS);
|
|
const int numberOfIterations = (criteria.type & TermCriteria::COUNT) ? criteria.maxCount : 200;
|
|
const double termination_eps = (criteria.type & TermCriteria::EPS) ? criteria.epsilon : -1;
|
|
|
|
int paramTemp = 6;//default: affine
|
|
switch (motionType){
|
|
case MOTION_TRANSLATION:
|
|
paramTemp = 2;
|
|
break;
|
|
case MOTION_EUCLIDEAN:
|
|
paramTemp = 3;
|
|
break;
|
|
case MOTION_HOMOGRAPHY:
|
|
paramTemp = 8;
|
|
break;
|
|
}
|
|
|
|
|
|
const int numberOfParameters = paramTemp;
|
|
|
|
const int ws = src.cols;
|
|
const int hs = src.rows;
|
|
const int wd = dst.cols;
|
|
const int hd = dst.rows;
|
|
|
|
Mat Xcoord = Mat(1, ws, CV_32F);
|
|
Mat Ycoord = Mat(hs, 1, CV_32F);
|
|
Mat Xgrid = Mat(hs, ws, CV_32F);
|
|
Mat Ygrid = Mat(hs, ws, CV_32F);
|
|
|
|
float* XcoPtr = Xcoord.ptr<float>(0);
|
|
float* YcoPtr = Ycoord.ptr<float>(0);
|
|
int j;
|
|
for (j=0; j<ws; j++)
|
|
XcoPtr[j] = (float) j;
|
|
for (j=0; j<hs; j++)
|
|
YcoPtr[j] = (float) j;
|
|
|
|
repeat(Xcoord, hs, 1, Xgrid);
|
|
repeat(Ycoord, 1, ws, Ygrid);
|
|
|
|
Xcoord.release();
|
|
Ycoord.release();
|
|
|
|
Mat templateZM = Mat(hs, ws, CV_32F);// to store the (smoothed)zero-mean version of template
|
|
Mat templateFloat = Mat(hs, ws, CV_32F);// to store the (smoothed) template
|
|
Mat imageFloat = Mat(hd, wd, CV_32F);// to store the (smoothed) input image
|
|
Mat imageWarped = Mat(hs, ws, CV_32F);// to store the warped zero-mean input image
|
|
Mat imageMask = Mat(hs, ws, CV_8U); //to store the final mask
|
|
|
|
Mat inputMaskMat = inputMask.getMat();
|
|
//to use it for mask warping
|
|
Mat preMask;
|
|
if(inputMask.empty())
|
|
preMask = Mat::ones(hd, wd, CV_8U);
|
|
else
|
|
threshold(inputMask, preMask, 0, 1, THRESH_BINARY);
|
|
|
|
//gaussian filtering is optional
|
|
src.convertTo(templateFloat, templateFloat.type());
|
|
GaussianBlur(templateFloat, templateFloat, Size(5, 5), 0, 0);
|
|
|
|
Mat preMaskFloat;
|
|
preMask.convertTo(preMaskFloat, CV_32F);
|
|
GaussianBlur(preMaskFloat, preMaskFloat, Size(5, 5), 0, 0);
|
|
// Change threshold.
|
|
preMaskFloat *= (0.5/0.95);
|
|
// Rounding conversion.
|
|
preMaskFloat.convertTo(preMask, preMask.type());
|
|
preMask.convertTo(preMaskFloat, preMaskFloat.type());
|
|
|
|
dst.convertTo(imageFloat, imageFloat.type());
|
|
GaussianBlur(imageFloat, imageFloat, Size(5, 5), 0, 0);
|
|
|
|
// needed matrices for gradients and warped gradients
|
|
Mat gradientX = Mat::zeros(hd, wd, CV_32FC1);
|
|
Mat gradientY = Mat::zeros(hd, wd, CV_32FC1);
|
|
Mat gradientXWarped = Mat(hs, ws, CV_32FC1);
|
|
Mat gradientYWarped = Mat(hs, ws, CV_32FC1);
|
|
|
|
|
|
// calculate first order image derivatives
|
|
Matx13f dx(-0.5f, 0.0f, 0.5f);
|
|
|
|
filter2D(imageFloat, gradientX, -1, dx);
|
|
filter2D(imageFloat, gradientY, -1, dx.t());
|
|
|
|
gradientX = gradientX.mul(preMaskFloat);
|
|
gradientY = gradientY.mul(preMaskFloat);
|
|
|
|
// matrices needed for solving linear equation system for maximizing ECC
|
|
Mat jacobian = Mat(hs, ws*numberOfParameters, CV_32F);
|
|
Mat hessian = Mat(numberOfParameters, numberOfParameters, CV_32F);
|
|
Mat hessianInv = Mat(numberOfParameters, numberOfParameters, CV_32F);
|
|
Mat imageProjection = Mat(numberOfParameters, 1, CV_32F);
|
|
Mat templateProjection = Mat(numberOfParameters, 1, CV_32F);
|
|
Mat imageProjectionHessian = Mat(numberOfParameters, 1, CV_32F);
|
|
Mat errorProjection = Mat(numberOfParameters, 1, CV_32F);
|
|
|
|
Mat deltaP = Mat(numberOfParameters, 1, CV_32F);//transformation parameter correction
|
|
Mat error = Mat(hs, ws, CV_32F);//error as 2D matrix
|
|
|
|
const int imageFlags = INTER_LINEAR + WARP_INVERSE_MAP;
|
|
const int maskFlags = INTER_NEAREST + WARP_INVERSE_MAP;
|
|
|
|
|
|
// iteratively update map_matrix
|
|
double rho = -1;
