mirror of
https://github.com/opencv/opencv.git
synced 2024-12-27 11:28:14 +08:00
2b106db02f
Also fixed some typos and code alignment Also adapted tutorial CPP samples Fixed some identation problems
194 lines
5.6 KiB
C++
194 lines
5.6 KiB
C++
#if defined(__linux__) || defined(LINUX) || defined(__APPLE__) || defined(ANDROID)
|
|
|
|
#include <opencv2/core.hpp>
|
|
#include <opencv2/core/utility.hpp>
|
|
#include <opencv2/imgproc.hpp>
|
|
#include <opencv2/highgui.hpp>
|
|
#include <opencv2/objdetect.hpp>
|
|
#include "opencv2/contrib/detection_based_tracker.hpp"
|
|
|
|
#include <vector>
|
|
#include <iostream>
|
|
#include <stdio.h>
|
|
|
|
#define DEBUGLOGS 1
|
|
|
|
|
|
#ifdef ANDROID
|
|
#include <android/log.h>
|
|
#define LOG_TAG "DETECTIONBASEDTRACKER__TEST_APPLICAT"
|
|
#define LOGD0(...) ((void)__android_log_print(ANDROID_LOG_DEBUG, LOG_TAG, __VA_ARGS__))
|
|
#define LOGI0(...) ((void)__android_log_print(ANDROID_LOG_INFO, LOG_TAG, __VA_ARGS__))
|
|
#define LOGW0(...) ((void)__android_log_print(ANDROID_LOG_WARN, LOG_TAG, __VA_ARGS__))
|
|
#define LOGE0(...) ((void)__android_log_print(ANDROID_LOG_ERROR, LOG_TAG, __VA_ARGS__))
|
|
#else
|
|
|
|
#include <stdio.h>
|
|
|
|
#define LOGD0(_str, ...) do{printf(_str , ## __VA_ARGS__); printf("\n");fflush(stdout);} while(0)
|
|
#define LOGI0(_str, ...) do{printf(_str , ## __VA_ARGS__); printf("\n");fflush(stdout);} while(0)
|
|
#define LOGW0(_str, ...) do{printf(_str , ## __VA_ARGS__); printf("\n");fflush(stdout);} while(0)
|
|
#define LOGE0(_str, ...) do{printf(_str , ## __VA_ARGS__); printf("\n");fflush(stdout);} while(0)
|
|
#endif
|
|
|
|
#if DEBUGLOGS
|
|
#define LOGD(_str, ...) LOGD0(_str , ## __VA_ARGS__)
|
|
#define LOGI(_str, ...) LOGI0(_str , ## __VA_ARGS__)
|
|
#define LOGW(_str, ...) LOGW0(_str , ## __VA_ARGS__)
|
|
#define LOGE(_str, ...) LOGE0(_str , ## __VA_ARGS__)
|
|
#else
|
|
#define LOGD(...) do{} while(0)
|
|
#define LOGI(...) do{} while(0)
|
|
#define LOGW(...) do{} while(0)
|
|
#define LOGE(...) do{} while(0)
|
|
#endif
|
|
|
|
using namespace cv;
|
|
using namespace std;
|
|
|
|
#define ORIGINAL 0
|
|
#define SHOULD_USE_EXTERNAL_BUFFERS 1
|
|
|
|
static void usage()
|
|
{
|
|
LOGE0("usage: filepattern outfilepattern cascadefile");
|
|
LOGE0("\t where ");
|
|
LOGE0("\t filepattern --- pattern for the paths to the source images");
|
|
LOGE0("\t (e.g.\"./Videos/FACESJPG2/Faces2_%%08d.jpg\" ");
|
|
LOGE0("\t outfilepattern --- pattern for the paths for images which will be generated");
|
|
LOGE0("\t (e.g.\"./resFaces2_%%08d.jpg\" ");
|
|
LOGE0("\t cascadefile --- path to the cascade file");
|
|
LOGE0("\t (e.g.\"opencv/data/lbpcascades/lbpcascade_frontalface.xml\" ");
|
|
}
|
|
|
|
class CascadeDetectorAdapter: public DetectionBasedTracker::IDetector
|
|
{
|
|
public:
|
|
CascadeDetectorAdapter(cv::Ptr<cv::CascadeClassifier> detector):
|
|
Detector(detector)
|
|
{
|
|
CV_Assert(detector);
|
|
}
|
|
|
|
void detect(const cv::Mat &Image, std::vector<cv::Rect> &objects)
