mirror of
https://github.com/opencv/opencv.git
synced 2024-12-18 03:18:01 +08:00
ef5579dc86
* Cleanup macros and enable expansion of `__VA_ARGS__` for Visual Studio * Macros for enum-arguments backwards compatibility * Convert struct Param to enum struct * Enabled ParamType.type for enum types * Enabled `cv.read` and `cv.write` for enum types * Rename unnamed enum to AAKAZE.DescriptorType * Rename unnamed enum to AccessFlag * Rename unnamed enum to AgastFeatureDetector.DetectorType * Convert struct DrawMatchesFlags to enum struct * Rename unnamed enum to FastFeatureDetector.DetectorType * Rename unnamed enum to Formatter.FormatType * Rename unnamed enum to HOGDescriptor.HistogramNormType * Rename unnamed enum to DescriptorMatcher.MatcherType * Rename unnamed enum to KAZE.DiffusivityType * Rename unnamed enum to ORB.ScoreType * Rename unnamed enum to UMatData.MemoryFlag * Rename unnamed enum to _InputArray.KindFlag * Rename unnamed enum to _OutputArray.DepthMask * Convert normType enums to static const NormTypes * Avoid conflicts with ElemType * Rename unnamed enum to DescriptorStorageFormat
254 lines
9.1 KiB
C++
254 lines
9.1 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2008, Willow Garage Inc., all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of Intel Corporation may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
/*
|
|
OpenCV wrapper of reference implementation of
|
|
[1] Fast Explicit Diffusion for Accelerated Features in Nonlinear Scale Spaces.
|
|
Pablo F. Alcantarilla, J. Nuevo and Adrien Bartoli.
|
|
In British Machine Vision Conference (BMVC), Bristol, UK, September 2013
|
|
http://www.robesafe.com/personal/pablo.alcantarilla/papers/Alcantarilla13bmvc.pdf
|
|
@author Eugene Khvedchenya <ekhvedchenya@gmail.com>
|
|
*/
|
|
|
|
#include "precomp.hpp"
|
|
#include "kaze/AKAZEFeatures.h"
|
|
|
|
#include <iostream>
|
|
|
|
namespace cv
|
|
{
|
|
using namespace std;
|
|
|
|
class AKAZE_Impl : public AKAZE
|
|
{
|
|
public:
|
|
AKAZE_Impl(DescriptorType _descriptor_type, int _descriptor_size, int _descriptor_channels,
|
|
float _threshold, int _octaves, int _sublevels, KAZE::DiffusivityType _diffusivity)
|
|
: descriptor(_descriptor_type)
|
|
, descriptor_channels(_descriptor_channels)
|
|
, descriptor_size(_descriptor_size)
|
|
, threshold(_threshold)
|
|
, octaves(_octaves)
|
|
, sublevels(_sublevels)
|
|
, diffusivity(_diffusivity)
|
|
{
|
|
}
|
|
|
|
virtual ~AKAZE_Impl() CV_OVERRIDE
|
|
{
|
|
|
|
}
|
|
|
|
void setDescriptorType(DescriptorType dtype) CV_OVERRIDE{ descriptor = dtype; }
|
|
DescriptorType getDescriptorType() const CV_OVERRIDE{ return descriptor; }
|
|
|
|
void setDescriptorSize(int dsize) CV_OVERRIDE { descriptor_size = dsize; }
|
|
int getDescriptorSize() const CV_OVERRIDE { return descriptor_size; }
|
|
|
|
void setDescriptorChannels(int dch) CV_OVERRIDE { descriptor_channels = dch; }
|
|
int getDescriptorChannels() const CV_OVERRIDE { return descriptor_channels; }
|
|
|
|
void setThreshold(double threshold_) CV_OVERRIDE { threshold = (float)threshold_; }
|
|
double getThreshold() const CV_OVERRIDE { return threshold; }
|
|
|
|
void setNOctaves(int octaves_) CV_OVERRIDE { octaves = octaves_; }
|
|
int getNOctaves() const CV_OVERRIDE { return octaves; }
|
|
|
|
void setNOctaveLayers(int octaveLayers_) CV_OVERRIDE { sublevels = octaveLayers_; }
|
|
int getNOctaveLayers() const CV_OVERRIDE { return sublevels; }
|
|
|
|
void setDiffusivity(KAZE::DiffusivityType diff_) CV_OVERRIDE{ diffusivity = diff_; }
|
|
KAZE::DiffusivityType getDiffusivity() const CV_OVERRIDE{ return diffusivity; }
|
|
|
|
// returns the descriptor size in bytes
|
|
int descriptorSize() const CV_OVERRIDE
|
|
{
|
|
switch (descriptor)
|
|
{
|
|
case DESCRIPTOR_KAZE:
|
|
case DESCRIPTOR_KAZE_UPRIGHT:
