mirror of
https://github.com/opencv/opencv.git
synced 2024-12-27 11:21:02 +08:00
0de26fd78e
Zlib-ng is zlib replacement with optimizations for "next generation" systems. Its optimization may benifits image library decode and encode speed such as libpng. In our tests, if using zlib-ng and libpng combination on a x86_64 machine with AVX2, the time of `imdecode` amd `imencode` will drop 20% approximately. This patch enables zlib-ng's optimization if `CV_DISABLE_OPTIMIZATION` is OFF. Since Zlib-ng can dispatch intrinsics on the fly, port work is much easier. Related discussion: https://github.com/opencv/opencv/issues/22573
157 lines
5.2 KiB
C
157 lines
5.2 KiB
C
/* adler32_ssse3.c -- compute the Adler-32 checksum of a data stream
|
|
* Copyright (C) 1995-2011 Mark Adler
|
|
* Authors:
|
|
* Adam Stylinski <kungfujesus06@gmail.com>
|
|
* Brian Bockelman <bockelman@gmail.com>
|
|
* For conditions of distribution and use, see copyright notice in zlib.h
|
|
*/
|
|
|
|
#include "../../zbuild.h"
|
|
#include "../../adler32_p.h"
|
|
#include "adler32_ssse3_p.h"
|
|
|
|
#ifdef X86_SSSE3
|
|
|
|
#include <immintrin.h>
|
|
|
|
Z_INTERNAL uint32_t adler32_ssse3(uint32_t adler, const uint8_t *buf, size_t len) {
|
|
uint32_t sum2;
|
|
|
|
/* split Adler-32 into component sums */
|
|
sum2 = (adler >> 16) & 0xffff;
|
|
adler &= 0xffff;
|
|
|
|
/* in case user likes doing a byte at a time, keep it fast */
|
|
if (UNLIKELY(len == 1))
|
|
return adler32_len_1(adler, buf, sum2);
|
|
|
|
/* initial Adler-32 value (deferred check for len == 1 speed) */
|
|
if (UNLIKELY(buf == NULL))
|
|
return 1L;
|
|
|
|
/* in case short lengths are provided, keep it somewhat fast */
|
|
if (UNLIKELY(len < 16))
|
|
return adler32_len_16(adler, buf, len, sum2);
|
|
|
|
const __m128i dot2v = _mm_setr_epi8(32, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17);
|
|
const __m128i dot2v_0 = _mm_setr_epi8(16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1);
|
|
const __m128i dot3v = _mm_set1_epi16(1);
|
|
const __m128i zero = _mm_setzero_si128();
|
|
|
|
__m128i vbuf, vs1_0, vs3, vs1, vs2, vs2_0, v_sad_sum1, v_short_sum2, v_short_sum2_0,
|
|
vbuf_0, v_sad_sum2, vsum2, vsum2_0;
|
|
|
|
/* If our buffer is unaligned (likely), make the determination whether
|
|
* or not there's enough of a buffer to consume to make the scalar, aligning
|
|
* additions worthwhile or if it's worth it to just eat the cost of an unaligned
|
|
* load. This is a pretty simple test, just test if 16 - the remainder + len is
|
|
* < 16 */
|
|
size_t max_iters = NMAX;
|
|
size_t rem = (uintptr_t)buf & 15;
|
|
size_t align_offset = 16 - rem;
|
|
size_t k = 0;
|
|
if (rem) {
|
|
if (len < 16 + align_offset) {
|
|
/* Let's eat the cost of this one unaligned load so that
|
|
