mirror of
https://github.com/opencv/opencv.git
synced 2024-12-26 18:58:16 +08:00
2690 lines
106 KiB
C
2690 lines
106 KiB
C
//***************************************************************************/
|
|
// This software is released under the 2-Clause BSD license, included
|
|
// below.
|
|
//
|
|
// Copyright (c) 2021, Aous Naman
|
|
// Copyright (c) 2021, Kakadu Software Pty Ltd, Australia
|
|
// Copyright (c) 2021, The University of New South Wales, Australia
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
//
|
|
// 1. Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
//
|
|
// 2. Redistributions in binary form must reproduce the above copyright
|
|
// notice, this list of conditions and the following disclaimer in the
|
|
// documentation and/or other materials provided with the distribution.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
|
|
// IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
// TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
|
|
// PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
// HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
|
|
// TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
|
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
|
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
//***************************************************************************/
|
|
// This file is part of the OpenJpeg software implementation.
|
|
// File: ht_dec.c
|
|
// Author: Aous Naman
|
|
// Date: 01 September 2021
|
|
//***************************************************************************/
|
|
|
|
//***************************************************************************/
|
|
/** @file ht_dec.c
|
|
* @brief implements HTJ2K block decoder
|
|
*/
|
|
|
|
#include <assert.h>
|
|
#include <string.h>
|
|
#include "opj_includes.h"
|
|
|
|
#include "t1_ht_luts.h"
|
|
|
|
/////////////////////////////////////////////////////////////////////////////
|
|
// compiler detection
|
|
/////////////////////////////////////////////////////////////////////////////
|
|
#ifdef _MSC_VER
|
|
#define OPJ_COMPILER_MSVC
|
|
#elif (defined __GNUC__)
|
|
#define OPJ_COMPILER_GNUC
|
|
#endif
|
|
|
|
#if defined(OPJ_COMPILER_MSVC) && defined(_M_ARM64) \
|
|
&& !defined(_M_ARM64EC) && !defined(_M_CEE_PURE) && !defined(__CUDACC__) \
|
|
&& !defined(__INTEL_COMPILER) && !defined(__clang__)
|
|
#define MSVC_NEON_INTRINSICS
|
|
#endif
|
|
|
|
#ifdef MSVC_NEON_INTRINSICS
|
|
#include <arm64_neon.h>
|
|
#endif
|
|
|
|
//************************************************************************/
|
|
/** @brief Displays the error message for disabling the decoding of SPP and
|
|
* MRP passes
|
|
*/
|
|
static OPJ_BOOL only_cleanup_pass_is_decoded = OPJ_FALSE;
|
|
|
|
//************************************************************************/
|
|
/** @brief Generates population count (i.e., the number of set bits)
|
|
*
|
|
* @param [in] val is the value for which population count is sought
|
|
*/
|
|
static INLINE
|
|
OPJ_UINT32 population_count(OPJ_UINT32 val)
|
|
{
|
|
#if defined(OPJ_COMPILER_MSVC) && (defined(_M_IX86) || defined(_M_AMD64))
|
|
return (OPJ_UINT32)__popcnt(val);
|
|
#elif defined(OPJ_COMPILER_MSVC) && defined(MSVC_NEON_INTRINSICS)
|
|
const __n64 temp = neon_cnt(__uint64ToN64_v(val));
|
|
return neon_addv8(temp).n8_i8[0];
|
|
#elif (defined OPJ_COMPILER_GNUC)
|
|
return (OPJ_UINT32)__builtin_popcount(val);
|
|
#else
|
|
val -= ((val >> 1) & 0x55555555);
|
|
val = (((val >> 2) & 0x33333333) + (val & 0x33333333));
|
|
val = (((val >> 4) + val) & 0x0f0f0f0f);
|
|
val += (val >> 8);
|
|
val += (val >> 16);
|
|
return (OPJ_UINT32)(val & 0x0000003f);
|
|
#endif
|
|
}
|
|
|
|
//************************************************************************/
|
|
/** @brief Counts the number of leading zeros
|
|
*
|
|
* @param [in] val is the value for which leading zero count is sought
|
|
*/
|
|
#ifdef OPJ_COMPILER_MSVC
|
|
#pragma intrinsic(_BitScanReverse)
|
|
#endif
|
|
static INLINE
|
|
OPJ_UINT32 count_leading_zeros(OPJ_UINT32 val)
|
|
{
|
|
#ifdef OPJ_COMPILER_MSVC
|
|
unsigned long result = 0;
|
|
_BitScanReverse(&result, val);
|
|
return 31U ^ (OPJ_UINT32)result;
|
|
#elif (defined OPJ_COMPILER_GNUC)
|
|
return (OPJ_UINT32)__builtin_clz(val);
|
|
#else
|
|
val |= (val >> 1);
|
|
val |= (val >> 2);
|
|
val |= (val >> 4);
|
|
val |= (val >> 8);
|
|
val |= (val >> 16);
|
|
return 32U - population_count(val);
|
|
#endif
|
|
}
|
|
|
|
//************************************************************************/
|
|
/** @brief Read a little-endian serialized UINT32.
|
|
*
|
|
* @param [in] dataIn pointer to byte stream to read from
|
|
*/
|
|
static INLINE OPJ_UINT32 read_le_uint32(const void* dataIn)
|
|
{
|
|
#if defined(OPJ_BIG_ENDIAN)
|
|
const OPJ_UINT8* data = (const OPJ_UINT8*)dataIn;
|
|
return ((OPJ_UINT32)data[0]) | (OPJ_UINT32)(data[1] << 8) | (OPJ_UINT32)(
|
|
data[2] << 16) | (((
|
|
OPJ_UINT32)data[3]) <<
|
|
24U);
|
|
#else
|
|
return *(OPJ_UINT32*)dataIn;
|
|
#endif
|
|
}
|
|
|
|
//************************************************************************/
|
|
/** @brief MEL state structure for reading and decoding the MEL bitstream
|
|
*
|
|
* A number of events is decoded from the MEL bitstream ahead of time
|
|
* and stored in run/num_runs.
|
|
* Each run represents the number of zero events before a one event.
|
|
*/
|
|
typedef struct dec_mel {
|
|
// data decoding machinery
|
|
OPJ_UINT8* data; //!<the address of data (or bitstream)
|
|
OPJ_UINT64 tmp; //!<temporary buffer for read data
|
|
int bits; //!<number of bits stored in tmp
|
|
int size; //!<number of bytes in MEL code
|
|
OPJ_BOOL unstuff; //!<true if the next bit needs to be unstuffed
|
|
int k; //!<state of MEL decoder
|
|
|
|
// queue of decoded runs
|
|
int num_runs; //!<number of decoded runs left in runs (maximum 8)
|
|
OPJ_UINT64 runs; //!<runs of decoded MEL codewords (7 bits/run)
|
|
} dec_mel_t;
|
|
|
|
//************************************************************************/
|
|
/** @brief Reads and unstuffs the MEL bitstream
|
|
*
|
|
* This design needs more bytes in the codeblock buffer than the length
|
|
* of the cleanup pass by up to 2 bytes.
|
|
*
|
|
* Unstuffing removes the MSB of the byte following a byte whose
|
|
* value is 0xFF; this prevents sequences larger than 0xFF7F in value
|
|
* from appearing the bitstream.
|
|
*
|
|
* @param [in] melp is a pointer to dec_mel_t structure
|
|
*/
|
|
static INLINE
|
|
void mel_read(dec_mel_t *melp)
|
|
{
|
|
OPJ_UINT32 val;
|
|
int bits;
|
|
OPJ_UINT32 t;
|
|
OPJ_BOOL unstuff;
|
|
|
|
if (melp->bits > 32) { //there are enough bits in the tmp variable
|
|
return; // return without reading new data
|
|
}
|
|
|
|
val = 0xFFFFFFFF; // feed in 0xFF if buffer is exhausted
|
|
if (melp->size > 4) { // if there is more than 4 bytes the MEL segment
|
|
val = read_le_uint32(melp->data); // read 32 bits from MEL data
|
|
melp->data += 4; // advance pointer
|
|
melp->size -= 4; // reduce counter
|
|
} else if (melp->size > 0) { // 4 or less
|
|
OPJ_UINT32 m, v;
|
|
int i = 0;
|
|
while (melp->size > 1) {
|
|
OPJ_UINT32 v = *melp->data++; // read one byte at a time
|
|
OPJ_UINT32 m = ~(0xFFu << i); // mask of location
|
|
val = (val & m) | (v << i); // put byte in its correct location
|
|
--melp->size;
|
|
i += 8;
|
|
}
|
|
// size equal to 1
|
|
v = *melp->data++; // the one before the last is different
|
|
v |= 0xF; // MEL and VLC segments can overlap
|
|
m = ~(0xFFu << i);
|
|
val = (val & m) | (v << i);
|
|
--melp->size;
|
|
}
|
|
|
|
// next we unstuff them before adding them to the buffer
|
|
bits = 32 - melp->unstuff; // number of bits in val, subtract 1 if
|
|
// the previously read byte requires
|
|
// unstuffing
|
|
|
|
// data is unstuffed and accumulated in t
|
|
// bits has the number of bits in t
|
|
t = val & 0xFF;
|
|
unstuff = ((val & 0xFF) == 0xFF); // true if the byte needs unstuffing
|
|
bits -= unstuff; // there is one less bit in t if unstuffing is needed
|
|
t = t << (8 - unstuff); // move up to make room for the next byte
|
|
|
|
//this is a repeat of the above
|
|
t |= (val >> 8) & 0xFF;
|
|
unstuff = (((val >> 8) & 0xFF) == 0xFF);
|
|
bits -= unstuff;
|
|
t = t << (8 - unstuff);
|
|
|
|
t |= (val >> 16) & 0xFF;
|
|
unstuff = (((val >> 16) & 0xFF) == 0xFF);
|
|
bits -= unstuff;
|
|
t = t << (8 - unstuff);
|
|
|
|
t |= (val >> 24) & 0xFF;
|
|
melp->unstuff = (((val >> 24) & 0xFF) == 0xFF);
|
|
|
|
// move t to tmp, and push the result all the way up, so we read from
|
|
// the MSB
|
|
melp->tmp |= ((OPJ_UINT64)t) << (64 - bits - melp->bits);
|
|
melp->bits += bits; //increment the number of bits in tmp
|
|
}
|
|
|
|
//************************************************************************/
|
|
/** @brief Decodes unstuffed MEL segment bits stored in tmp to runs
|
|
*
|
|
* Runs are stored in "runs" and the number of runs in "num_runs".
|
|
* Each run represents a number of zero events that may or may not
|
|
* terminate in a 1 event.
|
|
* Each run is stored in 7 bits. The LSB is 1 if the run terminates in
|
|
* a 1 event, 0 otherwise. The next 6 bits, for the case terminating
|
|
* with 1, contain the number of consecutive 0 zero events * 2; for the
|
|
* case terminating with 0, they store (number of consecutive 0 zero
|
|
* events - 1) * 2.
|
|
* A total of 6 bits (made up of 1 + 5) should have been enough.
|
|
*
|
|
* @param [in] melp is a pointer to dec_mel_t structure
|
|
*/
|
|
static INLINE
|
|
void mel_decode(dec_mel_t *melp)
|
|
{
|
|
static const int mel_exp[13] = { //MEL exponents
|
|
0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 4, 5
|
|
};
|
|
|
|
if (melp->bits < 6) { // if there are less than 6 bits in tmp
|
|
mel_read(melp); // then read from the MEL bitstream
|
|
}
|
|
// 6 bits is the largest decodable MEL cwd
|
|
|
|
//repeat so long that there is enough decodable bits in tmp,
|
|
// and the runs store is not full (num_runs < 8)
|
|
while (melp->bits >= 6 && melp->num_runs < 8) {
|
|
int eval = mel_exp[melp->k]; // number of bits associated with state
|
|
int run = 0;
|
|
if (melp->tmp & (1ull << 63)) { //The next bit to decode (stored in MSB)
|
|
//one is found
|
|
run = 1 << eval;
|
|
run--; // consecutive runs of 0 events - 1
|
|
melp->k = melp->k + 1 < 12 ? melp->k + 1 : 12;//increment, max is 12
|
|
melp->tmp <<= 1; // consume one bit from tmp
|
|
melp->bits -= 1;
|
|
run = run << 1; // a stretch of zeros not terminating in one
|
|
} else {
|
|
//0 is found
|
|
run = (int)(melp->tmp >> (63 - eval)) & ((1 << eval) - 1);
|
|
melp->k = melp->k - 1 > 0 ? melp->k - 1 : 0; //decrement, min is 0
|
|
melp->tmp <<= eval + 1; //consume eval + 1 bits (max is 6)
|
|
melp->bits -= eval + 1;
|
|
run = (run << 1) + 1; // a stretch of zeros terminating with one
|
|
}
|
|
eval = melp->num_runs * 7; // 7 bits per run
|
|
melp->runs &= ~((OPJ_UINT64)0x3F << eval); // 6 bits are sufficient
|
|
melp->runs |= ((OPJ_UINT64)run) << eval; // store the value in runs
|
|
melp->num_runs++; // increment count
|
|
}
|
|
}
|
|
|
|
//************************************************************************/
|
|
/** @brief Initiates a dec_mel_t structure for MEL decoding and reads
|
|
* some bytes in order to get the read address to a multiple
|
|
* of 4
|
|
*
|
|
* @param [in] melp is a pointer to dec_mel_t structure
|
|
* @param [in] bbuf is a pointer to byte buffer
|
|
* @param [in] lcup is the length of MagSgn+MEL+VLC segments
|
|
* @param [in] scup is the length of MEL+VLC segments
|
|
*/
|
|
static INLINE
|
|
OPJ_BOOL mel_init(dec_mel_t *melp, OPJ_UINT8* bbuf, int lcup, int scup)
|
|
{
|
|
int num;
|
|
int i;
|
|
|
|
melp->data = bbuf + lcup - scup; // move the pointer to the start of MEL
|
|
melp->bits = 0; // 0 bits in tmp
|
|
melp->tmp = 0; //
|
|
melp->unstuff = OPJ_FALSE; // no unstuffing
|
|
melp->size = scup - 1; // size is the length of MEL+VLC-1
|
|
melp->k = 0; // 0 for state
|
|
melp->num_runs = 0; // num_runs is 0
|
|
melp->runs = 0; //
|
|
|
|
//This code is borrowed; original is for a different architecture
|
|
//These few lines take care of the case where data is not at a multiple
|
|
// of 4 boundary. It reads 1,2,3 up to 4 bytes from the MEL segment
|
|
num = 4 - (int)((intptr_t)(melp->data) & 0x3);
|
|
for (i = 0; i < num; ++i) { // this code is similar to mel_read
|
|
OPJ_UINT64 d;
|
|
int d_bits;
|
|
|
|
if (melp->unstuff == OPJ_TRUE && melp->data[0] > 0x8F) {
|
|
return OPJ_FALSE;
|
|
}
|
|
d = (melp->size > 0) ? *melp->data : 0xFF; // if buffer is consumed
|
|
// set data to 0xFF
|
|
if (melp->size == 1) {
|
|
d |= 0xF; //if this is MEL+VLC-1, set LSBs to 0xF
|
|
}
|
|
// see the standard
|
|
melp->data += melp->size-- > 0; //increment if the end is not reached
|
|
d_bits = 8 - melp->unstuff; //if unstuffing is needed, reduce by 1
|
|
melp->tmp = (melp->tmp << d_bits) | d; //store bits in tmp
|
|
melp->bits += d_bits; //increment tmp by number of bits
|
|
melp->unstuff = ((d & 0xFF) == 0xFF); //true of next byte needs
|
|
//unstuffing
|
|
}
|
|
melp->tmp <<= (64 - melp->bits); //push all the way up so the first bit
|
|
// is the MSB
|
|
return OPJ_TRUE;
|
|
}
|
|
|
|
//************************************************************************/
|
|
/** @brief Retrieves one run from dec_mel_t; if there are no runs stored
|
|
* MEL segment is decoded
|
|
*
|
|
* @param [in] melp is a pointer to dec_mel_t structure
|
|
*/
|
|
static INLINE
|
|
int mel_get_run(dec_mel_t *melp)
|
|
{
|
|
int t;
|
|
if (melp->num_runs == 0) { //if no runs, decode more bit from MEL segment
|
|
mel_decode(melp);
|
|
}
|
|
|
|
t = melp->runs & 0x7F; //retrieve one run
|
|
melp->runs >>= 7; // remove the retrieved run
|
|
melp->num_runs--;
|
|
return t; // return run
|
|
}
|
|
|
|
//************************************************************************/
|
|
/** @brief A structure for reading and unstuffing a segment that grows
|
|
* backward, such as VLC and MRP
|
|
*/
|
|
typedef struct rev_struct {
|
|
//storage
|
|
OPJ_UINT8* data; //!<pointer to where to read data
|
|
OPJ_UINT64 tmp; //!<temporary buffer of read data
|
|
OPJ_UINT32 bits; //!<number of bits stored in tmp
|
|
int size; //!<number of bytes left
|
|
OPJ_BOOL unstuff; //!<true if the last byte is more than 0x8F
|
|
//!<then the current byte is unstuffed if it is 0x7F
|
|
} rev_struct_t;
|
|
|
|
//************************************************************************/
|
|
/** @brief Read and unstuff data from a backwardly-growing segment
|
|
*
|
|
* This reader can read up to 8 bytes from before the VLC segment.