|
|
{
|
|
Detector->detectMultiScale(Image, objects, 1.1, 3, 0, minObjSize, maxObjSize);
|
|
}
|
|
virtual ~CascadeDetectorAdapter()
|
|
{}
|
|
|
|
private:
|
|
CascadeDetectorAdapter();
|
|
cv::Ptr<cv::CascadeClassifier> Detector;
|
|
};
|
|
|
|
static int test_FaceDetector(int argc, char *argv[])
|
|
{
|
|
if (argc < 4)
|
|
{
|
|
usage();
|
|
return -1;
|
|
}
|
|
|
|
const char* filepattern=argv[1];
|
|
const char* outfilepattern=argv[2];
|
|
const char* cascadefile=argv[3];
|
|
LOGD0("filepattern='%s'", filepattern);
|
|
LOGD0("outfilepattern='%s'", outfilepattern);
|
|
LOGD0("cascadefile='%s'", cascadefile);
|
|
|
|
vector<Mat> images;
|
|
{
|
|
char filename[256];
|
|
for(int n=1; ; n++)
|
|
{
|
|
snprintf(filename, sizeof(filename), filepattern, n);
|
|
LOGD("filename='%s'", filename);
|
|
Mat m0;
|
|
m0=imread(filename);
|
|
if (m0.empty())
|
|
{
|
|
LOGI0("Cannot read the file --- break");
|
|
break;
|
|
}
|
|
images.push_back(m0);
|
|
}
|
|
LOGD("read %d images", (int)images.size());
|
|
}
|
|
|
|
std::string cascadeFrontalfilename=cascadefile;
|
|
cv::Ptr<cv::CascadeClassifier> cascade = makePtr<cv::CascadeClassifier>(cascadeFrontalfilename);
|
|
cv::Ptr<DetectionBasedTracker::IDetector> MainDetector = makePtr<CascadeDetectorAdapter>(cascade);
|
|
|
|
cascade = makePtr<cv::CascadeClassifier>(cascadeFrontalfilename);
|
|
cv::Ptr<DetectionBasedTracker::IDetector> TrackingDetector = makePtr<CascadeDetectorAdapter>(cascade);
|
|
|
|
DetectionBasedTracker::Parameters params;
|
|
DetectionBasedTracker fd(MainDetector, TrackingDetector, params);
|
|
|
|
fd.run();
|
|
|
|
Mat gray;
|
|
Mat m;
|
|
|
|
int64 tprev=getTickCount();
|
|
double freq=getTickFrequency();
|
|
|
|
int num_images=images.size();
|
|
for(int n=1; n <= num_images; n++)
|
|
{
|
|
int64 tcur=getTickCount();
|
|
int64 dt=tcur-tprev;
|
|
tprev=tcur;
|
|
double t_ms=((double)dt)/freq * 1000.0;
|
|
LOGD("\n\nSTEP n=%d from prev step %f ms\n", n, t_ms);
|
|
m=images[n-1];
|
|
CV_Assert(! m.empty());
|
|
cvtColor(m, gray, COLOR_BGR2GRAY);
|
|
|
|
fd.process(gray);
|
|
|
|
vector<Rect> result;
|
|
fd.getObjects(result);
|
|
|
|
for(size_t i=0; i < result.size(); i++)
|
|
{
|
|
Rect r=result[i];
|
|
CV_Assert(r.area() > 0);
|
|
Point tl=r.tl();
|
|
Point br=r.br();
|
|
Scalar color=Scalar(0, 250, 0);
|
|
rectangle(m, tl, br, color, 3);
|
|
}
|
|
}
|
|
|
|
char outfilename[256];
|
|
for(int n=1; n <= num_images; n++)
|
|
{
|
|
snprintf(outfilename, sizeof(outfilename), outfilepattern, n);
|
|
LOGD("outfilename='%s'", outfilename);
|
|
m=images[n-1];
|
|
imwrite(outfilename, m);
|
|
}
|
|
|
|
fd.stop();
|
|
|
|
return 0;
|
|
}
|
|
|
|
int main(int argc, char *argv[])
|
|
{
|
|
return test_FaceDetector(argc, argv);
|
|
}
|
|
|
|
#else // #if defined(__linux__) || defined(LINUX) || defined(__APPLE__) || defined(ANDROID)
|
|
|
|
#include <stdio.h>
|
|
int main()
|
|
{
|
|
printf("This sample works for UNIX or ANDROID only\n");
|
|
return 0;
|
|
}
|
|
|
|
#endif
|