opencv/samples/dnn/mobilenet_ssd_accuracy.py
2017-11-24 13:40:35 +03:00

132 lines
4.8 KiB
Python

# Script to evaluate MobileNet-SSD object detection model trained in TensorFlow
# using both TensorFlow and OpenCV. Example:
#
# python mobilenet_ssd_accuracy.py \
# --weights=frozen_inference_graph.pb \
# --prototxt=ssd_mobilenet_v1_coco.pbtxt \
# --images=val2017 \
# --annotations=annotations/instances_val2017.json
#
# Tested on COCO 2017 object detection dataset, http://cocodataset.org/#download
import os
import cv2 as cv
import json
import argparse
parser = argparse.ArgumentParser(
description='Evaluate MobileNet-SSD model using both TensorFlow and OpenCV. '
'COCO evaluation framework is required: http://cocodataset.org')
parser.add_argument('--weights', required=True,
help='Path to frozen_inference_graph.pb of MobileNet-SSD model. '
'Download it from http://download.tensorflow.org/models/object_detection/ssd_mobilenet_v1_coco_11_06_2017.tar.gz')
parser.add_argument('--prototxt', help='Path to ssd_mobilenet_v1_coco.pbtxt from opencv_extra.', required=True)
parser.add_argument('--images', help='Path to COCO validation images directory.', required=True)
parser.add_argument('--annotations', help='Path to COCO annotations file.', required=True)
args = parser.parse_args()
### Get OpenCV predictions #####################################################
net = cv.dnn.readNetFromTensorflow(args.weights, args.prototxt)
detections = []
for imgName in os.listdir(args.images):
inp = cv.imread(os.path.join(args.images, imgName))
rows = inp.shape[0]
cols = inp.shape[1]
inp = cv.resize(inp, (300, 300))
net.setInput(cv.dnn.blobFromImage(inp, 1.0/127.5, (300, 300), (127.5, 127.5, 127.5), True))
out = net.forward()
for i in range(out.shape[2]):
score = float(out[0, 0, i, 2])
# Confidence threshold is in prototxt.
classId = int(out[0, 0, i, 1])
x = out[0, 0, i, 3] * cols
y = out[0, 0, i, 4] * rows
w = out[0, 0, i, 5] * cols - x
h = out[0, 0, i, 6] * rows - y
detections.append({
"image_id": int(imgName.rstrip('0')[:imgName.rfind('.')]),
"category_id": classId,
"bbox": [x, y, w, h],
"score": score
})
with open('cv_result.json', 'wt') as f:
json.dump(detections, f)
### Get TensorFlow predictions #################################################
import tensorflow as tf
with tf.gfile.FastGFile(args.weights) as f:
# Load the model
graph_def = tf.GraphDef()
graph_def.ParseFromString(f.read())
with tf.Session() as sess:
# Restore session
sess.graph.as_default()
tf.import_graph_def(graph_def, name='')
detections = []
for imgName in os.listdir(args.images):
inp = cv.imread(os.path.join(args.images, imgName))
rows = inp.shape[0]
cols = inp.shape[1]
inp = cv.resize(inp, (300, 300))
inp = inp[:, :, [2, 1, 0]] # BGR2RGB
out = sess.run([sess.graph.get_tensor_by_name('num_detections:0'),
sess.graph.get_tensor_by_name('detection_scores:0'),
sess.graph.get_tensor_by_name('detection_boxes:0'),
sess.graph.get_tensor_by_name('detection_classes:0')],
feed_dict={'image_tensor:0': inp.reshape(1, inp.shape[0], inp.shape[1], 3)})
num_detections = int(out[0][0])
for i in range(num_detections):
classId = int(out[3][0][i])
score = float(out[1][0][i])
bbox = [float(v) for v in out[2][0][i]]
if score > 0.01:
x = bbox[1] * cols
y = bbox[0] * rows
w = bbox[3] * cols - x
h = bbox[2] * rows - y
detections.append({
"image_id": int(imgName.rstrip('0')[:imgName.rfind('.')]),
"category_id": classId,
"bbox": [x, y, w, h],
"score": score
})
with open('tf_result.json', 'wt') as f:
json.dump(detections, f)
### Evaluation part ############################################################
# %matplotlib inline
import matplotlib.pyplot as plt
from pycocotools.coco import COCO
from pycocotools.cocoeval import COCOeval
import numpy as np
import skimage.io as io
import pylab
pylab.rcParams['figure.figsize'] = (10.0, 8.0)
annType = ['segm','bbox','keypoints']
annType = annType[1] #specify type here
prefix = 'person_keypoints' if annType=='keypoints' else 'instances'
print 'Running demo for *%s* results.'%(annType)
#initialize COCO ground truth api
cocoGt=COCO(args.annotations)
#initialize COCO detections api
for resFile in ['tf_result.json', 'cv_result.json']:
print resFile
cocoDt=cocoGt.loadRes(resFile)
cocoEval = COCOeval(cocoGt,cocoDt,annType)
cocoEval.evaluate()
cocoEval.accumulate()
cocoEval.summarize()