|
|
* Care must be taken not read from unreadable memory, causing a
|
|
* segmentation fault.
|
|
*
|
|
* Note that there is another subroutine rev_read_mrp that is slightly
|
|
* different. The other one fills zeros when the buffer is exhausted.
|
|
* This one basically does not care if the bytes are consumed, because
|
|
* any extra data should not be used in the actual decoding.
|
|
*
|
|
* Unstuffing is needed to prevent sequences more than 0xFF8F from
|
|
* appearing in the bits stream; since we are reading backward, we keep
|
|
* watch when a value larger than 0x8F appears in the bitstream.
|
|
* If the byte following this is 0x7F, we unstuff this byte (ignore the
|
|
* MSB of that byte, which should be 0).
|
|
*
|
|
* @param [in] vlcp is a pointer to rev_struct_t structure
|
|
*/
|
|
static INLINE
|
|
void rev_read(rev_struct_t *vlcp)
|
|
{
|
|
OPJ_UINT32 val;
|
|
OPJ_UINT32 tmp;
|
|
OPJ_UINT32 bits;
|
|
OPJ_BOOL unstuff;
|
|
|
|
//process 4 bytes at a time
|
|
if (vlcp->bits > 32) { // if there are more than 32 bits in tmp, then
|
|
return; // reading 32 bits can overflow vlcp->tmp
|
|
}
|
|
val = 0;
|
|
//the next line (the if statement) needs to be tested first
|
|
if (vlcp->size > 3) { // if there are more than 3 bytes left in VLC
|
|
// (vlcp->data - 3) move pointer back to read 32 bits at once
|
|
val = read_le_uint32(vlcp->data - 3); // then read 32 bits
|
|
vlcp->data -= 4; // move data pointer back by 4
|
|
vlcp->size -= 4; // reduce available byte by 4
|
|
} else if (vlcp->size > 0) { // 4 or less
|
|
int i = 24;
|
|
while (vlcp->size > 0) {
|
|
OPJ_UINT32 v = *vlcp->data--; // read one byte at a time
|
|
val |= (v << i); // put byte in its correct location
|
|
--vlcp->size;
|
|
i -= 8;
|
|
}
|
|
}
|
|
|
|
//accumulate in tmp, number of bits in tmp are stored in bits
|
|
tmp = val >> 24; //start with the MSB byte
|
|
|
|
// test unstuff (previous byte is >0x8F), and this byte is 0x7F
|
|
bits = 8u - ((vlcp->unstuff && (((val >> 24) & 0x7F) == 0x7F)) ? 1u : 0u);
|
|
unstuff = (val >> 24) > 0x8F; //this is for the next byte
|
|
|
|
tmp |= ((val >> 16) & 0xFF) << bits; //process the next byte
|
|
bits += 8u - ((unstuff && (((val >> 16) & 0x7F) == 0x7F)) ? 1u : 0u);
|
|
unstuff = ((val >> 16) & 0xFF) > 0x8F;
|
|
|
|
tmp |= ((val >> 8) & 0xFF) << bits;
|
|
bits += 8u - ((unstuff && (((val >> 8) & 0x7F) == 0x7F)) ? 1u : 0u);
|
|
unstuff = ((val >> 8) & 0xFF) > 0x8F;
|
|
|
|
tmp |= (val & 0xFF) << bits;
|
|
bits += 8u - ((unstuff && ((val & 0x7F) == 0x7F)) ? 1u : 0u);
|
|
unstuff = (val & 0xFF) > 0x8F;
|
|
|
|
// now move the read and unstuffed bits into vlcp->tmp
|
|
vlcp->tmp |= (OPJ_UINT64)tmp << vlcp->bits;
|
|
vlcp->bits += bits;
|
|
vlcp->unstuff = unstuff; // this for the next read
|
|
}
|
|
|
|
//************************************************************************/
|
|
/** @brief Initiates the rev_struct_t structure and reads a few bytes to
|
|
* move the read address to multiple of 4
|
|
*
|
|
* There is another similar rev_init_mrp subroutine. The difference is
|
|
* that this one, rev_init, discards the first 12 bits (they have the
|
|
* sum of the lengths of VLC and MEL segments), and first unstuff depends
|
|
* on first 4 bits.
|
|
*
|
|
* @param [in] vlcp is a pointer to rev_struct_t structure
|
|
* @param [in] data is a pointer to byte at the start of the cleanup pass
|
|
* @param [in] lcup is the length of MagSgn+MEL+VLC segments
|
|
* @param [in] scup is the length of MEL+VLC segments
|
|
*/
|
|
static INLINE
|
|
void rev_init(rev_struct_t *vlcp, OPJ_UINT8* data, int lcup, int scup)
|
|
{
|
|
OPJ_UINT32 d;
|
|
int num, tnum, i;
|
|
|
|
//first byte has only the upper 4 bits
|
|
vlcp->data = data + lcup - 2;
|
|
|
|
//size can not be larger than this, in fact it should be smaller
|
|
vlcp->size = scup - 2;
|
|
|
|
d = *vlcp->data--; // read one byte (this is a half byte)
|
|
vlcp->tmp = d >> 4; // both initialize and set
|
|
vlcp->bits = 4 - ((vlcp->tmp & 7) == 7); //check standard
|
|
vlcp->unstuff = (d | 0xF) > 0x8F; //this is useful for the next byte
|
|
|
|
//This code is designed for an architecture that read address should
|
|
// align to the read size (address multiple of 4 if read size is 4)
|
|
//These few lines take care of the case where data is not at a multiple
|
|
// of 4 boundary. It reads 1,2,3 up to 4 bytes from the VLC bitstream.
|
|
// To read 32 bits, read from (vlcp->data - 3)
|
|
num = 1 + (int)((intptr_t)(vlcp->data) & 0x3);
|
|
tnum = num < vlcp->size ? num : vlcp->size;
|
|
for (i = 0; i < tnum; ++i) {
|
|
OPJ_UINT64 d;
|
|
OPJ_UINT32 d_bits;
|
|
d = *vlcp->data--; // read one byte and move read pointer
|
|
//check if the last byte was >0x8F (unstuff == true) and this is 0x7F
|
|
d_bits = 8u - ((vlcp->unstuff && ((d & 0x7F) == 0x7F)) ? 1u : 0u);
|
|
vlcp->tmp |= d << vlcp->bits; // move data to vlcp->tmp
|
|
vlcp->bits += d_bits;
|
|
vlcp->unstuff = d > 0x8F; // for next byte
|
|
}
|
|
vlcp->size -= tnum;
|
|
rev_read(vlcp); // read another 32 buts
|
|
}
|
|
|
|
//************************************************************************/
|
|
/** @brief Retrieves 32 bits from the head of a rev_struct structure
|
|
*
|
|
* By the end of this call, vlcp->tmp must have no less than 33 bits
|
|
*
|
|
* @param [in] vlcp is a pointer to rev_struct structure
|
|
*/
|
|
static INLINE
|
|
OPJ_UINT32 rev_fetch(rev_struct_t *vlcp)
|
|
{
|
|
if (vlcp->bits < 32) { // if there are less then 32 bits, read more
|
|
rev_read(vlcp); // read 32 bits, but unstuffing might reduce this
|
|
if (vlcp->bits < 32) { // if there is still space in vlcp->tmp for 32 bits
|
|
rev_read(vlcp); // read another 32
|
|
}
|
|
}
|
|
return (OPJ_UINT32)vlcp->tmp; // return the head (bottom-most) of vlcp->tmp
|
|
}
|
|
|
|
//************************************************************************/
|
|
/** @brief Consumes num_bits from a rev_struct structure
|
|
*
|
|
* @param [in] vlcp is a pointer to rev_struct structure
|
|
* @param [in] num_bits is the number of bits to be removed
|
|
*/
|
|
static INLINE
|
|
OPJ_UINT32 rev_advance(rev_struct_t *vlcp, OPJ_UINT32 num_bits)
|
|
{
|
|
assert(num_bits <= vlcp->bits); // vlcp->tmp must have more than num_bits
|
|
vlcp->tmp >>= num_bits; // remove bits
|
|
vlcp->bits -= num_bits; // decrement the number of bits
|
|
return (OPJ_UINT32)vlcp->tmp;
|
|
}
|
|
|
|
//************************************************************************/
|
|
/** @brief Reads and unstuffs from rev_struct
|
|
*
|
|
* This is different than rev_read in that this fills in zeros when the
|
|
* the available data is consumed. The other does not care about the
|
|
* values when all data is consumed.
|
|
*
|
|
* See rev_read for more information about unstuffing
|
|
*
|
|
* @param [in] mrp is a pointer to rev_struct structure
|
|
*/
|
|
static INLINE
|
|
void rev_read_mrp(rev_struct_t *mrp)
|
|
{
|
|
OPJ_UINT32 val;
|
|
OPJ_UINT32 tmp;
|
|
OPJ_UINT32 bits;
|
|
OPJ_BOOL unstuff;
|
|
|
|
//process 4 bytes at a time
|
|
if (mrp->bits > 32) {
|
|
return;
|
|
}
|
|
val = 0;
|
|
if (mrp->size > 3) { // If there are 3 byte or more
|
|
// (mrp->data - 3) move pointer back to read 32 bits at once
|
|
val = read_le_uint32(mrp->data - 3); // read 32 bits
|
|
mrp->data -= 4; // move back pointer
|
|
mrp->size -= 4; // reduce count
|
|
} else if (mrp->size > 0) {
|
|
int i = 24;
|
|
while (mrp->size > 0) {
|
|
OPJ_UINT32 v = *mrp->data--; // read one byte at a time
|
|
val |= (v << i); // put byte in its correct location
|
|
--mrp->size;
|
|
i -= 8;
|
|
}
|
|
}
|
|
|
|
|
|
//accumulate in tmp, and keep count in bits
|
|
tmp = val >> 24;
|
|
|
|
//test if the last byte > 0x8F (unstuff must be true) and this is 0x7F
|
|
bits = 8u - ((mrp->unstuff && (((val >> 24) & 0x7F) == 0x7F)) ? 1u : 0u);
|
|
unstuff = (val >> 24) > 0x8F;
|
|
|
|
//process the next byte
|
|
tmp |= ((val >> 16) & 0xFF) << bits;
|
|
bits += 8u - ((unstuff && (((val >> 16) & 0x7F) == 0x7F)) ? 1u : 0u);
|
|
unstuff = ((val >> 16) & 0xFF) > 0x8F;
|
|
|
|
tmp |= ((val >> 8) & 0xFF) << bits;
|
|
bits += 8u - ((unstuff && (((val >> 8) & 0x7F) == 0x7F)) ? 1u : 0u);
|
|
unstuff = ((val >> 8) & 0xFF) > 0x8F;
|
|
|
|
tmp |= (val & 0xFF) << bits;
|
|
bits += 8u - ((unstuff && ((val & 0x7F) == 0x7F)) ? 1u : 0u);
|
|
unstuff = (val & 0xFF) > 0x8F;
|
|
|
|
mrp->tmp |= (OPJ_UINT64)tmp << mrp->bits; // move data to mrp pointer
|
|
mrp->bits += bits;
|
|
mrp->unstuff = unstuff; // next byte
|
|
}
|
|
|
|
//************************************************************************/
|
|
/** @brief Initialized rev_struct structure for MRP segment, and reads
|
|
* a number of bytes such that the next 32 bits read are from
|
|
* an address that is a multiple of 4. Note this is designed for
|
|
* an architecture that read size must be compatible with the
|
|
* alignment of the read address
|
|
*
|
|
* There is another similar subroutine rev_init. This subroutine does
|
|
* NOT skip the first 12 bits, and starts with unstuff set to true.
|
|
*
|
|
* @param [in] mrp is a pointer to rev_struct structure
|
|
* @param [in] data is a pointer to byte at the start of the cleanup pass
|
|
* @param [in] lcup is the length of MagSgn+MEL+VLC segments
|
|
* @param [in] len2 is the length of SPP+MRP segments
|
|
*/
|
|
static INLINE
|
|
void rev_init_mrp(rev_struct_t *mrp, OPJ_UINT8* data, int lcup, int len2)
|
|
{
|
|
int num, i;
|
|
|
|
mrp->data = data + lcup + len2 - 1;
|
|
mrp->size = len2;
|
|
mrp->unstuff = OPJ_TRUE;
|
|
mrp->bits = 0;
|
|
mrp->tmp = 0;
|
|
|
|
//This code is designed for an architecture that read address should
|
|
// align to the read size (address multiple of 4 if read size is 4)
|
|
//These few lines take care of the case where data is not at a multiple
|
|
// of 4 boundary. It reads 1,2,3 up to 4 bytes from the MRP stream
|
|
num = 1 + (int)((intptr_t)(mrp->data) & 0x3);
|
|
for (i = 0; i < num; ++i) {
|
|
OPJ_UINT64 d;
|
|
OPJ_UINT32 d_bits;
|
|
|
|
//read a byte, 0 if no more data
|
|
d = (mrp->size-- > 0) ? *mrp->data-- : 0;
|
|
//check if unstuffing is needed
|
|
d_bits = 8u - ((mrp->unstuff && ((d & 0x7F) == 0x7F)) ? 1u : 0u);
|
|
mrp->tmp |= d << mrp->bits; // move data to vlcp->tmp
|
|
mrp->bits += d_bits;
|
|
mrp->unstuff = d > 0x8F; // for next byte
|
|
}
|
|
rev_read_mrp(mrp);
|
|
}
|
|
|
|
//************************************************************************/
|
|
/** @brief Retrieves 32 bits from the head of a rev_struct structure
|
|
*
|
|
* By the end of this call, mrp->tmp must have no less than 33 bits
|
|
*
|
|
* @param [in] mrp is a pointer to rev_struct structure
|
|
*/
|
|
static INLINE
|
|
OPJ_UINT32 rev_fetch_mrp(rev_struct_t *mrp)
|
|
{
|
|
if (mrp->bits < 32) { // if there are less than 32 bits in mrp->tmp
|
|
rev_read_mrp(mrp); // read 30-32 bits from mrp
|
|
if (mrp->bits < 32) { // if there is a space of 32 bits
|
|
rev_read_mrp(mrp); // read more
|
|
}
|
|
}
|
|
return (OPJ_UINT32)mrp->tmp; // return the head of mrp->tmp
|
|
}
|
|
|
|
//************************************************************************/
|
|
/** @brief Consumes num_bits from a rev_struct structure
|
|
*
|
|
* @param [in] mrp is a pointer to rev_struct structure
|
|
* @param [in] num_bits is the number of bits to be removed
|
|
*/
|
|
static INLINE
|
|
OPJ_UINT32 rev_advance_mrp(rev_struct_t *mrp, OPJ_UINT32 num_bits)
|
|
{
|
|
assert(num_bits <= mrp->bits); // we must not consume more than mrp->bits
|
|
mrp->tmp >>= num_bits; // discard the lowest num_bits bits
|
|
mrp->bits -= num_bits;
|
|
return (OPJ_UINT32)mrp->tmp; // return data after consumption
|
|
}
|
|
|
|
//************************************************************************/
|
|
/** @brief Decode initial UVLC to get the u value (or u_q)
|
|
*
|
|
* @param [in] vlc is the head of the VLC bitstream
|
|
* @param [in] mode is 0, 1, 2, 3, or 4. Values in 0 to 3 are composed of
|
|
* u_off of 1st quad and 2nd quad of a quad pair. The value
|
|
* 4 occurs when both bits are 1, and the event decoded
|
|
* from MEL bitstream is also 1.
