mirror of
https://github.com/opencv/opencv.git
synced 2024-12-27 03:14:05 +08:00
0de26fd78e
Zlib-ng is zlib replacement with optimizations for "next generation" systems. Its optimization may benifits image library decode and encode speed such as libpng. In our tests, if using zlib-ng and libpng combination on a x86_64 machine with AVX2, the time of `imdecode` amd `imencode` will drop 20% approximately. This patch enables zlib-ng's optimization if `CV_DISABLE_OPTIMIZATION` is OFF. Since Zlib-ng can dispatch intrinsics on the fly, port work is much easier. Related discussion: https://github.com/opencv/opencv/issues/22573
155 lines
6.0 KiB
C
155 lines
6.0 KiB
C
/* adler32_avx2.c -- compute the Adler-32 checksum of a data stream
|
|
* Copyright (C) 1995-2011 Mark Adler
|
|
* Copyright (C) 2022 Adam Stylinski
|
|
* Authors:
|
|
* Brian Bockelman <bockelman@gmail.com>
|
|
* Adam Stylinski <kungfujesus06@gmail.com>
|
|
* For conditions of distribution and use, see copyright notice in zlib.h
|
|
*/
|
|
|
|
#ifdef X86_AVX2
|
|
|
|
#include "../../zbuild.h"
|
|
#include <immintrin.h>
|
|
#include "../../adler32_fold.h"
|
|
#include "../../adler32_p.h"
|
|
#include "adler32_avx2_p.h"
|
|
#include "x86_intrins.h"
|
|
|
|
#ifdef X86_SSE42
|
|
extern uint32_t adler32_fold_copy_sse42(uint32_t adler, uint8_t *dst, const uint8_t *src, size_t len);
|
|
extern uint32_t adler32_ssse3(uint32_t adler, const uint8_t *src, size_t len);
|
|
|
|
#define copy_sub32(a, b, c, d) adler32_fold_copy_sse42(a, b, c, d)
|
|
#define sub32(a, b, c) adler32_ssse3(a, b, c)
|
|
#else
|
|
#define copy_sub32(a, b, c, d) adler32_copy_len_16(adler0, c, b, d, adler1)
|
|
#define sub32(a, b, c) adler32_len_16(adler0, b, c, adler1)
|
|
#endif
|
|
|
|
static inline uint32_t adler32_fold_copy_impl(uint32_t adler, uint8_t *dst, const uint8_t *src, size_t len, const int COPY) {
|
|
if (src == NULL) return 1L;
|
|
if (len == 0) return adler;
|
|
|
|
uint32_t adler0, adler1;
|
|
adler1 = (adler >> 16) & 0xffff;
|
|
adler0 = adler & 0xffff;
|
|
|
|
rem_peel:
|
|
if (len < 16) {
|
|
if (COPY) {
|
|
return adler32_copy_len_16(adler0, src, dst, len, adler1);
|
|
} else {
|
|
return adler32_len_16(adler0, src, len, adler1);
|
|
}
|
|
} else if (len < 32) {
|
|
if (COPY) {
|
|
return copy_sub32(adler, dst, src, len);
|
|
} else {
|
|
return sub32(adler, src, len);
|
|
}
|
|
}
|
|
|
|
__m256i vs1, vs2;
|
|
|
|
const __m256i dot2v = _mm256_setr_epi8(32, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15,
|
|
14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1);
|
|
const __m256i dot3v = _mm256_set1_epi16(1);
|
|
const __m256i zero = _mm256_setzero_si256();
|
|
|
|
while (len >= 32) {
|
|
vs1 = _mm256_zextsi128_si256(_mm_cvtsi32_si128(adler0));
|
|
vs2 = _mm256_zextsi128_si256(_mm_cvtsi32_si128(adler1));
|
|
__m256i vs1_0 = vs1;
|
|
__m256i vs3 = _mm256_setzero_si256();
|
|
|
|
size_t k = MIN(len, NMAX);
|
|
k -= k % 32;
|
|
len -= k;
|
|
|
|
while (k >= 32) {
|
|
/*
|
|
vs1 = adler + sum(c[i])
|
|
vs2 = sum2 + 32 vs1 + sum( (32-i+1) c[i] )
|
|
*/
|
|
__m256i vbuf = _mm256_loadu_si256((__m256i*)src);
|
|
src += 32;
|
|
k -= 32;
|
|
|
|
__m256i vs1_sad = _mm256_sad_epu8(vbuf, zero); // Sum of abs diff, resulting in 2 x int32's
|
|