|
|
double last_rho = - termination_eps;
|
|
for (int i = 1; (i <= numberOfIterations) && (fabs(rho-last_rho)>= termination_eps); i++)
|
|
{
|
|
|
|
// warp-back portion of the inputImage and gradients to the coordinate space of the templateImage
|
|
if (motionType != MOTION_HOMOGRAPHY)
|
|
{
|
|
warpAffine(imageFloat, imageWarped, map, imageWarped.size(), imageFlags);
|
|
warpAffine(gradientX, gradientXWarped, map, gradientXWarped.size(), imageFlags);
|
|
warpAffine(gradientY, gradientYWarped, map, gradientYWarped.size(), imageFlags);
|
|
warpAffine(preMask, imageMask, map, imageMask.size(), maskFlags);
|
|
}
|
|
else
|
|
{
|
|
warpPerspective(imageFloat, imageWarped, map, imageWarped.size(), imageFlags);
|
|
warpPerspective(gradientX, gradientXWarped, map, gradientXWarped.size(), imageFlags);
|
|
warpPerspective(gradientY, gradientYWarped, map, gradientYWarped.size(), imageFlags);
|
|
warpPerspective(preMask, imageMask, map, imageMask.size(), maskFlags);
|
|
}
|
|
|
|
Scalar imgMean, imgStd, tmpMean, tmpStd;
|
|
meanStdDev(imageWarped, imgMean, imgStd, imageMask);
|
|
meanStdDev(templateFloat, tmpMean, tmpStd, imageMask);
|
|
|
|
subtract(imageWarped, imgMean, imageWarped, imageMask);//zero-mean input
|
|
templateZM = Mat::zeros(templateZM.rows, templateZM.cols, templateZM.type());
|
|
subtract(templateFloat, tmpMean, templateZM, imageMask);//zero-mean template
|
|
|
|
const double tmpNorm = std::sqrt(countNonZero(imageMask)*(tmpStd.val[0])*(tmpStd.val[0]));
|
|
const double imgNorm = std::sqrt(countNonZero(imageMask)*(imgStd.val[0])*(imgStd.val[0]));
|
|
|
|
// calculate jacobian of image wrt parameters
|
|
switch (motionType){
|
|
case MOTION_AFFINE:
|
|
image_jacobian_affine_ECC(gradientXWarped, gradientYWarped, Xgrid, Ygrid, jacobian);
|
|
break;
|
|
case MOTION_HOMOGRAPHY:
|
|
image_jacobian_homo_ECC(gradientXWarped, gradientYWarped, Xgrid, Ygrid, map, jacobian);
|
|
break;
|
|
case MOTION_TRANSLATION:
|
|
image_jacobian_translation_ECC(gradientXWarped, gradientYWarped, jacobian);
|
|
break;
|
|
case MOTION_EUCLIDEAN:
|
|
image_jacobian_euclidean_ECC(gradientXWarped, gradientYWarped, Xgrid, Ygrid, map, jacobian);
|
|
break;
|
|
}
|
|
|
|
// calculate Hessian and its inverse
|
|
project_onto_jacobian_ECC(jacobian, jacobian, hessian);
|
|
|
|
hessianInv = hessian.inv();
|
|
|
|
const double correlation = templateZM.dot(imageWarped);
|
|
|
|
// calculate enhanced correlation coefficiont (ECC)->rho
|
|
last_rho = rho;
|
|
rho = correlation/(imgNorm*tmpNorm);
|
|
if (cvIsNaN(rho)) {
|
|
CV_Error(Error::StsNoConv, "NaN encountered.");
|
|
}
|
|
|
|
// project images into jacobian
|
|
project_onto_jacobian_ECC( jacobian, imageWarped, imageProjection);
|
|
project_onto_jacobian_ECC(jacobian, templateZM, templateProjection);
|
|
|
|
|
|
// calculate the parameter lambda to account for illumination variation
|
|
imageProjectionHessian = hessianInv*imageProjection;
|
|
const double lambda_n = (imgNorm*imgNorm) - imageProjection.dot(imageProjectionHessian);
|
|
const double lambda_d = correlation - templateProjection.dot(imageProjectionHessian);
|
|
if (lambda_d <= 0.0)
|
|
{
|
|
rho = -1;
|
|
CV_Error(Error::StsNoConv, "The algorithm stopped before its convergence. The correlation is going to be minimized. Images may be uncorrelated or non-overlapped");
|
|
|
|
}
|
|
const double lambda = (lambda_n/lambda_d);
|
|
|
|
// estimate the update step delta_p
|
|
error = lambda*templateZM - imageWarped;
|
|
project_onto_jacobian_ECC(jacobian, error, errorProjection);
|
|
deltaP = hessianInv * errorProjection;
|
|
|
|
// update warping matrix
|
|
update_warping_matrix_ECC( map, deltaP, motionType);
|
|
|
|
|
|
}
|
|
|
|
// return final correlation coefficient
|
|
return rho;
|
|
}
|
|
|
|
|
|
/* End of file. */
|