|
|
* @param [out] u is the u value (or u_q) + 1. Note: we produce u + 1;
|
|
* this value is a partial calculation of u + kappa.
|
|
*/
|
|
static INLINE
|
|
OPJ_UINT32 decode_init_uvlc(OPJ_UINT32 vlc, OPJ_UINT32 mode, OPJ_UINT32 *u)
|
|
{
|
|
//table stores possible decoding three bits from vlc
|
|
// there are 8 entries for xx1, x10, 100, 000, where x means do not care
|
|
// table value is made up of
|
|
// 2 bits in the LSB for prefix length
|
|
// 3 bits for suffix length
|
|
// 3 bits in the MSB for prefix value (u_pfx in Table 3 of ITU T.814)
|
|
static const OPJ_UINT8 dec[8] = { // the index is the prefix codeword
|
|
3 | (5 << 2) | (5 << 5), //000 == 000, prefix codeword "000"
|
|
1 | (0 << 2) | (1 << 5), //001 == xx1, prefix codeword "1"
|
|
2 | (0 << 2) | (2 << 5), //010 == x10, prefix codeword "01"
|
|
1 | (0 << 2) | (1 << 5), //011 == xx1, prefix codeword "1"
|
|
3 | (1 << 2) | (3 << 5), //100 == 100, prefix codeword "001"
|
|
1 | (0 << 2) | (1 << 5), //101 == xx1, prefix codeword "1"
|
|
2 | (0 << 2) | (2 << 5), //110 == x10, prefix codeword "01"
|
|
1 | (0 << 2) | (1 << 5) //111 == xx1, prefix codeword "1"
|
|
};
|
|
|
|
OPJ_UINT32 consumed_bits = 0;
|
|
if (mode == 0) { // both u_off are 0
|
|
u[0] = u[1] = 1; //Kappa is 1 for initial line
|
|
} else if (mode <= 2) { // u_off are either 01 or 10
|
|
OPJ_UINT32 d;
|
|
OPJ_UINT32 suffix_len;
|
|
|
|
d = dec[vlc & 0x7]; //look at the least significant 3 bits
|
|
vlc >>= d & 0x3; //prefix length
|
|
consumed_bits += d & 0x3;
|
|
|
|
suffix_len = ((d >> 2) & 0x7);
|
|
consumed_bits += suffix_len;
|
|
|
|
d = (d >> 5) + (vlc & ((1U << suffix_len) - 1)); // u value
|
|
u[0] = (mode == 1) ? d + 1 : 1; // kappa is 1 for initial line
|
|
u[1] = (mode == 1) ? 1 : d + 1; // kappa is 1 for initial line
|
|
} else if (mode == 3) { // both u_off are 1, and MEL event is 0
|
|
OPJ_UINT32 d1 = dec[vlc & 0x7]; // LSBs of VLC are prefix codeword
|
|
vlc >>= d1 & 0x3; // Consume bits
|
|
consumed_bits += d1 & 0x3;
|
|
|
|
if ((d1 & 0x3) > 2) {
|
|
OPJ_UINT32 suffix_len;
|
|
|
|
//u_{q_2} prefix
|
|
u[1] = (vlc & 1) + 1 + 1; //Kappa is 1 for initial line
|
|
++consumed_bits;
|
|
vlc >>= 1;
|
|
|
|
suffix_len = ((d1 >> 2) & 0x7);
|
|
consumed_bits += suffix_len;
|
|
d1 = (d1 >> 5) + (vlc & ((1U << suffix_len) - 1)); // u value
|
|
u[0] = d1 + 1; //Kappa is 1 for initial line
|
|
} else {
|
|
OPJ_UINT32 d2;
|
|
OPJ_UINT32 suffix_len;
|
|
|
|
d2 = dec[vlc & 0x7]; // LSBs of VLC are prefix codeword
|
|
vlc >>= d2 & 0x3; // Consume bits
|
|
consumed_bits += d2 & 0x3;
|
|
|
|
suffix_len = ((d1 >> 2) & 0x7);
|
|
consumed_bits += suffix_len;
|
|
|
|
d1 = (d1 >> 5) + (vlc & ((1U << suffix_len) - 1)); // u value
|
|
u[0] = d1 + 1; //Kappa is 1 for initial line
|
|
vlc >>= suffix_len;
|
|
|
|
suffix_len = ((d2 >> 2) & 0x7);
|
|
consumed_bits += suffix_len;
|
|
|
|
d2 = (d2 >> 5) + (vlc & ((1U << suffix_len) - 1)); // u value
|
|
u[1] = d2 + 1; //Kappa is 1 for initial line
|
|
}
|
|
} else if (mode == 4) { // both u_off are 1, and MEL event is 1
|
|
OPJ_UINT32 d1;
|
|
OPJ_UINT32 d2;
|
|
OPJ_UINT32 suffix_len;
|
|
|
|
d1 = dec[vlc & 0x7]; // LSBs of VLC are prefix codeword
|
|
vlc >>= d1 & 0x3; // Consume bits
|
|
consumed_bits += d1 & 0x3;
|
|
|
|
d2 = dec[vlc & 0x7]; // LSBs of VLC are prefix codeword
|
|
vlc >>= d2 & 0x3; // Consume bits
|
|
consumed_bits += d2 & 0x3;
|
|
|
|
suffix_len = ((d1 >> 2) & 0x7);
|
|
consumed_bits += suffix_len;
|
|
|
|
d1 = (d1 >> 5) + (vlc & ((1U << suffix_len) - 1)); // u value
|
|
u[0] = d1 + 3; // add 2+kappa
|
|
vlc >>= suffix_len;
|
|
|
|
suffix_len = ((d2 >> 2) & 0x7);
|
|
consumed_bits += suffix_len;
|
|
|
|
d2 = (d2 >> 5) + (vlc & ((1U << suffix_len) - 1)); // u value
|
|
u[1] = d2 + 3; // add 2+kappa
|
|
}
|
|
return consumed_bits;
|
|
}
|
|
|
|
//************************************************************************/
|
|
/** @brief Decode non-initial UVLC to get the u value (or u_q)
|
|
*
|
|
* @param [in] vlc is the head of the VLC bitstream
|
|
* @param [in] mode is 0, 1, 2, or 3. The 1st bit is u_off of 1st quad
|
|
* and 2nd for 2nd quad of a quad pair
|
|
* @param [out] u is the u value (or u_q) + 1. Note: we produce u + 1;
|
|
* this value is a partial calculation of u + kappa.
|
|
*/
|
|
static INLINE
|
|
OPJ_UINT32 decode_noninit_uvlc(OPJ_UINT32 vlc, OPJ_UINT32 mode, OPJ_UINT32 *u)
|
|
{
|
|
//table stores possible decoding three bits from vlc
|
|
// there are 8 entries for xx1, x10, 100, 000, where x means do not care
|
|
// table value is made up of
|
|
// 2 bits in the LSB for prefix length
|
|
// 3 bits for suffix length
|
|
// 3 bits in the MSB for prefix value (u_pfx in Table 3 of ITU T.814)
|
|
static const OPJ_UINT8 dec[8] = {
|
|
3 | (5 << 2) | (5 << 5), //000 == 000, prefix codeword "000"
|
|
1 | (0 << 2) | (1 << 5), //001 == xx1, prefix codeword "1"
|
|
2 | (0 << 2) | (2 << 5), //010 == x10, prefix codeword "01"
|
|
1 | (0 << 2) | (1 << 5), //011 == xx1, prefix codeword "1"
|
|
3 | (1 << 2) | (3 << 5), //100 == 100, prefix codeword "001"
|
|
1 | (0 << 2) | (1 << 5), //101 == xx1, prefix codeword "1"
|
|
2 | (0 << 2) | (2 << 5), //110 == x10, prefix codeword "01"
|
|
1 | (0 << 2) | (1 << 5) //111 == xx1, prefix codeword "1"
|
|
};
|
|
|
|
OPJ_UINT32 consumed_bits = 0;
|
|
if (mode == 0) {
|
|
u[0] = u[1] = 1; //for kappa
|
|
} else if (mode <= 2) { //u_off are either 01 or 10
|
|
OPJ_UINT32 d;
|
|
OPJ_UINT32 suffix_len;
|
|
|
|
d = dec[vlc & 0x7]; //look at the least significant 3 bits
|
|
vlc >>= d & 0x3; //prefix length
|
|
consumed_bits += d & 0x3;
|
|
|
|
suffix_len = ((d >> 2) & 0x7);
|
|
consumed_bits += suffix_len;
|
|
|
|
d = (d >> 5) + (vlc & ((1U << suffix_len) - 1)); // u value
|
|
u[0] = (mode == 1) ? d + 1 : 1; //for kappa
|
|
u[1] = (mode == 1) ? 1 : d + 1; //for kappa
|
|
} else if (mode == 3) { // both u_off are 1
|
|
OPJ_UINT32 d1;
|
|
OPJ_UINT32 d2;
|
|
OPJ_UINT32 suffix_len;
|
|
|
|
d1 = dec[vlc & 0x7]; // LSBs of VLC are prefix codeword
|
|
vlc >>= d1 & 0x3; // Consume bits
|
|
consumed_bits += d1 & 0x3;
|
|
|
|
d2 = dec[vlc & 0x7]; // LSBs of VLC are prefix codeword
|
|
vlc >>= d2 & 0x3; // Consume bits
|
|
consumed_bits += d2 & 0x3;
|
|
|
|
suffix_len = ((d1 >> 2) & 0x7);
|
|
consumed_bits += suffix_len;
|
|
|
|
d1 = (d1 >> 5) + (vlc & ((1U << suffix_len) - 1)); // u value
|
|
u[0] = d1 + 1; //1 for kappa
|
|
vlc >>= suffix_len;
|
|
|
|
suffix_len = ((d2 >> 2) & 0x7);
|
|
consumed_bits += suffix_len;
|
|
|
|
d2 = (d2 >> 5) + (vlc & ((1U << suffix_len) - 1)); // u value
|
|
u[1] = d2 + 1; //1 for kappa
|
|
}
|
|
return consumed_bits;
|
|
}
|
|
|
|
//************************************************************************/
|
|
/** @brief State structure for reading and unstuffing of forward-growing
|
|
* bitstreams; these are: MagSgn and SPP bitstreams
|
|
*/
|
|
typedef struct frwd_struct {
|
|
const OPJ_UINT8* data; //!<pointer to bitstream
|
|
OPJ_UINT64 tmp; //!<temporary buffer of read data
|
|
OPJ_UINT32 bits; //!<number of bits stored in tmp
|
|
OPJ_BOOL unstuff; //!<true if a bit needs to be unstuffed from next byte
|
|
int size; //!<size of data
|
|
OPJ_UINT32 X; //!<0 or 0xFF, X's are inserted at end of bitstream
|
|
} frwd_struct_t;
|
|
|
|
//************************************************************************/
|
|
/** @brief Read and unstuffs 32 bits from forward-growing bitstream
|
|
*
|
|
* A subroutine to read from both the MagSgn or SPP bitstreams;
|
|
* in particular, when MagSgn bitstream is consumed, 0xFF's are fed,
|
|
* while when SPP is exhausted 0's are fed in.
|
|
* X controls this value.
|
|
*
|
|
* Unstuffing prevent sequences that are more than 0xFF7F from appearing
|
|
* in the conpressed sequence. So whenever a value of 0xFF is coded, the
|
|
* MSB of the next byte is set 0 and must be ignored during decoding.
|
|
*
|
|
* Reading can go beyond the end of buffer by up to 3 bytes.
|
|
*
|
|
* @param [in] msp is a pointer to frwd_struct_t structure
|
|
*
|
|
*/
|
|
static INLINE
|
|
void frwd_read(frwd_struct_t *msp)
|
|
{
|
|
OPJ_UINT32 val;
|
|
OPJ_UINT32 bits;
|
|
OPJ_UINT32 t;
|
|
OPJ_BOOL unstuff;
|
|
|
|
assert(msp->bits <= 32); // assert that there is a space for 32 bits
|
|
|
|
val = 0u;
|
|
if (msp->size > 3) {
|
|
val = read_le_uint32(msp->data); // read 32 bits
|
|
msp->data += 4; // increment pointer
|
|
msp->size -= 4; // reduce size
|
|
} else if (msp->size > 0) {
|
|
int i = 0;
|
|
val = msp->X != 0 ? 0xFFFFFFFFu : 0;
|
|
while (msp->size > 0) {
|
|
OPJ_UINT32 v = *msp->data++; // read one byte at a time
|
|
OPJ_UINT32 m = ~(0xFFu << i); // mask of location
|
|
val = (val & m) | (v << i); // put one byte in its correct location
|
|
--msp->size;
|
|
i += 8;
|
|
}
|
|
} else {
|
|
val = msp->X != 0 ? 0xFFFFFFFFu : 0;
|
|
}
|
|
|
|
// we accumulate in t and keep a count of the number of bits in bits
|
|
bits = 8u - (msp->unstuff ? 1u : 0u);
|
|
t = val & 0xFF;
|
|
unstuff = ((val & 0xFF) == 0xFF); // Do we need unstuffing next?
|
|
|
|
t |= ((val >> 8) & 0xFF) << bits;
|
|
bits += 8u - (unstuff ? 1u : 0u);
|
|
unstuff = (((val >> 8) & 0xFF) == 0xFF);
|
|
|
|
t |= ((val >> 16) & 0xFF) << bits;
|
|
bits += 8u - (unstuff ? 1u : 0u);
|
|
unstuff = (((val >> 16) & 0xFF) == 0xFF);
|
|
|
|
t |= ((val >> 24) & 0xFF) << bits;
|
|
bits += 8u - (unstuff ? 1u : 0u);
|
|
msp->unstuff = (((val >> 24) & 0xFF) == 0xFF); // for next byte
|
|
|
|
msp->tmp |= ((OPJ_UINT64)t) << msp->bits; // move data to msp->tmp
|
|
msp->bits += bits;
|
|
}
|
|
|
|
//************************************************************************/
|
|
/** @brief Initialize frwd_struct_t struct and reads some bytes
|
|
*
|
|
* @param [in] msp is a pointer to frwd_struct_t
|
|
* @param [in] data is a pointer to the start of data
|
|
* @param [in] size is the number of byte in the bitstream
|
|
* @param [in] X is the value fed in when the bitstream is exhausted.
|
|
* See frwd_read.