* we don't completely skip over the vectorization. Doing
|
|
* 16 bytes at a time unaligned is better than 16 + <= 15
|
|
* sums */
|
|
vbuf = _mm_loadu_si128((__m128i*)buf);
|
|
len -= 16;
|
|
buf += 16;
|
|
vs1 = _mm_cvtsi32_si128(adler);
|
|
vs2 = _mm_cvtsi32_si128(sum2);
|
|
vs3 = _mm_setzero_si128();
|
|
vs1_0 = vs1;
|
|
goto unaligned_jmp;
|
|
}
|
|
|
|
for (size_t i = 0; i < align_offset; ++i) {
|
|
adler += *(buf++);
|
|
sum2 += adler;
|
|
}
|
|
|
|
/* lop off the max number of sums based on the scalar sums done
|
|
* above */
|
|
len -= align_offset;
|
|
max_iters -= align_offset;
|
|
}
|
|
|
|
|
|
while (len >= 16) {
|
|
vs1 = _mm_cvtsi32_si128(adler);
|
|
vs2 = _mm_cvtsi32_si128(sum2);
|
|
vs3 = _mm_setzero_si128();
|
|
vs2_0 = _mm_setzero_si128();
|
|
vs1_0 = vs1;
|
|
|
|
k = (len < max_iters ? len : max_iters);
|
|
k -= k % 16;
|
|
len -= k;
|
|
|
|
while (k >= 32) {
|
|
/*
|
|
vs1 = adler + sum(c[i])
|
|
vs2 = sum2 + 16 vs1 + sum( (16-i+1) c[i] )
|
|
*/
|
|
vbuf = _mm_load_si128((__m128i*)buf);
|
|
vbuf_0 = _mm_load_si128((__m128i*)(buf + 16));
|
|
buf += 32;
|
|
k -= 32;
|
|
|
|
v_sad_sum1 = _mm_sad_epu8(vbuf, zero);
|
|
v_sad_sum2 = _mm_sad_epu8(vbuf_0, zero);
|
|
vs1 = _mm_add_epi32(v_sad_sum1, vs1);
|
|
vs3 = _mm_add_epi32(vs1_0, vs3);
|
|
|
|
vs1 = _mm_add_epi32(v_sad_sum2, vs1);
|
|
v_short_sum2 = _mm_maddubs_epi16(vbuf, dot2v);
|
|
vsum2 = _mm_madd_epi16(v_short_sum2, dot3v);
|
|
v_short_sum2_0 = _mm_maddubs_epi16(vbuf_0, dot2v_0);
|
|
vs2 = _mm_add_epi32(vsum2, vs2);
|
|
vsum2_0 = _mm_madd_epi16(v_short_sum2_0, dot3v);
|
|
vs2_0 = _mm_add_epi32(vsum2_0, vs2_0);
|
|
vs1_0 = vs1;
|
|
}
|
|
|
|
vs2 = _mm_add_epi32(vs2_0, vs2);
|
|
vs3 = _mm_slli_epi32(vs3, 5);
|
|
vs2 = _mm_add_epi32(vs3, vs2);
|
|
vs3 = _mm_setzero_si128();
|
|
|
|
while (k >= 16) {
|
|
/*
|
|
vs1 = adler + sum(c[i])
|
|
vs2 = sum2 + 16 vs1 + sum( (16-i+1) c[i] )
|
|
*/
|
|
vbuf = _mm_load_si128((__m128i*)buf);
|
|
buf += 16;
|
|
k -= 16;
|
|
|
|
unaligned_jmp:
|
|
v_sad_sum1 = _mm_sad_epu8(vbuf, zero);
|
|
vs1 = _mm_add_epi32(v_sad_sum1, vs1);
|
|
vs3 = _mm_add_epi32(vs1_0, vs3);
|
|
v_short_sum2 = _mm_maddubs_epi16(vbuf, dot2v_0);
|
|
vsum2 = _mm_madd_epi16(v_short_sum2, dot3v);
|
|
vs2 = _mm_add_epi32(vsum2, vs2);
|
|
vs1_0 = vs1;
|
|
}
|
|
|
|
vs3 = _mm_slli_epi32(vs3, 4);
|
|
vs2 = _mm_add_epi32(vs2, vs3);
|
|
|
|
/* We don't actually need to do a full horizontal sum, since psadbw is actually doing
|
|
* a partial reduction sum implicitly and only summing to integers in vector positions
|
|
* 0 and 2. This saves us some contention on the shuffle port(s) */
|
|
adler = partial_hsum(vs1) % BASE;
|
|
sum2 = hsum(vs2) % BASE;
|
|
max_iters = NMAX;
|
|
}
|
|
|
|
/* Process tail (len < 16). */
|
|
return adler32_len_16(adler, buf, len, sum2);
|
|
}
|
|
|
|
#endif
|