|
|
return 64;
|
|
|
|
case DESCRIPTOR_MLDB:
|
|
case DESCRIPTOR_MLDB_UPRIGHT:
|
|
// We use the full length binary descriptor -> 486 bits
|
|
if (descriptor_size == 0)
|
|
{
|
|
int t = (6 + 36 + 120) * descriptor_channels;
|
|
return divUp(t, 8);
|
|
}
|
|
else
|
|
{
|
|
// We use the random bit selection length binary descriptor
|
|
return divUp(descriptor_size, 8);
|
|
}
|
|
|
|
default:
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
// returns the descriptor type
|
|
int descriptorType() const CV_OVERRIDE
|
|
{
|
|
switch (descriptor)
|
|
{
|
|
case DESCRIPTOR_KAZE:
|
|
case DESCRIPTOR_KAZE_UPRIGHT:
|
|
return CV_32F;
|
|
|
|
case DESCRIPTOR_MLDB:
|
|
case DESCRIPTOR_MLDB_UPRIGHT:
|
|
return CV_8U;
|
|
|
|
default:
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
// returns the default norm type
|
|
int defaultNorm() const CV_OVERRIDE
|
|
{
|
|
switch (descriptor)
|
|
{
|
|
case DESCRIPTOR_KAZE:
|
|
case DESCRIPTOR_KAZE_UPRIGHT:
|
|
return NORM_L2;
|
|
|
|
case DESCRIPTOR_MLDB:
|
|
case DESCRIPTOR_MLDB_UPRIGHT:
|
|
return NORM_HAMMING;
|
|
|
|
default:
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
void detectAndCompute(InputArray image, InputArray mask,
|
|
std::vector<KeyPoint>& keypoints,
|
|
OutputArray descriptors,
|
|
bool useProvidedKeypoints) CV_OVERRIDE
|
|
{
|
|
CV_INSTRUMENT_REGION();
|
|
|
|
CV_Assert( ! image.empty() );
|
|
|
|
AKAZEOptions options;
|
|
options.descriptor = descriptor;
|
|
options.descriptor_channels = descriptor_channels;
|
|
options.descriptor_size = descriptor_size;
|
|
options.img_width = image.cols();
|
|
options.img_height = image.rows();
|
|
options.dthreshold = threshold;
|
|
options.omax = octaves;
|
|
options.nsublevels = sublevels;
|
|
options.diffusivity = diffusivity;
|
|
|
|
AKAZEFeatures impl(options);
|
|
impl.Create_Nonlinear_Scale_Space(image);
|
|
|
|
if (!useProvidedKeypoints)
|
|
{
|
|
impl.Feature_Detection(keypoints);
|
|
}
|
|
|
|
if (!mask.empty())
|
|
{
|
|
KeyPointsFilter::runByPixelsMask(keypoints, mask.getMat());
|
|
}
|
|
|
|
if(descriptors.needed())
|
|
{
|
|
impl.Compute_Descriptors(keypoints, descriptors);
|
|
|
|
CV_Assert((descriptors.empty() || descriptors.cols() == descriptorSize()));
|
|
CV_Assert((descriptors.empty() || (descriptors.type() == descriptorType())));
|
|
}
|
|
}
|
|
|
|
void write(FileStorage& fs) const CV_OVERRIDE
|
|
{
|
|
writeFormat(fs);
|
|
fs << "descriptor" << descriptor;
|
|
fs << "descriptor_channels" << descriptor_channels;
|
|
fs << "descriptor_size" << descriptor_size;
|
|
fs << "threshold" << threshold;
|
|
fs << "octaves" << octaves;
|
|
fs << "sublevels" << sublevels;
|
|
fs << "diffusivity" << diffusivity;
|
|
}
|
|
|
|
void read(const FileNode& fn) CV_OVERRIDE
|
|
{
|
|
descriptor = static_cast<DescriptorType>((int)fn["descriptor"]);
|
|
descriptor_channels = (int)fn["descriptor_channels"];
|
|
descriptor_size = (int)fn["descriptor_size"];
|
|
threshold = (float)fn["threshold"];
|
|
octaves = (int)fn["octaves"];
|
|
sublevels = (int)fn["sublevels"];
|
|
diffusivity = static_cast<KAZE::DiffusivityType>((int)fn["diffusivity"]);
|
|
}
|
|
|
|
DescriptorType descriptor;
|
|
int descriptor_channels;
|
|
int descriptor_size;
|
|
float threshold;
|
|
int octaves;
|
|
int sublevels;
|
|
KAZE::DiffusivityType diffusivity;
|
|
};
|
|
|
|
Ptr<AKAZE> AKAZE::create(DescriptorType descriptor_type,
|
|
int descriptor_size, int descriptor_channels,
|
|
float threshold, int octaves,
|
|
int sublevels, KAZE::DiffusivityType diffusivity)
|
|
{
|
|
return makePtr<AKAZE_Impl>(descriptor_type, descriptor_size, descriptor_channels,
|
|
threshold, octaves, sublevels, diffusivity);
|
|
}
|
|
|
|
String AKAZE::getDefaultName() const
|
|
{
|
|
return (Feature2D::getDefaultName() + ".AKAZE");
|
|
}
|
|
|
|
}
|