|
|
*/
|
|
static INLINE
|
|
void frwd_init(frwd_struct_t *msp, const OPJ_UINT8* data, int size,
|
|
OPJ_UINT32 X)
|
|
{
|
|
int num, i;
|
|
|
|
msp->data = data;
|
|
msp->tmp = 0;
|
|
msp->bits = 0;
|
|
msp->unstuff = OPJ_FALSE;
|
|
msp->size = size;
|
|
msp->X = X;
|
|
assert(msp->X == 0 || msp->X == 0xFF);
|
|
|
|
//This code is designed for an architecture that read address should
|
|
// align to the read size (address multiple of 4 if read size is 4)
|
|
//These few lines take care of the case where data is not at a multiple
|
|
// of 4 boundary. It reads 1,2,3 up to 4 bytes from the bitstream
|
|
num = 4 - (int)((intptr_t)(msp->data) & 0x3);
|
|
for (i = 0; i < num; ++i) {
|
|
OPJ_UINT64 d;
|
|
//read a byte if the buffer is not exhausted, otherwise set it to X
|
|
d = msp->size-- > 0 ? *msp->data++ : msp->X;
|
|
msp->tmp |= (d << msp->bits); // store data in msp->tmp
|
|
msp->bits += 8u - (msp->unstuff ? 1u : 0u); // number of bits added to msp->tmp
|
|
msp->unstuff = ((d & 0xFF) == 0xFF); // unstuffing for next byte
|
|
}
|
|
frwd_read(msp); // read 32 bits more
|
|
}
|
|
|
|
//************************************************************************/
|
|
/** @brief Consume num_bits bits from the bitstream of frwd_struct_t
|
|
*
|
|
* @param [in] msp is a pointer to frwd_struct_t
|
|
* @param [in] num_bits is the number of bit to consume
|
|
*/
|
|
static INLINE
|
|
void frwd_advance(frwd_struct_t *msp, OPJ_UINT32 num_bits)
|
|
{
|
|
assert(num_bits <= msp->bits);
|
|
msp->tmp >>= num_bits; // consume num_bits
|
|
msp->bits -= num_bits;
|
|
}
|
|
|
|
//************************************************************************/
|
|
/** @brief Fetches 32 bits from the frwd_struct_t bitstream
|
|
*
|
|
* @param [in] msp is a pointer to frwd_struct_t
|
|
*/
|
|
static INLINE
|
|
OPJ_UINT32 frwd_fetch(frwd_struct_t *msp)
|
|
{
|
|
if (msp->bits < 32) {
|
|
frwd_read(msp);
|
|
if (msp->bits < 32) { //need to test
|
|
frwd_read(msp);
|
|
}
|
|
}
|
|
return (OPJ_UINT32)msp->tmp;
|
|
}
|
|
|
|
//************************************************************************/
|
|
/** @brief Allocates T1 buffers
|
|
*
|
|
* @param [in, out] t1 is codeblock cofficients storage
|
|
* @param [in] w is codeblock width
|
|
* @param [in] h is codeblock height
|
|
*/
|
|
static OPJ_BOOL opj_t1_allocate_buffers(
|
|
opj_t1_t *t1,
|
|
OPJ_UINT32 w,
|
|
OPJ_UINT32 h)
|
|
{
|
|
OPJ_UINT32 flagssize;
|
|
|
|
/* No risk of overflow. Prior checks ensure those assert are met */
|
|
/* They are per the specification */
|
|
assert(w <= 1024);
|
|
assert(h <= 1024);
|
|
assert(w * h <= 4096);
|
|
|
|
/* encoder uses tile buffer, so no need to allocate */
|
|
{
|
|
OPJ_UINT32 datasize = w * h;
|
|
|
|
if (datasize > t1->datasize) {
|
|
opj_aligned_free(t1->data);
|
|
t1->data = (OPJ_INT32*)
|
|
opj_aligned_malloc(datasize * sizeof(OPJ_INT32));
|
|
if (!t1->data) {
|
|
/* FIXME event manager error callback */
|
|
return OPJ_FALSE;
|
|
}
|
|
t1->datasize = datasize;
|
|
}
|
|
/* memset first arg is declared to never be null by gcc */
|
|
if (t1->data != NULL) {
|
|
memset(t1->data, 0, datasize * sizeof(OPJ_INT32));
|
|
}
|
|
}
|
|
|
|
// We expand these buffers to multiples of 16 bytes.
|
|
// We need 4 buffers of 129 integers each, expanded to 132 integers each
|
|
// We also need 514 bytes of buffer, expanded to 528 bytes
|
|
flagssize = 132U * sizeof(OPJ_UINT32) * 4U; // expanded to multiple of 16
|
|
flagssize += 528U; // 514 expanded to multiples of 16
|
|
|
|
{
|
|
if (flagssize > t1->flagssize) {
|
|
|
|
opj_aligned_free(t1->flags);
|
|
t1->flags = (opj_flag_t*) opj_aligned_malloc(flagssize * sizeof(opj_flag_t));
|
|
if (!t1->flags) {
|
|
/* FIXME event manager error callback */
|
|
return OPJ_FALSE;
|
|
}
|
|
}
|
|
t1->flagssize = flagssize;
|
|
|
|
memset(t1->flags, 0, flagssize * sizeof(opj_flag_t));
|
|
}
|
|
|
|
t1->w = w;
|
|
t1->h = h;
|
|
|
|
return OPJ_TRUE;
|
|
}
|
|
|
|
/**
|
|
Decode 1 HT code-block
|
|
@param t1 T1 handle
|
|
@param cblk Code-block coding parameters
|
|
@param orient
|
|
@param roishift Region of interest shifting value
|
|
@param cblksty Code-block style
|
|
@param p_manager the event manager
|
|
@param p_manager_mutex mutex for the event manager
|
|
@param check_pterm whether PTERM correct termination should be checked
|
|
*/
|
|
OPJ_BOOL opj_t1_ht_decode_cblk(opj_t1_t *t1,
|
|
opj_tcd_cblk_dec_t* cblk,
|
|
OPJ_UINT32 orient,
|
|
OPJ_UINT32 roishift,
|
|
OPJ_UINT32 cblksty,
|
|
opj_event_mgr_t *p_manager,
|
|
opj_mutex_t* p_manager_mutex,
|
|
OPJ_BOOL check_pterm);
|
|
|
|
//************************************************************************/
|
|
/** @brief Decodes one codeblock, processing the cleanup, siginificance
|
|
* propagation, and magnitude refinement pass
|
|
*
|
|
* @param [in, out] t1 is codeblock cofficients storage
|
|
* @param [in] cblk is codeblock properties
|
|
* @param [in] orient is the subband to which the codeblock belongs (not needed)
|
|
* @param [in] roishift is region of interest shift
|
|
* @param [in] cblksty is codeblock style
|
|
* @param [in] p_manager is events print manager
|
|
* @param [in] p_manager_mutex a mutex to control access to p_manager
|
|
* @param [in] check_pterm: check termination (not used)
|
|
*/
|
|
OPJ_BOOL opj_t1_ht_decode_cblk(opj_t1_t *t1,
|
|
opj_tcd_cblk_dec_t* cblk,
|
|
OPJ_UINT32 orient,
|
|
OPJ_UINT32 roishift,
|
|
OPJ_UINT32 cblksty,
|
|
opj_event_mgr_t *p_manager,
|
|
opj_mutex_t* p_manager_mutex,
|
|
OPJ_BOOL check_pterm)
|
|
{
|
|
OPJ_BYTE* cblkdata = NULL;
|
|
OPJ_UINT8* coded_data;
|
|
OPJ_UINT32* decoded_data;
|
|
OPJ_UINT32 zero_bplanes;
|
|
OPJ_UINT32 num_passes;
|
|
OPJ_UINT32 lengths1;
|
|
OPJ_UINT32 lengths2;
|
|
OPJ_INT32 width;
|
|
OPJ_INT32 height;
|
|
OPJ_INT32 stride;
|
|
OPJ_UINT32 *pflags, *sigma1, *sigma2, *mbr1, *mbr2, *sip, sip_shift;
|
|
OPJ_UINT32 p;
|
|
OPJ_UINT32 zero_bplanes_p1;
|
|
int lcup, scup;
|
|
dec_mel_t mel;
|
|
rev_struct_t vlc;
|
|
frwd_struct_t magsgn;
|
|
frwd_struct_t sigprop;
|
|
rev_struct_t magref;
|
|
OPJ_UINT8 *lsp, *line_state;
|
|
int run;
|
|
OPJ_UINT32 vlc_val; // fetched data from VLC bitstream
|
|
OPJ_UINT32 qinf[2];
|
|
OPJ_UINT32 c_q;
|
|
OPJ_UINT32* sp;
|
|
OPJ_INT32 x, y; // loop indices
|
|
OPJ_BOOL stripe_causal = (cblksty & J2K_CCP_CBLKSTY_VSC) != 0;
|
|
OPJ_UINT32 cblk_len = 0;
|
|
|
|
(void)(orient); // stops unused parameter message
|
|
(void)(check_pterm); // stops unused parameter message
|
|
|
|
// We ignor orient, because the same decoder is used for all subbands
|
|
// We also ignore check_pterm, because I am not sure how it applies
|
|
if (roishift != 0) {
|
|
if (p_manager_mutex) {
|
|
opj_mutex_lock(p_manager_mutex);
|
|
}
|
|
opj_event_msg(p_manager, EVT_ERROR, "We do not support ROI in decoding "
|
|
"HT codeblocks\n");
|
|
if (p_manager_mutex) {
|
|
opj_mutex_unlock(p_manager_mutex);
|
|
}
|
|
return OPJ_FALSE;
|
|
}
|
|
|
|
if (!opj_t1_allocate_buffers(
|
|
t1,
|
|
(OPJ_UINT32)(cblk->x1 - cblk->x0),
|
|
(OPJ_UINT32)(cblk->y1 - cblk->y0))) {
|
|
return OPJ_FALSE;
|
|
}
|
|
|
|
if (cblk->Mb == 0) {
|
|
return OPJ_TRUE;
|
|
}
|
|
|
|
/* numbps = Mb + 1 - zero_bplanes, Mb = Kmax, zero_bplanes = missing_msbs */
|
|
zero_bplanes = (cblk->Mb + 1) - cblk->numbps;
|
|
|
|
/* Compute whole codeblock length from chunk lengths */
|
|
cblk_len = 0;
|
|
{
|
|
OPJ_UINT32 i;
|
|
for (i = 0; i < cblk->numchunks; i++) {
|
|
cblk_len += cblk->chunks[i].len;
|
|
}
|
|
}
|
|
|
|
if (cblk->numchunks > 1 || t1->mustuse_cblkdatabuffer) {
|
|
OPJ_UINT32 i;
|
|
|
|
/* Allocate temporary memory if needed */
|
|
if (cblk_len > t1->cblkdatabuffersize) {
|
|
cblkdata = (OPJ_BYTE*)opj_realloc(
|
|
t1->cblkdatabuffer, cblk_len);
|
|
if (cblkdata == NULL) {
|
|
return OPJ_FALSE;
|
|
}
|
|
t1->cblkdatabuffer = cblkdata;
|
|
t1->cblkdatabuffersize = cblk_len;
|
|
}
|
|
|
|
/* Concatenate all chunks */
|
|
cblkdata = t1->cblkdatabuffer;
|
|
if (cblkdata == NULL) {
|
|
return OPJ_FALSE;
|
|
}
|
|
cblk_len = 0;
|
|
for (i = 0; i < cblk->numchunks; i++) {
|
|
memcpy(cblkdata + cblk_len, cblk->chunks[i].data, cblk->chunks[i].len);
|
|
cblk_len += cblk->chunks[i].len;
|
|
}
|
|
} else if (cblk->numchunks == 1) {
|
|
cblkdata = cblk->chunks[0].data;
|
|
} else {
|
|
/* Not sure if that can happen in practice, but avoid Coverity to */
|
|
/* think we will dereference a null cblkdta pointer */
|
|
return OPJ_TRUE;
|
|
}
|
|
|
|
// OPJ_BYTE* coded_data is a pointer to bitstream
|
|
coded_data = cblkdata;
|
|
// OPJ_UINT32* decoded_data is a pointer to decoded codeblock data buf.
|
|
decoded_data = (OPJ_UINT32*)t1->data;
|
|
// OPJ_UINT32 num_passes is the number of passes: 1 if CUP only, 2 for
|
|
// CUP+SPP, and 3 for CUP+SPP+MRP
|
|
num_passes = cblk->numsegs > 0 ? cblk->segs[0].real_num_passes : 0;
|
|
num_passes += cblk->numsegs > 1 ? cblk->segs[1].real_num_passes : 0;
|
|
// OPJ_UINT32 lengths1 is the length of cleanup pass
|
|
lengths1 = num_passes > 0 ? cblk->segs[0].len : 0;
|
|
// OPJ_UINT32 lengths2 is the length of refinement passes (either SPP only or SPP+MRP)
|
|
lengths2 = num_passes > 1 ? cblk->segs[1].len : 0;
|
|
// OPJ_INT32 width is the decoded codeblock width
|
|
width = cblk->x1 - cblk->x0;
|
|
// OPJ_INT32 height is the decoded codeblock height
|
|
height = cblk->y1 - cblk->y0;
|
|
// OPJ_INT32 stride is the decoded codeblock buffer stride
|
|
stride = width;
|
|
|
|
/* sigma1 and sigma2 contains significant (i.e., non-zero) pixel
|
|
* locations. The buffers are used interchangeably, because we need
|
|
* more than 4 rows of significance information at a given time.
|
|
* Each 32 bits contain significance information for 4 rows of 8
|
|
* columns each. If we denote 32 bits by 0xaaaaaaaa, the each "a" is
|
|
* called a nibble and has significance information for 4 rows.
|
|
* The least significant nibble has information for the first column,
|
|
* and so on. The nibble's LSB is for the first row, and so on.
|
|
* Since, at most, we can have 1024 columns in a quad, we need 128
|
|
* entries; we added 1 for convenience when propagation of signifcance
|
|
* goes outside the structure
|
|
* To work in OpenJPEG these buffers has been expanded to 132.