|
|
if (COPY) {
|
|
_mm256_storeu_si256((__m256i*)dst, vbuf);
|
|
dst += 32;
|
|
}
|
|
|
|
vs1 = _mm256_add_epi32(vs1, vs1_sad);
|
|
vs3 = _mm256_add_epi32(vs3, vs1_0);
|
|
__m256i v_short_sum2 = _mm256_maddubs_epi16(vbuf, dot2v); // sum 32 uint8s to 16 shorts
|
|
__m256i vsum2 = _mm256_madd_epi16(v_short_sum2, dot3v); // sum 16 shorts to 8 uint32s
|
|
vs2 = _mm256_add_epi32(vsum2, vs2);
|
|
vs1_0 = vs1;
|
|
}
|
|
|
|
/* Defer the multiplication with 32 to outside of the loop */
|
|
vs3 = _mm256_slli_epi32(vs3, 5);
|
|
vs2 = _mm256_add_epi32(vs2, vs3);
|
|
|
|
/* The compiler is generating the following sequence for this integer modulus
|
|
* when done the scalar way, in GPRs:
|
|
|
|
adler = (s1_unpack[0] % BASE) + (s1_unpack[1] % BASE) + (s1_unpack[2] % BASE) + (s1_unpack[3] % BASE) +
|
|
(s1_unpack[4] % BASE) + (s1_unpack[5] % BASE) + (s1_unpack[6] % BASE) + (s1_unpack[7] % BASE);
|
|
|
|
mov $0x80078071,%edi // move magic constant into 32 bit register %edi
|
|
...
|
|
vmovd %xmm1,%esi // move vector lane 0 to 32 bit register %esi
|
|
mov %rsi,%rax // zero-extend this value to 64 bit precision in %rax
|
|
imul %rdi,%rsi // do a signed multiplication with magic constant and vector element
|
|
shr $0x2f,%rsi // shift right by 47
|
|
imul $0xfff1,%esi,%esi // do a signed multiplication with value truncated to 32 bits with 0xfff1
|
|
sub %esi,%eax // subtract lower 32 bits of original vector value from modified one above
|
|
...
|
|
// repeats for each element with vpextract instructions
|
|
|
|
This is tricky with AVX2 for a number of reasons:
|
|
1.) There's no 64 bit multiplication instruction, but there is a sequence to get there
|
|
2.) There's ways to extend vectors to 64 bit precision, but no simple way to truncate
|
|
back down to 32 bit precision later (there is in AVX512)
|
|
3.) Full width integer multiplications aren't cheap
|
|
|
|
We can, however, do a relatively cheap sequence for horizontal sums.
|
|
Then, we simply do the integer modulus on the resulting 64 bit GPR, on a scalar value. It was
|
|
previously thought that casting to 64 bit precision was needed prior to the horizontal sum, but
|
|
that is simply not the case, as NMAX is defined as the maximum number of scalar sums that can be
|
|
performed on the maximum possible inputs before overflow
|
|
*/
|
|
|
|
|
|
/* In AVX2-land, this trip through GPRs will probably be unavoidable, as there's no cheap and easy
|
|
* conversion from 64 bit integer to 32 bit (needed for the inexpensive modulus with a constant).
|
|
* This casting to 32 bit is cheap through GPRs (just register aliasing). See above for exactly
|
|
* what the compiler is doing to avoid integer divisions. */
|
|
adler0 = partial_hsum256(vs1) % BASE;
|
|
adler1 = hsum256(vs2) % BASE;
|
|
}
|
|
|
|
adler = adler0 | (adler1 << 16);
|
|
|
|
if (len) {
|
|
goto rem_peel;
|
|
}
|
|
|
|
return adler;
|
|
}
|
|
|
|
Z_INTERNAL uint32_t adler32_avx2(uint32_t adler, const uint8_t *src, size_t len) {
|
|
return adler32_fold_copy_impl(adler, NULL, src, len, 0);
|
|
}
|
|
|
|
Z_INTERNAL uint32_t adler32_fold_copy_avx2(uint32_t adler, uint8_t *dst, const uint8_t *src, size_t len) {
|
|
return adler32_fold_copy_impl(adler, dst, src, len, 1);
|
|
}
|
|
|
|
#endif
|