|
|
*/
|
|
// OPJ_UINT32 *pflags, *sigma1, *sigma2, *mbr1, *mbr2, *sip, sip_shift;
|
|
pflags = (OPJ_UINT32 *)t1->flags;
|
|
sigma1 = pflags;
|
|
sigma2 = sigma1 + 132;
|
|
// mbr arrangement is similar to sigma; mbr contains locations
|
|
// that become significant during significance propagation pass
|
|
mbr1 = sigma2 + 132;
|
|
mbr2 = mbr1 + 132;
|
|
//a pointer to sigma
|
|
sip = sigma1; //pointers to arrays to be used interchangeably
|
|
sip_shift = 0; //the amount of shift needed for sigma
|
|
|
|
if (num_passes > 1 && lengths2 == 0) {
|
|
if (p_manager_mutex) {
|
|
opj_mutex_lock(p_manager_mutex);
|
|
}
|
|
opj_event_msg(p_manager, EVT_WARNING, "A malformed codeblock that has "
|
|
"more than one coding pass, but zero length for "
|
|
"2nd and potentially the 3rd pass in an HT codeblock.\n");
|
|
if (p_manager_mutex) {
|
|
opj_mutex_unlock(p_manager_mutex);
|
|
}
|
|
num_passes = 1;
|
|
}
|
|
if (num_passes > 3) {
|
|
if (p_manager_mutex) {
|
|
opj_mutex_lock(p_manager_mutex);
|
|
}
|
|
opj_event_msg(p_manager, EVT_ERROR, "We do not support more than 3 "
|
|
"coding passes in an HT codeblock; This codeblocks has "
|
|
"%d passes.\n", num_passes);
|
|
if (p_manager_mutex) {
|
|
opj_mutex_unlock(p_manager_mutex);
|
|
}
|
|
return OPJ_FALSE;
|
|
}
|
|
|
|
if (cblk->Mb > 30) {
|
|
/* This check is better moved to opj_t2_read_packet_header() in t2.c
|
|
We do not have enough precision to decode any passes
|
|
The design of openjpeg assumes that the bits of a 32-bit integer are
|
|
assigned as follows:
|
|
bit 31 is for sign
|
|
bits 30-1 are for magnitude
|
|
bit 0 is for the center of the quantization bin
|
|
Therefore we can only do values of cblk->Mb <= 30
|
|
*/
|
|
if (p_manager_mutex) {
|
|
opj_mutex_lock(p_manager_mutex);
|
|
}
|
|
opj_event_msg(p_manager, EVT_ERROR, "32 bits are not enough to "
|
|
"decode this codeblock, since the number of "
|
|
"bitplane, %d, is larger than 30.\n", cblk->Mb);
|
|
if (p_manager_mutex) {
|
|
opj_mutex_unlock(p_manager_mutex);
|
|
}
|
|
return OPJ_FALSE;
|
|
}
|
|
if (zero_bplanes > cblk->Mb) {
|
|
/* This check is better moved to opj_t2_read_packet_header() in t2.c,
|
|
in the line "l_cblk->numbps = (OPJ_UINT32)l_band->numbps + 1 - i;"
|
|
where i is the zero bitplanes, and should be no larger than cblk->Mb
|
|
We cannot have more zero bitplanes than there are planes. */
|
|
if (p_manager_mutex) {
|
|
opj_mutex_lock(p_manager_mutex);
|
|
}
|
|
opj_event_msg(p_manager, EVT_ERROR, "Malformed HT codeblock. "
|
|
"Decoding this codeblock is stopped. There are "
|
|
"%d zero bitplanes in %d bitplanes.\n",
|
|
zero_bplanes, cblk->Mb);
|
|
|
|
if (p_manager_mutex) {
|
|
opj_mutex_unlock(p_manager_mutex);
|
|
}
|
|
return OPJ_FALSE;
|
|
} else if (zero_bplanes == cblk->Mb && num_passes > 1) {
|
|
/* When the number of zero bitplanes is equal to the number of bitplanes,
|
|
only the cleanup pass makes sense*/
|
|
if (only_cleanup_pass_is_decoded == OPJ_FALSE) {
|
|
if (p_manager_mutex) {
|
|
opj_mutex_lock(p_manager_mutex);
|
|
}
|
|
/* We have a second check to prevent the possibility of an overrun condition,
|
|
in the very unlikely event of a second thread discovering that
|
|
only_cleanup_pass_is_decoded is false before the first thread changing
|
|
the condition. */
|
|
if (only_cleanup_pass_is_decoded == OPJ_FALSE) {
|
|
only_cleanup_pass_is_decoded = OPJ_TRUE;
|
|
opj_event_msg(p_manager, EVT_WARNING, "Malformed HT codeblock. "
|
|
"When the number of zero planes bitplanes is "
|
|
"equal to the number of bitplanes, only the cleanup "
|
|
"pass makes sense, but we have %d passes in this "
|
|
"codeblock. Therefore, only the cleanup pass will be "
|
|
"decoded. This message will not be displayed again.\n",
|
|
num_passes);
|
|
}
|
|
if (p_manager_mutex) {
|
|
opj_mutex_unlock(p_manager_mutex);
|
|
}
|
|
}
|
|
num_passes = 1;
|
|
}
|
|
|
|
/* OPJ_UINT32 */
|
|
p = cblk->numbps;
|
|
|
|
// OPJ_UINT32 zero planes plus 1
|
|
zero_bplanes_p1 = zero_bplanes + 1;
|
|
|
|
if (lengths1 < 2 || (OPJ_UINT32)lengths1 > cblk_len ||
|
|
(OPJ_UINT32)(lengths1 + lengths2) > cblk_len) {
|
|
if (p_manager_mutex) {
|
|
opj_mutex_lock(p_manager_mutex);
|
|
}
|
|
opj_event_msg(p_manager, EVT_ERROR, "Malformed HT codeblock. "
|
|
"Invalid codeblock length values.\n");
|
|
|
|
if (p_manager_mutex) {
|
|
opj_mutex_unlock(p_manager_mutex);
|
|
}
|
|
return OPJ_FALSE;
|
|
}
|
|
// read scup and fix the bytes there
|
|
lcup = (int)lengths1; // length of CUP
|
|
//scup is the length of MEL + VLC
|
|
scup = (((int)coded_data[lcup - 1]) << 4) + (coded_data[lcup - 2] & 0xF);
|
|
if (scup < 2 || scup > lcup || scup > 4079) { //something is wrong
|
|
/* The standard stipulates 2 <= Scup <= min(Lcup, 4079) */
|
|
if (p_manager_mutex) {
|
|
opj_mutex_lock(p_manager_mutex);
|
|
}
|
|
opj_event_msg(p_manager, EVT_ERROR, "Malformed HT codeblock. "
|
|
"One of the following condition is not met: "
|
|
"2 <= Scup <= min(Lcup, 4079)\n");
|
|
|
|
if (p_manager_mutex) {
|
|
opj_mutex_unlock(p_manager_mutex);
|
|
}
|
|
return OPJ_FALSE;
|
|
}
|
|
|
|
// init structures
|
|
if (mel_init(&mel, coded_data, lcup, scup) == OPJ_FALSE) {
|
|
if (p_manager_mutex) {
|
|
opj_mutex_lock(p_manager_mutex);
|
|
}
|
|
opj_event_msg(p_manager, EVT_ERROR, "Malformed HT codeblock. "
|
|
"Incorrect MEL segment sequence.\n");
|
|
if (p_manager_mutex) {
|
|
opj_mutex_unlock(p_manager_mutex);
|
|
}
|
|
return OPJ_FALSE;
|
|
}
|
|
rev_init(&vlc, coded_data, lcup, scup);
|
|
frwd_init(&magsgn, coded_data, lcup - scup, 0xFF);
|
|
if (num_passes > 1) { // needs to be tested
|
|
frwd_init(&sigprop, coded_data + lengths1, (int)lengths2, 0);
|
|
}
|
|
if (num_passes > 2) {
|
|
rev_init_mrp(&magref, coded_data, (int)lengths1, (int)lengths2);
|
|
}
|
|
|
|
/** State storage
|
|
* One byte per quad; for 1024 columns, or 512 quads, we need
|
|
* 512 bytes. We are using 2 extra bytes one on the left and one on
|
|
* the right for convenience.
|
|
*
|
|
* The MSB bit in each byte is (\sigma^nw | \sigma^n), and the 7 LSBs
|
|
* contain max(E^nw | E^n)
|
|
*/
|
|
|
|
// 514 is enough for a block width of 1024, +2 extra
|
|
// here expanded to 528
|
|
line_state = (OPJ_UINT8 *)(mbr2 + 132);
|
|
|
|
//initial 2 lines
|
|
/////////////////
|
|
lsp = line_state; // point to line state
|
|
lsp[0] = 0; // for initial row of quad, we set to 0
|
|
run = mel_get_run(&mel); // decode runs of events from MEL bitstrm
|
|
// data represented as runs of 0 events
|
|
// See mel_decode description
|
|
qinf[0] = qinf[1] = 0; // quad info decoded from VLC bitstream
|
|
c_q = 0; // context for quad q
|
|
sp = decoded_data; // decoded codeblock samples
|
|
// vlc_val; // fetched data from VLC bitstream
|
|
|
|
for (x = 0; x < width; x += 4) { // one iteration per quad pair
|
|
OPJ_UINT32 U_q[2]; // u values for the quad pair
|
|
OPJ_UINT32 uvlc_mode;
|
|
OPJ_UINT32 consumed_bits;
|
|
OPJ_UINT32 m_n, v_n;
|
|
OPJ_UINT32 ms_val;
|
|
OPJ_UINT32 locs;
|
|
|
|
// decode VLC
|
|
/////////////
|
|
|
|
//first quad
|
|
// Get the head of the VLC bitstream. One fetch is enough for two
|
|
// quads, since the largest VLC code is 7 bits, and maximum number of
|
|
// bits used for u is 8. Therefore for two quads we need 30 bits
|
|
// (if we include unstuffing, then 32 bits are enough, since we have
|
|
// a maximum of one stuffing per two bytes)
|
|
vlc_val = rev_fetch(&vlc);
|
|
|
|
//decode VLC using the context c_q and the head of the VLC bitstream
|
|
qinf[0] = vlc_tbl0[(c_q << 7) | (vlc_val & 0x7F) ];
|
|
|
|
if (c_q == 0) { // if zero context, we need to use one MEL event
|
|
run -= 2; //the number of 0 events is multiplied by 2, so subtract 2
|
|
|
|
// Is the run terminated in 1? if so, use decoded VLC code,
|
|
// otherwise, discard decoded data, since we will decoded again
|
|
// using a different context
|
|
qinf[0] = (run == -1) ? qinf[0] : 0;
|
|
|
|
// is run -1 or -2? this means a run has been consumed
|
|
if (run < 0) {
|
|
run = mel_get_run(&mel); // get another run
|
|
}
|
|
}
|
|
|
|
// prepare context for the next quad; eqn. 1 in ITU T.814
|
|
c_q = ((qinf[0] & 0x10) >> 4) | ((qinf[0] & 0xE0) >> 5);
|
|
|
|
//remove data from vlc stream (0 bits are removed if qinf is not used)
|
|
vlc_val = rev_advance(&vlc, qinf[0] & 0x7);
|
|
|
|
//update sigma
|
|
// The update depends on the value of x; consider one OPJ_UINT32
|
|
// if x is 0, 8, 16 and so on, then this line update c locations
|
|
// nibble (4 bits) number 0 1 2 3 4 5 6 7
|
|
// LSB c c 0 0 0 0 0 0
|
|
// c c 0 0 0 0 0 0
|
|
// 0 0 0 0 0 0 0 0
|
|
// 0 0 0 0 0 0 0 0
|
|
// if x is 4, 12, 20, then this line update locations c
|
|
// nibble (4 bits) number 0 1 2 3 4 5 6 7
|
|
// LSB 0 0 0 0 c c 0 0
|
|
// 0 0 0 0 c c 0 0
|
|
// 0 0 0 0 0 0 0 0
|
|
// 0 0 0 0 0 0 0 0
|
|
*sip |= (((qinf[0] & 0x30) >> 4) | ((qinf[0] & 0xC0) >> 2)) << sip_shift;
|
|
|
|
//second quad
|
|
qinf[1] = 0;
|
|
if (x + 2 < width) { // do not run if codeblock is narrower
|
|
//decode VLC using the context c_q and the head of the VLC bitstream
|
|
qinf[1] = vlc_tbl0[(c_q << 7) | (vlc_val & 0x7F)];
|
|
|
|
// if context is zero, use one MEL event
|
|
if (c_q == 0) { //zero context
|
|
run -= 2; //subtract 2, since events number if multiplied by 2
|
|
|
|
// if event is 0, discard decoded qinf
|
|
qinf[1] = (run == -1) ? qinf[1] : 0;
|
|
|
|
if (run < 0) { // have we consumed all events in a run
|
|
run = mel_get_run(&mel); // if yes, then get another run
|
|
}
|
|
}
|
|
|
|
//prepare context for the next quad, eqn. 1 in ITU T.814
|
|
c_q = ((qinf[1] & 0x10) >> 4) | ((qinf[1] & 0xE0) >> 5);
|
|
|
|
//remove data from vlc stream, if qinf is not used, cwdlen is 0
|
|
vlc_val = rev_advance(&vlc, qinf[1] & 0x7);
|
|
}
|
|
|
|
//update sigma
|
|
// The update depends on the value of x; consider one OPJ_UINT32
|
|
// if x is 0, 8, 16 and so on, then this line update c locations
|
|
// nibble (4 bits) number 0 1 2 3 4 5 6 7
|
|
// LSB 0 0 c c 0 0 0 0
|
|
// 0 0 c c 0 0 0 0
|
|
// 0 0 0 0 0 0 0 0
|
|
// 0 0 0 0 0 0 0 0
|
|
// if x is 4, 12, 20, then this line update locations c
|
|
// nibble (4 bits) number 0 1 2 3 4 5 6 7
|
|
// LSB 0 0 0 0 0 0 c c
|
|
// 0 0 0 0 0 0 c c
|
|
// 0 0 0 0 0 0 0 0
|
|
// 0 0 0 0 0 0 0 0
|
|
*sip |= (((qinf[1] & 0x30) | ((qinf[1] & 0xC0) << 2))) << (4 + sip_shift);
|
|
|
|
sip += x & 0x7 ? 1 : 0; // move sigma pointer to next entry
|
|
sip_shift ^= 0x10; // increment/decrement sip_shift by 16
|
|
|
|
// retrieve u
|
|
/////////////
|
|
|
|
// uvlc_mode is made up of u_offset bits from the quad pair
|
|
uvlc_mode = ((qinf[0] & 0x8) >> 3) | ((qinf[1] & 0x8) >> 2);
|
|
if (uvlc_mode == 3) { // if both u_offset are set, get an event from
|
|
// the MEL run of events
|
|
run -= 2; //subtract 2, since events number if multiplied by 2
|
|
uvlc_mode += (run == -1) ? 1 : 0; //increment uvlc_mode if event is 1
|
|
if (run < 0) { // if run is consumed (run is -1 or -2), get another run
|
|
run = mel_get_run(&mel);
|
|
}
|
|
}
|
|
//decode uvlc_mode to get u for both quads
|
|
consumed_bits = decode_init_uvlc(vlc_val, uvlc_mode, U_q);
|
|
if (U_q[0] > zero_bplanes_p1 || U_q[1] > zero_bplanes_p1) {
|
|
if (p_manager_mutex) {
|
|
opj_mutex_lock(p_manager_mutex);
|
|
}
|
|
opj_event_msg(p_manager, EVT_ERROR, "Malformed HT codeblock. Decoding "
|
|
"this codeblock is stopped. U_q is larger than zero "
|
|
"bitplanes + 1 \n");
|
|
if (p_manager_mutex) {
|
|
opj_mutex_unlock(p_manager_mutex);
|
|
}
|
|
return OPJ_FALSE;
|
|
}
|
|
|
|
//consume u bits in the VLC code
|
|
vlc_val = rev_advance(&vlc, consumed_bits);
|
|
|
|
//decode magsgn and update line_state
|
|
/////////////////////////////////////
|
|
|
|
//We obtain a mask for the samples locations that needs evaluation
|
|
locs = 0xFF;
|
|
if (x + 4 > width) {
|
|
locs >>= (x + 4 - width) << 1; // limits width
|
|
}
|
|
locs = height > 1 ? locs : (locs & 0x55); // limits height
|
|
|
|
if ((((qinf[0] & 0xF0) >> 4) | (qinf[1] & 0xF0)) & ~locs) {
|
|
if (p_manager_mutex) {
|
|
opj_mutex_lock(p_manager_mutex);
|
|
}
|
|
opj_event_msg(p_manager, EVT_ERROR, "Malformed HT codeblock. "
|
|
"VLC code produces significant samples outside "
|
|
"the codeblock area.\n");
|
|
if (p_manager_mutex) {
|
|
opj_mutex_unlock(p_manager_mutex);
|
|
}
|
|
return OPJ_FALSE;
|
|
}
|
|
|
|
//first quad, starting at first sample in quad and moving on
|
|
if (qinf[0] & 0x10) { //is it significant? (sigma_n)
|
|
OPJ_UINT32 val;
|
|
|
|
ms_val = frwd_fetch(&magsgn); //get 32 bits of magsgn data
|
|
m_n = U_q[0] - ((qinf[0] >> 12) & 1); //evaluate m_n (number of bits
|
|
// to read from bitstream), using EMB e_k
|
|
frwd_advance(&magsgn, m_n); //consume m_n
|
|
val = ms_val << 31; //get sign bit
|
|
v_n = ms_val & ((1U << m_n) - 1); //keep only m_n bits
|
|
v_n |= ((qinf[0] & 0x100) >> 8) << m_n; //add EMB e_1 as MSB
|
|
v_n |= 1; //add center of bin
|
|
//v_n now has 2 * (\mu - 1) + 0.5 with correct sign bit
|
|
//add 2 to make it 2*\mu+0.5, shift it up to missing MSBs
|
|
sp[0] = val | ((v_n + 2) << (p - 1));
|
|
} else if (locs & 0x1) { // if this is inside the codeblock, set the
|
|
sp[0] = 0; // sample to zero
|
|
}
|
|
|
|
if (qinf[0] & 0x20) { //sigma_n
|
|
OPJ_UINT32 val, t;
|
|
|
|
ms_val = frwd_fetch(&magsgn); //get 32 bits
|
|
m_n = U_q[0] - ((qinf[0] >> 13) & 1); //m_n, uses EMB e_k
|
|
frwd_advance(&magsgn, m_n); //consume m_n
|
|
val = ms_val << 31; //get sign bit
|
|
v_n = ms_val & ((1U << m_n) - 1); //keep only m_n bits
|
|
v_n |= ((qinf[0] & 0x200) >> 9) << m_n; //add EMB e_1
|
|
v_n |= 1; //bin center
|
|
//v_n now has 2 * (\mu - 1) + 0.5 with correct sign bit
|
|
//add 2 to make it 2*\mu+0.5, shift it up to missing MSBs
|
|
sp[stride] = val | ((v_n + 2) << (p - 1));
|
|
|
|
//update line_state: bit 7 (\sigma^N), and E^N
|
|
t = lsp[0] & 0x7F; // keep E^NW
|
|
v_n = 32 - count_leading_zeros(v_n);
|
|
lsp[0] = (OPJ_UINT8)(0x80 | (t > v_n ? t : v_n)); //max(E^NW, E^N) | s
|
|
} else if (locs & 0x2) { // if this is inside the codeblock, set the
|
|
sp[stride] = 0; // sample to zero
|
|
}
|
|
|
|
++lsp; // move to next quad information
|
|
++sp; // move to next column of samples
|
|
|
|
//this is similar to the above two samples
|
|
if (qinf[0] & 0x40) {
|
|
OPJ_UINT32 val;
|
|
|
|
ms_val = frwd_fetch(&magsgn);
|
|
m_n = U_q[0] - ((qinf[0] >> 14) & 1);
|
|
frwd_advance(&magsgn, m_n);
|
|
val = ms_val << 31;
|
|
v_n = ms_val & ((1U << m_n) - 1);
|
|
v_n |= (((qinf[0] & 0x400) >> 10) << m_n);
|
|
v_n |= 1;
|
|
sp[0] = val | ((v_n + 2) << (p - 1));
|
|
} else if (locs & 0x4) {
|
|
sp[0] = 0;
|
|
}
|
|
|
|
lsp[0] = 0;
|
|
if (qinf[0] & 0x80) {
|
|
OPJ_UINT32 val;
|
|
ms_val = frwd_fetch(&magsgn);
|
|
m_n = U_q[0] - ((qinf[0] >> 15) & 1); //m_n
|
|
frwd_advance(&magsgn, m_n);
|
|
val = ms_val << 31;
|
|
v_n = ms_val & ((1U << m_n) - 1);
|
|
v_n |= ((qinf[0] & 0x800) >> 11) << m_n;
|
|
v_n |= 1; //center of bin
|
|
sp[stride] = val | ((v_n + 2) << (p - 1));
|
|
|
|
//line_state: bit 7 (\sigma^NW), and E^NW for next quad
|
|
lsp[0] = (OPJ_UINT8)(0x80 | (32 - count_leading_zeros(v_n)));
|
|
} else if (locs & 0x8) { //if outside set to 0
|
|
sp[stride] = 0;
|
|
}
|
|
|
|
++sp; //move to next column
|
|
|
|
//second quad
|
|
if (qinf[1] & 0x10) {
|
|
OPJ_UINT32 val;
|
|
|
|
ms_val = frwd_fetch(&magsgn);
|
|
m_n = U_q[1] - ((qinf[1] >> 12) & 1); //m_n
|
|
frwd_advance(&magsgn, m_n);
|
|
val = ms_val << 31;
|
|
v_n = ms_val & ((1U << m_n) - 1);
|
|
v_n |= (((qinf[1] & 0x100) >> 8) << m_n);
|
|
v_n |= 1;
|
|
sp[0] = val | ((v_n + 2) << (p - 1));
|
|
} else if (locs & 0x10) {
|
|
sp[0] = 0;
|
|
}
|
|
|
|
if (qinf[1] & 0x20) {
|
|
OPJ_UINT32 val, t;
|
|
|
|
ms_val = frwd_fetch(&magsgn);
|
|
m_n = U_q[1] - ((qinf[1] >> 13) & 1); //m_n
|
|
frwd_advance(&magsgn, m_n);
|
|
val = ms_val << 31;
|
|
v_n = ms_val & ((1U << m_n) - 1);
|
|
v_n |= (((qinf[1] & 0x200) >> 9) << m_n);
|
|
v_n |= 1;
|
|
sp[stride] = val | ((v_n + 2) << (p - 1));
|
|
|
|
//update line_state: bit 7 (\sigma^N), and E^N
|
|
t = lsp[0] & 0x7F; //E^NW
|
|
v_n = 32 - count_leading_zeros(v_n); //E^N
|
|
lsp[0] = (OPJ_UINT8)(0x80 | (t > v_n ? t : v_n)); //max(E^NW, E^N) | s
|
|
} else if (locs & 0x20) {
|
|
sp[stride] = 0; //no need to update line_state
|
|
}
|
|
|
|
++lsp; //move line state to next quad
|
|
++sp; //move to next sample
|
|
|
|
if (qinf[1] & 0x40) {
|
|
OPJ_UINT32 val;
|
|
|
|
ms_val = frwd_fetch(&magsgn);
|
|
m_n = U_q[1] - ((qinf[1] >> 14) & 1); //m_n
|
|
frwd_advance(&magsgn, m_n);
|
|
val = ms_val << 31;
|
|
v_n = ms_val & ((1U << m_n) - 1);
|
|
v_n |= (((qinf[1] & 0x400) >> 10) << m_n);
|
|
v_n |= 1;
|
|
sp[0] = val | ((v_n + 2) << (p - 1));
|
|
} else if (locs & 0x40) {
|
|
sp[0] = 0;
|
|
}
|
|
|
|
lsp[0] = 0;
|
|
if (qinf[1] & 0x80) {
|
|
OPJ_UINT32 val;
|
|
|
|
ms_val = frwd_fetch(&magsgn);
|
|
m_n = U_q[1] - ((qinf[1] >> 15) & 1); //m_n
|
|
frwd_advance(&magsgn, m_n);
|
|
val = ms_val << 31;
|
|
v_n = ms_val & ((1U << m_n) - 1);
|
|
v_n |= (((qinf[1] & 0x800) >> 11) << m_n);
|
|
v_n |= 1; //center of bin
|
|
sp[stride] = val | ((v_n + 2) << (p - 1));
|
|
|
|
//line_state: bit 7 (\sigma^NW), and E^NW for next quad
|
|
lsp[0] = (OPJ_UINT8)(0x80 | (32 - count_leading_zeros(v_n)));
|
|
} else if (locs & 0x80) {
|
|
sp[stride] = 0;
|
|
}
|
|
|
|
++sp;
|
|
}
|
|
|
|
//non-initial lines
|
|
//////////////////////////
|
|
for (y = 2; y < height; /*done at the end of loop*/) {
|
|
OPJ_UINT32 *sip;
|
|
OPJ_UINT8 ls0;
|
|
OPJ_INT32 x;
|
|
|
|
sip_shift ^= 0x2; // shift sigma to the upper half od the nibble
|
|
sip_shift &= 0xFFFFFFEFU; //move back to 0 (it might have been at 0x10)
|
|
sip = y & 0x4 ? sigma2 : sigma1; //choose sigma array
|
|
|
|
lsp = line_state;
|
|
ls0 = lsp[0]; // read the line state value
|
|
lsp[0] = 0; // and set it to zero
|
|
sp = decoded_data + y * stride; // generated samples
|
|
c_q = 0; // context
|
|
for (x = 0; x < width; x += 4) {
|
|
OPJ_UINT32 U_q[2];
|
|
OPJ_UINT32 uvlc_mode, consumed_bits;
|
|
OPJ_UINT32 m_n, v_n;
|
|
OPJ_UINT32 ms_val;
|
|
OPJ_UINT32 locs;
|
|
|
|
// decode vlc
|
|
/////////////
|
|
|
|
//first quad
|
|
// get context, eqn. 2 ITU T.814
|
|
// c_q has \sigma^W | \sigma^SW
|
|
c_q |= (ls0 >> 7); //\sigma^NW | \sigma^N
|
|
c_q |= (lsp[1] >> 5) & 0x4; //\sigma^NE | \sigma^NF
|
|
|
|
//the following is very similar to previous code, so please refer to
|
|
// that
|
|
vlc_val = rev_fetch(&vlc);
|
|
qinf[0] = vlc_tbl1[(c_q << 7) | (vlc_val & 0x7F)];
|
|
if (c_q == 0) { //zero context
|
|
run -= 2;
|
|
qinf[0] = (run == -1) ? qinf[0] : 0;
|
|
if (run < 0) {
|
|
run = mel_get_run(&mel);
|
|
}
|
|
}
|
|
//prepare context for the next quad, \sigma^W | \sigma^SW
|
|
c_q = ((qinf[0] & 0x40) >> 5) | ((qinf[0] & 0x80) >> 6);
|
|
|
|
//remove data from vlc stream
|
|
vlc_val = rev_advance(&vlc, qinf[0] & 0x7);
|
|
|
|
//update sigma
|
|
// The update depends on the value of x and y; consider one OPJ_UINT32
|
|
// if x is 0, 8, 16 and so on, and y is 2, 6, etc., then this
|
|
// line update c locations
|
|
// nibble (4 bits) number 0 1 2 3 4 5 6 7
|
|
// LSB 0 0 0 0 0 0 0 0
|
|
// 0 0 0 0 0 0 0 0
|
|
// c c 0 0 0 0 0 0
|
|
// c c 0 0 0 0 0 0
|
|
*sip |= (((qinf[0] & 0x30) >> 4) | ((qinf[0] & 0xC0) >> 2)) << sip_shift;
|
|
|
|
//second quad
|
|
qinf[1] = 0;
|
|
if (x + 2 < width) {
|
|
c_q |= (lsp[1] >> 7);
|
|
c_q |= (lsp[2] >> 5) & 0x4;
|
|
qinf[1] = vlc_tbl1[(c_q << 7) | (vlc_val & 0x7F)];
|
|
if (c_q == 0) { //zero context
|
|
run -= 2;
|
|
qinf[1] = (run == -1) ? qinf[1] : 0;
|
|
if (run < 0) {
|
|
run = mel_get_run(&mel);
|
|
}
|
|
}
|
|
//prepare context for the next quad
|
|
c_q = ((qinf[1] & 0x40) >> 5) | ((qinf[1] & 0x80) >> 6);
|
|
//remove data from vlc stream
|
|
vlc_val = rev_advance(&vlc, qinf[1] & 0x7);
|
|
}
|
|
|
|
//update sigma
|
|
*sip |= (((qinf[1] & 0x30) | ((qinf[1] & 0xC0) << 2))) << (4 + sip_shift);
|
|
|
|
sip += x & 0x7 ? 1 : 0;
|
|
sip_shift ^= 0x10;
|
|
|
|
//retrieve u
|
|
////////////
|
|
uvlc_mode = ((qinf[0] & 0x8) >> 3) | ((qinf[1] & 0x8) >> 2);
|
|
consumed_bits = decode_noninit_uvlc(vlc_val, uvlc_mode, U_q);
|
|
vlc_val = rev_advance(&vlc, consumed_bits);
|
|
|
|
//calculate E^max and add it to U_q, eqns 5 and 6 in ITU T.814
|
|
if ((qinf[0] & 0xF0) & ((qinf[0] & 0xF0) - 1)) { // is \gamma_q 1?
|
|
OPJ_UINT32 E = (ls0 & 0x7Fu);
|
|
E = E > (lsp[1] & 0x7Fu) ? E : (lsp[1] & 0x7Fu); //max(E, E^NE, E^NF)
|
|
//since U_q already has u_q + 1, we subtract 2 instead of 1
|
|
U_q[0] += E > 2 ? E - 2 : 0;
|
|
}
|
|
|
|
if ((qinf[1] & 0xF0) & ((qinf[1] & 0xF0) - 1)) { //is \gamma_q 1?
|
|
OPJ_UINT32 E = (lsp[1] & 0x7Fu);
|
|
E = E > (lsp[2] & 0x7Fu) ? E : (lsp[2] & 0x7Fu); //max(E, E^NE, E^NF)
|
|
//since U_q already has u_q + 1, we subtract 2 instead of 1
|
|
U_q[1] += E > 2 ? E - 2 : 0;
|
|
}
|
|
|
|
if (U_q[0] > zero_bplanes_p1 || U_q[1] > zero_bplanes_p1) {
|
|
if (p_manager_mutex) {
|
|
opj_mutex_lock(p_manager_mutex);
|
|
}
|
|
opj_event_msg(p_manager, EVT_ERROR, "Malformed HT codeblock. "
|
|
"Decoding this codeblock is stopped. U_q is"
|
|
"larger than bitplanes + 1 \n");
|
|
if (p_manager_mutex) {
|
|
opj_mutex_unlock(p_manager_mutex);
|
|
}
|
|
return OPJ_FALSE;
|
|
}
|
|
|
|
ls0 = lsp[2]; //for next double quad
|
|
lsp[1] = lsp[2] = 0;
|
|
|
|
//decode magsgn and update line_state
|
|
/////////////////////////////////////
|
|
|
|
//locations where samples need update
|
|
locs = 0xFF;
|
|
if (x + 4 > width) {
|
|
locs >>= (x + 4 - width) << 1;
|
|
}
|
|
locs = y + 2 <= height ? locs : (locs & 0x55);
|
|
|
|
if ((((qinf[0] & 0xF0) >> 4) | (qinf[1] & 0xF0)) & ~locs) {
|
|
if (p_manager_mutex) {
|
|
opj_mutex_lock(p_manager_mutex);
|
|
}
|
|
opj_event_msg(p_manager, EVT_ERROR, "Malformed HT codeblock. "
|
|
"VLC code produces significant samples outside "
|
|
"the codeblock area.\n");
|
|
if (p_manager_mutex) {
|
|
opj_mutex_unlock(p_manager_mutex);
|
|
}
|
|
return OPJ_FALSE;
|
|
}
|
|
|
|
|
|
|
|
if (qinf[0] & 0x10) { //sigma_n
|
|
OPJ_UINT32 val;
|
|
|
|
ms_val = frwd_fetch(&magsgn);
|
|
m_n = U_q[0] - ((qinf[0] >> 12) & 1); //m_n
|
|
frwd_advance(&magsgn, m_n);
|
|
val = ms_val << 31;
|
|
v_n = ms_val & ((1U << m_n) - 1);
|
|
v_n |= ((qinf[0] & 0x100) >> 8) << m_n;
|
|
v_n |= 1; //center of bin
|
|
sp[0] = val | ((v_n + 2) << (p - 1));
|
|
} else if (locs & 0x1) {
|
|
sp[0] = 0;
|
|
}
|
|
|
|
if (qinf[0] & 0x20) { //sigma_n
|
|
OPJ_UINT32 val, t;
|
|
|
|
ms_val = frwd_fetch(&magsgn);
|
|
m_n = U_q[0] - ((qinf[0] >> 13) & 1); //m_n
|
|
frwd_advance(&magsgn, m_n);
|
|
val = ms_val << 31;
|
|
v_n = ms_val & ((1U << m_n) - 1);
|
|
v_n |= ((qinf[0] & 0x200) >> 9) << m_n;
|
|
v_n |= 1; //center of bin
|
|
sp[stride] = val | ((v_n + 2) << (p - 1));
|
|
|
|
//update line_state: bit 7 (\sigma^N), and E^N
|
|
t = lsp[0] & 0x7F; //E^NW
|
|
v_n = 32 - count_leading_zeros(v_n);
|
|
lsp[0] = (OPJ_UINT8)(0x80 | (t > v_n ? t : v_n));
|
|
} else if (locs & 0x2) {
|
|
sp[stride] = 0; //no need to update line_state
|
|
}
|
|
|
|
++lsp;
|
|
++sp;
|
|
|
|
if (qinf[0] & 0x40) { //sigma_n
|
|
OPJ_UINT32 val;
|
|
|
|
ms_val = frwd_fetch(&magsgn);
|
|
m_n = U_q[0] - ((qinf[0] >> 14) & 1); //m_n
|
|
frwd_advance(&magsgn, m_n);
|
|
val = ms_val << 31;
|
|
v_n = ms_val & ((1U << m_n) - 1);
|
|
v_n |= (((qinf[0] & 0x400) >> 10) << m_n);
|
|
v_n |= 1; //center of bin
|
|
sp[0] = val | ((v_n + 2) << (p - 1));
|
|
} else if (locs & 0x4) {
|
|
sp[0] = 0;
|
|
}
|
|
|
|
if (qinf[0] & 0x80) { //sigma_n
|
|
OPJ_UINT32 val;
|
|
|
|
ms_val = frwd_fetch(&magsgn);
|
|
m_n = U_q[0] - ((qinf[0] >> 15) & 1); //m_n
|
|
frwd_advance(&magsgn, m_n);
|
|
val = ms_val << 31;
|
|
v_n = ms_val & ((1U << m_n) - 1);
|
|
v_n |= ((qinf[0] & 0x800) >> 11) << m_n;
|
|
v_n |= 1; //center of bin
|
|
sp[stride] = val | ((v_n + 2) << (p - 1));
|
|
|
|
//update line_state: bit 7 (\sigma^NW), and E^NW for next quad
|
|
lsp[0] = (OPJ_UINT8)(0x80 | (32 - count_leading_zeros(v_n)));
|
|
} else if (locs & 0x8) {
|
|
sp[stride] = 0;
|
|
}
|
|
|
|
++sp;
|
|
|
|
if (qinf[1] & 0x10) { //sigma_n
|
|
OPJ_UINT32 val;
|
|
|
|
ms_val = frwd_fetch(&magsgn);
|
|
m_n = U_q[1] - ((qinf[1] >> 12) & 1); //m_n
|
|
frwd_advance(&magsgn, m_n);
|
|
val = ms_val << 31;
|
|
v_n = ms_val & ((1U << m_n) - 1);
|
|
v_n |= (((qinf[1] & 0x100) >> 8) << m_n);
|
|
v_n |= 1; //center of bin
|
|
sp[0] = val | ((v_n + 2) << (p - 1));
|
|
} else if (locs & 0x10) {
|
|
sp[0] = 0;
|
|
}
|
|
|
|
if (qinf[1] & 0x20) { //sigma_n
|
|
OPJ_UINT32 val, t;
|
|
|
|
ms_val = frwd_fetch(&magsgn);
|
|
m_n = U_q[1] - ((qinf[1] >> 13) & 1); //m_n
|
|
frwd_advance(&magsgn, m_n);
|
|
val = ms_val << 31;
|
|
v_n = ms_val & ((1U << m_n) - 1);
|
|
v_n |= (((qinf[1] & 0x200) >> 9) << m_n);
|
|
v_n |= 1; //center of bin
|
|
sp[stride] = val | ((v_n + 2) << (p - 1));
|
|
|
|
//update line_state: bit 7 (\sigma^N), and E^N
|
|
t = lsp[0] & 0x7F; //E^NW
|
|
v_n = 32 - count_leading_zeros(v_n);
|
|
lsp[0] = (OPJ_UINT8)(0x80 | (t > v_n ? t : v_n));
|
|
} else if (locs & 0x20) {
|
|
sp[stride] = 0; //no need to update line_state
|
|
}
|
|
|
|
++lsp;
|
|
++sp;
|
|
|
|
if (qinf[1] & 0x40) { //sigma_n
|
|
OPJ_UINT32 val;
|
|
|
|
ms_val = frwd_fetch(&magsgn);
|
|
m_n = U_q[1] - ((qinf[1] >> 14) & 1); //m_n
|
|
frwd_advance(&magsgn, m_n);
|
|
val = ms_val << 31;
|
|
v_n = ms_val & ((1U << m_n) - 1);
|
|
v_n |= (((qinf[1] & 0x400) >> 10) << m_n);
|
|
v_n |= 1; //center of bin
|
|
sp[0] = val | ((v_n + 2) << (p - 1));
|
|
} else if (locs & 0x40) {
|
|
sp[0] = 0;
|
|
}
|
|
|
|
if (qinf[1] & 0x80) { //sigma_n
|
|
OPJ_UINT32 val;
|
|
|
|
ms_val = frwd_fetch(&magsgn);
|
|
m_n = U_q[1] - ((qinf[1] >> 15) & 1); //m_n
|
|
frwd_advance(&magsgn, m_n);
|
|
val = ms_val << 31;
|
|
v_n = ms_val & ((1U << m_n) - 1);
|
|
v_n |= (((qinf[1] & 0x800) >> 11) << m_n);
|
|
v_n |= 1; //center of bin
|
|
sp[stride] = val | ((v_n + 2) << (p - 1));
|
|
|
|
//update line_state: bit 7 (\sigma^NW), and E^NW for next quad
|
|
lsp[0] = (OPJ_UINT8)(0x80 | (32 - count_leading_zeros(v_n)));
|
|
} else if (locs & 0x80) {
|
|
sp[stride] = 0;
|
|
}
|
|
|
|
++sp;
|
|
}
|
|
|
|
y += 2;
|
|
if (num_passes > 1 && (y & 3) == 0) { //executed at multiples of 4
|
|
// This is for SPP and potentially MRP
|
|
|
|
if (num_passes > 2) { //do MRP
|
|
// select the current stripe
|
|
OPJ_UINT32 *cur_sig = y & 0x4 ? sigma1 : sigma2;
|
|
// the address of the data that needs updating
|
|
OPJ_UINT32 *dpp = decoded_data + (y - 4) * stride;
|
|
OPJ_UINT32 half = 1u << (p - 2); // half the center of the bin
|
|
OPJ_INT32 i;
|
|
for (i = 0; i < width; i += 8) {
|
|
//Process one entry from sigma array at a time
|
|
// Each nibble (4 bits) in the sigma array represents 4 rows,
|
|
// and the 32 bits contain 8 columns
|
|
OPJ_UINT32 cwd = rev_fetch_mrp(&magref); // get 32 bit data
|
|
OPJ_UINT32 sig = *cur_sig++; // 32 bit that will be processed now
|
|
OPJ_UINT32 col_mask = 0xFu; // a mask for a column in sig
|
|
OPJ_UINT32 *dp = dpp + i; // next column in decode samples
|
|
if (sig) { // if any of the 32 bits are set
|
|
int j;
|
|
for (j = 0; j < 8; ++j, dp++) { //one column at a time
|
|
if (sig & col_mask) { // lowest nibble
|
|
OPJ_UINT32 sample_mask = 0x11111111u & col_mask; //LSB
|
|
|
|
if (sig & sample_mask) { //if LSB is set
|
|
OPJ_UINT32 sym;
|
|
|
|
assert(dp[0] != 0); // decoded value cannot be zero
|
|
sym = cwd & 1; // get it value
|
|
// remove center of bin if sym is 0
|
|
dp[0] ^= (1 - sym) << (p - 1);
|
|
dp[0] |= half; // put half the center of bin
|
|
cwd >>= 1; //consume word
|
|
}
|
|
sample_mask += sample_mask; //next row
|
|
|
|
if (sig & sample_mask) {
|
|
OPJ_UINT32 sym;
|
|
|
|
assert(dp[stride] != 0);
|
|
sym = cwd & 1;
|
|
dp[stride] ^= (1 - sym) << (p - 1);
|
|
dp[stride] |= half;
|
|
cwd >>= 1;
|
|
}
|
|
sample_mask += sample_mask;
|
|
|
|
if (sig & sample_mask) {
|
|
OPJ_UINT32 sym;
|
|
|
|
assert(dp[2 * stride] != 0);
|
|
sym = cwd & 1;
|
|
dp[2 * stride] ^= (1 - sym) << (p - 1);
|
|
dp[2 * stride] |= half;
|
|
cwd >>= 1;
|
|
}
|
|
sample_mask += sample_mask;
|
|
|
|
if (sig & sample_mask) {
|
|
OPJ_UINT32 sym;
|
|
|
|
assert(dp[3 * stride] != 0);
|
|
sym = cwd & 1;
|
|
dp[3 * stride] ^= (1 - sym) << (p - 1);
|
|
dp[3 * stride] |= half;
|
|
cwd >>= 1;
|
|
}
|
|
sample_mask += sample_mask;
|
|
}
|
|
col_mask <<= 4; //next column
|
|
}
|
|
}
|
|
// consume data according to the number of bits set
|
|
rev_advance_mrp(&magref, population_count(sig));
|
|
}
|
|
}
|
|
|
|
if (y >= 4) { // update mbr array at the end of each stripe
|
|
//generate mbr corresponding to a stripe
|
|
OPJ_UINT32 *sig = y & 0x4 ? sigma1 : sigma2;
|
|
OPJ_UINT32 *mbr = y & 0x4 ? mbr1 : mbr2;
|
|
|
|
//data is processed in patches of 8 columns, each
|
|
// each 32 bits in sigma1 or mbr1 represent 4 rows
|
|
|
|
//integrate horizontally
|
|
OPJ_UINT32 prev = 0; // previous columns
|
|
OPJ_INT32 i;
|
|
for (i = 0; i < width; i += 8, mbr++, sig++) {
|
|
OPJ_UINT32 t, z;
|
|
|
|
mbr[0] = sig[0]; //start with significant samples
|
|
mbr[0] |= prev >> 28; //for first column, left neighbors
|
|
mbr[0] |= sig[0] << 4; //left neighbors
|
|
mbr[0] |= sig[0] >> 4; //right neighbors
|
|
mbr[0] |= sig[1] << 28; //for last column, right neighbors
|
|
prev = sig[0]; // for next group of columns
|
|
|
|
//integrate vertically
|
|
t = mbr[0], z = mbr[0];
|
|
z |= (t & 0x77777777) << 1; //above neighbors
|
|
z |= (t & 0xEEEEEEEE) >> 1; //below neighbors
|
|
mbr[0] = z & ~sig[0]; //remove already significance samples
|
|
}
|
|
}
|
|
|
|
if (y >= 8) { //wait until 8 rows has been processed
|
|
OPJ_UINT32 *cur_sig, *cur_mbr, *nxt_sig, *nxt_mbr;
|
|
OPJ_UINT32 prev;
|
|
OPJ_UINT32 val;
|
|
OPJ_INT32 i;
|
|
|
|
// add membership from the next stripe, obtained above
|
|
cur_sig = y & 0x4 ? sigma2 : sigma1;
|
|
cur_mbr = y & 0x4 ? mbr2 : mbr1;
|
|
nxt_sig = y & 0x4 ? sigma1 : sigma2; //future samples
|
|
prev = 0; // the columns before these group of 8 columns
|
|
for (i = 0; i < width; i += 8, cur_mbr++, cur_sig++, nxt_sig++) {
|
|
OPJ_UINT32 t = nxt_sig[0];
|
|
t |= prev >> 28; //for first column, left neighbors
|
|
t |= nxt_sig[0] << 4; //left neighbors
|
|
t |= nxt_sig[0] >> 4; //right neighbors
|
|
t |= nxt_sig[1] << 28; //for last column, right neighbors
|
|
prev = nxt_sig[0]; // for next group of columns
|
|
|
|
if (!stripe_causal) {
|
|
cur_mbr[0] |= (t & 0x11111111u) << 3; //propagate up to cur_mbr
|
|
}
|
|
cur_mbr[0] &= ~cur_sig[0]; //remove already significance samples
|
|
}
|
|
|
|
//find new locations and get signs
|
|
cur_sig = y & 0x4 ? sigma2 : sigma1;
|
|
cur_mbr = y & 0x4 ? mbr2 : mbr1;
|
|
nxt_sig = y & 0x4 ? sigma1 : sigma2; //future samples
|
|
nxt_mbr = y & 0x4 ? mbr1 : mbr2; //future samples
|
|
val = 3u << (p - 2); // sample values for newly discovered
|
|
// significant samples including the bin center
|
|
for (i = 0; i < width;
|
|
i += 8, cur_sig++, cur_mbr++, nxt_sig++, nxt_mbr++) {
|
|
OPJ_UINT32 ux, tx;
|
|
OPJ_UINT32 mbr = *cur_mbr;
|
|
OPJ_UINT32 new_sig = 0;
|
|
if (mbr) { //are there any samples that might be significant
|
|
OPJ_INT32 n;
|
|
for (n = 0; n < 8; n += 4) {
|
|
OPJ_UINT32 col_mask;
|
|
OPJ_UINT32 inv_sig;
|
|
OPJ_INT32 end;
|
|
OPJ_INT32 j;
|
|
|
|
OPJ_UINT32 cwd = frwd_fetch(&sigprop); //get 32 bits
|
|
OPJ_UINT32 cnt = 0;
|
|
|
|
OPJ_UINT32 *dp = decoded_data + (y - 8) * stride;
|
|
dp += i + n; //address for decoded samples
|
|
|
|
col_mask = 0xFu << (4 * n); //a mask to select a column
|
|
|
|
inv_sig = ~cur_sig[0]; // insignificant samples
|
|
|
|
//find the last sample we operate on
|
|
end = n + 4 + i < width ? n + 4 : width - i;
|
|
|
|
for (j = n; j < end; ++j, ++dp, col_mask <<= 4) {
|
|
OPJ_UINT32 sample_mask;
|
|
|
|
if ((col_mask & mbr) == 0) { //no samples need checking
|
|
continue;
|
|
}
|
|
|
|
//scan mbr to find a new significant sample
|
|
sample_mask = 0x11111111u & col_mask; // LSB
|
|
if (mbr & sample_mask) {
|
|
assert(dp[0] == 0); // the sample must have been 0
|
|
if (cwd & 1) { //if this sample has become significant
|
|
// must propagate it to nearby samples
|
|
OPJ_UINT32 t;
|
|
new_sig |= sample_mask; // new significant samples
|
|
t = 0x32u << (j * 4);// propagation to neighbors
|
|
mbr |= t & inv_sig; //remove already significant samples
|
|
}
|
|
cwd >>= 1;
|
|
++cnt; //consume bit and increment number of
|
|
//consumed bits
|
|
}
|
|
|
|
sample_mask += sample_mask; // next row
|
|
if (mbr & sample_mask) {
|
|
assert(dp[stride] == 0);
|
|
if (cwd & 1) {
|
|
OPJ_UINT32 t;
|
|
new_sig |= sample_mask;
|
|
t = 0x74u << (j * 4);
|
|
mbr |= t & inv_sig;
|
|
}
|
|
cwd >>= 1;
|
|
++cnt;
|
|
}
|
|
|
|
sample_mask += sample_mask;
|
|
if (mbr & sample_mask) {
|
|
assert(dp[2 * stride] == 0);
|
|
if (cwd & 1) {
|
|
OPJ_UINT32 t;
|
|
new_sig |= sample_mask;
|
|
t = 0xE8u << (j * 4);
|
|
mbr |= t & inv_sig;
|
|
}
|
|
cwd >>= 1;
|
|
++cnt;
|
|
}
|
|
|
|
sample_mask += sample_mask;
|
|
if (mbr & sample_mask) {
|
|
assert(dp[3 * stride] == 0);
|
|
if (cwd & 1) {
|
|
OPJ_UINT32 t;
|
|
new_sig |= sample_mask;
|
|
t = 0xC0u << (j * 4);
|
|
mbr |= t & inv_sig;
|
|
}
|
|
cwd >>= 1;
|
|
++cnt;
|
|
}
|
|
}
|
|
|
|
//obtain signs here
|
|
if (new_sig & (0xFFFFu << (4 * n))) { //if any
|
|
OPJ_UINT32 col_mask;
|
|
OPJ_INT32 j;
|
|
OPJ_UINT32 *dp = decoded_data + (y - 8) * stride;
|
|
dp += i + n; // decoded samples address
|
|
col_mask = 0xFu << (4 * n); //mask to select a column
|
|
|
|
for (j = n; j < end; ++j, ++dp, col_mask <<= 4) {
|
|
OPJ_UINT32 sample_mask;
|
|
|
|
if ((col_mask & new_sig) == 0) { //if non is significant
|
|
continue;
|
|
}
|
|
|
|
//scan 4 signs
|
|
sample_mask = 0x11111111u & col_mask;
|
|
if (new_sig & sample_mask) {
|
|
assert(dp[0] == 0);
|
|
dp[0] |= ((cwd & 1) << 31) | val; //put value and sign
|
|
cwd >>= 1;
|
|
++cnt; //consume bit and increment number
|
|
//of consumed bits
|
|
}
|
|
|
|
sample_mask += sample_mask;
|
|
if (new_sig & sample_mask) {
|
|
assert(dp[stride] == 0);
|
|
dp[stride] |= ((cwd & 1) << 31) | val;
|
|
cwd >>= 1;
|
|
++cnt;
|
|
}
|
|
|
|
sample_mask += sample_mask;
|
|
if (new_sig & sample_mask) {
|
|
assert(dp[2 * stride] == 0);
|
|
dp[2 * stride] |= ((cwd & 1) << 31) | val;
|
|
cwd >>= 1;
|
|
++cnt;
|
|
}
|
|
|
|
sample_mask += sample_mask;
|
|
if (new_sig & sample_mask) {
|
|
assert(dp[3 * stride] == 0);
|
|
dp[3 * stride] |= ((cwd & 1) << 31) | val;
|
|
cwd >>= 1;
|
|
++cnt;
|
|
}
|
|
}
|
|
|
|
}
|
|
frwd_advance(&sigprop, cnt); //consume the bits from bitstrm
|
|
cnt = 0;
|
|
|
|
//update the next 8 columns
|
|
if (n == 4) {
|
|
//horizontally
|
|
OPJ_UINT32 t = new_sig >> 28;
|
|
t |= ((t & 0xE) >> 1) | ((t & 7) << 1);
|
|
cur_mbr[1] |= t & ~cur_sig[1];
|
|
}
|
|
}
|
|
}
|
|
//update the next stripe (vertically propagation)
|
|
new_sig |= cur_sig[0];
|
|
ux = (new_sig & 0x88888888) >> 3;
|
|
tx = ux | (ux << 4) | (ux >> 4); //left and right neighbors
|
|
if (i > 0) {
|
|
nxt_mbr[-1] |= (ux << 28) & ~nxt_sig[-1];
|
|
}
|
|
nxt_mbr[0] |= tx & ~nxt_sig[0];
|
|
nxt_mbr[1] |= (ux >> 28) & ~nxt_sig[1];
|
|
}
|
|
|
|
//clear current sigma
|
|
//mbr need not be cleared because it is overwritten
|
|
cur_sig = y & 0x4 ? sigma2 : sigma1;
|
|
memset(cur_sig, 0, ((((OPJ_UINT32)width + 7u) >> 3) + 1u) << 2);
|
|
}
|
|
}
|
|
}
|
|
|
|
//terminating
|
|
if (num_passes > 1) {
|
|
OPJ_INT32 st, y;
|
|
|
|
if (num_passes > 2 && ((height & 3) == 1 || (height & 3) == 2)) {
|
|
//do magref
|
|
OPJ_UINT32 *cur_sig = height & 0x4 ? sigma2 : sigma1; //reversed
|
|
OPJ_UINT32 *dpp = decoded_data + (height & 0xFFFFFC) * stride;
|
|
OPJ_UINT32 half = 1u << (p - 2);
|
|
OPJ_INT32 i;
|
|
for (i = 0; i < width; i += 8) {
|
|
OPJ_UINT32 cwd = rev_fetch_mrp(&magref);
|
|
OPJ_UINT32 sig = *cur_sig++;
|
|
OPJ_UINT32 col_mask = 0xF;
|
|
OPJ_UINT32 *dp = dpp + i;
|
|
if (sig) {
|
|
int j;
|
|
for (j = 0; j < 8; ++j, dp++) {
|
|
if (sig & col_mask) {
|
|
OPJ_UINT32 sample_mask = 0x11111111 & col_mask;
|
|
|
|
if (sig & sample_mask) {
|
|
OPJ_UINT32 sym;
|
|
assert(dp[0] != 0);
|
|
sym = cwd & 1;
|
|
dp[0] ^= (1 - sym) << (p - 1);
|
|
dp[0] |= half;
|
|
cwd >>= 1;
|
|
}
|
|
sample_mask += sample_mask;
|
|
|
|
if (sig & sample_mask) {
|
|
OPJ_UINT32 sym;
|
|
assert(dp[stride] != 0);
|
|
sym = cwd & 1;
|
|
dp[stride] ^= (1 - sym) << (p - 1);
|
|
dp[stride] |= half;
|
|
cwd >>= 1;
|
|
}
|
|
sample_mask += sample_mask;
|
|
|
|
if (sig & sample_mask) {
|
|
OPJ_UINT32 sym;
|
|
assert(dp[2 * stride] != 0);
|
|
sym = cwd & 1;
|
|
dp[2 * stride] ^= (1 - sym) << (p - 1);
|
|
dp[2 * stride] |= half;
|
|
cwd >>= 1;
|
|
}
|
|
sample_mask += sample_mask;
|
|
|
|
if (sig & sample_mask) {
|
|
OPJ_UINT32 sym;
|
|
assert(dp[3 * stride] != 0);
|
|
sym = cwd & 1;
|
|
dp[3 * stride] ^= (1 - sym) << (p - 1);
|
|
dp[3 * stride] |= half;
|
|
cwd >>= 1;
|
|
}
|
|
sample_mask += sample_mask;
|
|
}
|
|
col_mask <<= 4;
|
|
}
|
|
}
|
|
rev_advance_mrp(&magref, population_count(sig));
|
|
}
|
|
}
|
|
|
|
//do the last incomplete stripe
|
|
// for cases of (height & 3) == 0 and 3
|
|
// the should have been processed previously
|
|
if ((height & 3) == 1 || (height & 3) == 2) {
|
|
//generate mbr of first stripe
|
|
OPJ_UINT32 *sig = height & 0x4 ? sigma2 : sigma1;
|
|
OPJ_UINT32 *mbr = height & 0x4 ? mbr2 : mbr1;
|
|
//integrate horizontally
|
|
OPJ_UINT32 prev = 0;
|
|
OPJ_INT32 i;
|
|
for (i = 0; i < width; i += 8, mbr++, sig++) {
|
|
OPJ_UINT32 t, z;
|
|
|
|
mbr[0] = sig[0];
|
|
mbr[0] |= prev >> 28; //for first column, left neighbors
|
|
mbr[0] |= sig[0] << 4; //left neighbors
|
|
mbr[0] |= sig[0] >> 4; //left neighbors
|
|
mbr[0] |= sig[1] << 28; //for last column, right neighbors
|
|
prev = sig[0];
|
|
|
|
//integrate vertically
|
|
t = mbr[0], z = mbr[0];
|
|
z |= (t & 0x77777777) << 1; //above neighbors
|
|
z |= (t & 0xEEEEEEEE) >> 1; //below neighbors
|
|
mbr[0] = z & ~sig[0]; //remove already significance samples
|
|
}
|
|
}
|
|
|
|
st = height;
|
|
st -= height > 6 ? (((height + 1) & 3) + 3) : height;
|
|
for (y = st; y < height; y += 4) {
|
|
OPJ_UINT32 *cur_sig, *cur_mbr, *nxt_sig, *nxt_mbr;
|
|
OPJ_UINT32 val;
|
|
OPJ_INT32 i;
|
|
|
|
OPJ_UINT32 pattern = 0xFFFFFFFFu; // a pattern needed samples
|
|
if (height - y == 3) {
|
|
pattern = 0x77777777u;
|
|
} else if (height - y == 2) {
|
|
pattern = 0x33333333u;
|
|
} else if (height - y == 1) {
|
|
pattern = 0x11111111u;
|
|
}
|
|
|
|
//add membership from the next stripe, obtained above
|
|
if (height - y > 4) {
|
|
OPJ_UINT32 prev = 0;
|
|
OPJ_INT32 i;
|
|
cur_sig = y & 0x4 ? sigma2 : sigma1;
|
|
cur_mbr = y & 0x4 ? mbr2 : mbr1;
|
|
nxt_sig = y & 0x4 ? sigma1 : sigma2;
|
|
for (i = 0; i < width; i += 8, cur_mbr++, cur_sig++, nxt_sig++) {
|
|
OPJ_UINT32 t = nxt_sig[0];
|
|
t |= prev >> 28; //for first column, left neighbors
|
|
t |= nxt_sig[0] << 4; //left neighbors
|
|
t |= nxt_sig[0] >> 4; //left neighbors
|
|
t |= nxt_sig[1] << 28; //for last column, right neighbors
|
|
prev = nxt_sig[0];
|
|
|
|
if (!stripe_causal) {
|
|
cur_mbr[0] |= (t & 0x11111111u) << 3;
|
|
}
|
|
//remove already significance samples
|
|
cur_mbr[0] &= ~cur_sig[0];
|
|
}
|
|
}
|
|
|
|
//find new locations and get signs
|
|
cur_sig = y & 0x4 ? sigma2 : sigma1;
|
|
cur_mbr = y & 0x4 ? mbr2 : mbr1;
|
|
nxt_sig = y & 0x4 ? sigma1 : sigma2;
|
|
nxt_mbr = y & 0x4 ? mbr1 : mbr2;
|
|
val = 3u << (p - 2);
|
|
for (i = 0; i < width; i += 8,
|
|
cur_sig++, cur_mbr++, nxt_sig++, nxt_mbr++) {
|
|
OPJ_UINT32 mbr = *cur_mbr & pattern; //skip unneeded samples
|
|
OPJ_UINT32 new_sig = 0;
|
|
OPJ_UINT32 ux, tx;
|
|
if (mbr) {
|
|
OPJ_INT32 n;
|
|
for (n = 0; n < 8; n += 4) {
|
|
OPJ_UINT32 col_mask;
|
|
OPJ_UINT32 inv_sig;
|
|
OPJ_INT32 end;
|
|
OPJ_INT32 j;
|
|
|
|
OPJ_UINT32 cwd = frwd_fetch(&sigprop);
|
|
OPJ_UINT32 cnt = 0;
|
|
|
|
OPJ_UINT32 *dp = decoded_data + y * stride;
|
|
dp += i + n;
|
|
|
|
col_mask = 0xFu << (4 * n);
|
|
|
|
inv_sig = ~cur_sig[0] & pattern;
|
|
|
|
end = n + 4 + i < width ? n + 4 : width - i;
|
|
for (j = n; j < end; ++j, ++dp, col_mask <<= 4) {
|
|
OPJ_UINT32 sample_mask;
|
|
|
|
if ((col_mask & mbr) == 0) {
|
|
continue;
|
|
}
|
|
|
|
//scan 4 mbr
|
|
sample_mask = 0x11111111u & col_mask;
|
|
if (mbr & sample_mask) {
|
|
assert(dp[0] == 0);
|
|
if (cwd & 1) {
|
|
OPJ_UINT32 t;
|
|
new_sig |= sample_mask;
|
|
t = 0x32u << (j * 4);
|
|
mbr |= t & inv_sig;
|
|
}
|
|
cwd >>= 1;
|
|
++cnt;
|
|
}
|
|
|
|
sample_mask += sample_mask;
|
|
if (mbr & sample_mask) {
|
|
assert(dp[stride] == 0);
|
|
if (cwd & 1) {
|
|
OPJ_UINT32 t;
|
|
new_sig |= sample_mask;
|
|
t = 0x74u << (j * 4);
|
|
mbr |= t & inv_sig;
|
|
}
|
|
cwd >>= 1;
|
|
++cnt;
|
|
}
|
|
|
|
sample_mask += sample_mask;
|
|
if (mbr & sample_mask) {
|
|
assert(dp[2 * stride] == 0);
|
|
if (cwd & 1) {
|
|
OPJ_UINT32 t;
|
|
new_sig |= sample_mask;
|
|
t = 0xE8u << (j * 4);
|
|
mbr |= t & inv_sig;
|
|
}
|
|
cwd >>= 1;
|
|
++cnt;
|
|
}
|
|
|
|
sample_mask += sample_mask;
|
|
if (mbr & sample_mask) {
|
|
assert(dp[3 * stride] == 0);
|
|
if (cwd & 1) {
|
|
OPJ_UINT32 t;
|
|
new_sig |= sample_mask;
|
|
t = 0xC0u << (j * 4);
|
|
mbr |= t & inv_sig;
|
|
}
|
|
cwd >>= 1;
|
|
++cnt;
|
|
}
|
|
}
|
|
|
|
//signs here
|
|
if (new_sig & (0xFFFFu << (4 * n))) {
|
|
OPJ_UINT32 col_mask;
|
|
OPJ_INT32 j;
|
|
OPJ_UINT32 *dp = decoded_data + y * stride;
|
|
dp += i + n;
|
|
col_mask = 0xFu << (4 * n);
|
|
|
|
for (j = n; j < end; ++j, ++dp, col_mask <<= 4) {
|
|
OPJ_UINT32 sample_mask;
|
|
if ((col_mask & new_sig) == 0) {
|
|
continue;
|
|
}
|
|
|
|
//scan 4 signs
|
|
sample_mask = 0x11111111u & col_mask;
|
|
if (new_sig & sample_mask) {
|
|
assert(dp[0] == 0);
|
|
dp[0] |= ((cwd & 1) << 31) | val;
|
|
cwd >>= 1;
|
|
++cnt;
|
|
}
|
|
|
|
sample_mask += sample_mask;
|
|
if (new_sig & sample_mask) {
|
|
assert(dp[stride] == 0);
|
|
dp[stride] |= ((cwd & 1) << 31) | val;
|
|
cwd >>= 1;
|
|
++cnt;
|
|
}
|
|
|
|
sample_mask += sample_mask;
|
|
if (new_sig & sample_mask) {
|
|
assert(dp[2 * stride] == 0);
|
|
dp[2 * stride] |= ((cwd & 1) << 31) | val;
|
|
cwd >>= 1;
|
|
++cnt;
|
|
}
|
|
|
|
sample_mask += sample_mask;
|
|
if (new_sig & sample_mask) {
|
|
assert(dp[3 * stride] == 0);
|
|
dp[3 * stride] |= ((cwd & 1) << 31) | val;
|
|
cwd >>= 1;
|
|
++cnt;
|
|
}
|
|
}
|
|
|
|
}
|
|
frwd_advance(&sigprop, cnt);
|
|
cnt = 0;
|
|
|
|
//update next columns
|
|
if (n == 4) {
|
|
//horizontally
|
|
OPJ_UINT32 t = new_sig >> 28;
|
|
t |= ((t & 0xE) >> 1) | ((t & 7) << 1);
|
|
cur_mbr[1] |= t & ~cur_sig[1];
|
|
}
|
|
}
|
|
}
|
|
//propagate down (vertically propagation)
|
|
new_sig |= cur_sig[0];
|
|
ux = (new_sig & 0x88888888) >> 3;
|
|
tx = ux | (ux << 4) | (ux >> 4);
|
|
if (i > 0) {
|
|
nxt_mbr[-1] |= (ux << 28) & ~nxt_sig[-1];
|
|
}
|
|
nxt_mbr[0] |= tx & ~nxt_sig[0];
|
|
nxt_mbr[1] |= (ux >> 28) & ~nxt_sig[1];
|
|
}
|
|
}
|
|
}
|
|
|
|
{
|
|
OPJ_INT32 x, y;
|
|
for (y = 0; y < height; ++y) {
|
|
OPJ_INT32* sp = (OPJ_INT32*)decoded_data + y * stride;
|
|
for (x = 0; x < width; ++x, ++sp) {
|
|
OPJ_INT32 val = (*sp & 0x7FFFFFFF);
|
|
*sp = ((OPJ_UINT32) * sp & 0x80000000) ? -val : val;
|
|
}
|
|
}
|
|
}
|
|
|
|
return OPJ_TRUE;
|
|
}
|