opencv/samples/dnn/common.py
Gursimar Singh efbe580ff3
Merge pull request #26486 from gursimarsingh:object_detection_engine_update
Code Fixes and changed post processing based on models.yml in Object Detection Sample #26486

## Major Changes

1. Changes to add findModel support for config file in models like yolov4, yolov4-tiny, yolov3, ssd_caffe, tiny-yolo-voc, ssd_tf and faster_rcnn_tf.
2. Added new model and config download links for ssd_caffe, as previous links were not working.
3. Switched to DNN ENGINE_CLASSIC for non-cpu convig as new engine does not support it.
4. Fixes in python sample related to yolov5 usage.

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2024-12-02 09:05:25 +03:00

193 lines
8.8 KiB
Python

import sys
import os
import cv2 as cv
def add_argument(zoo, parser, name, help, required=False, default=None, type=None, action=None, nargs=None, alias=None):
if alias is not None:
modelName = alias
elif len(sys.argv) > 1:
modelName = sys.argv[1]
else:
return
if os.path.isfile(zoo):
fs = cv.FileStorage(zoo, cv.FILE_STORAGE_READ)
node = fs.getNode(modelName)
if not node.empty():
value = node.getNode(name)
if "sha1" in name:
prefix = name.replace("sha1", "")
value = node.getNode(prefix + "load_info")
if prefix == "config_":
value = value.getNode("sha1")
else:
value = value.getNode(name)
if "download_sha" in name:
prefix = name.replace("download_sha", "")
value = node.getNode(prefix + "load_info")
value = value.getNode(name)
if not value.empty():
if value.isReal():
default = value.real()
elif value.isString():
default = value.string()
elif value.isInt():
default = int(value.real())
elif value.isSeq():
default = []
for i in range(value.size()):
v = value.at(i)
if v.isInt():
default.append(int(v.real()))
elif v.isReal():
default.append(v.real())
else:
print('Unexpected value format')
exit(0)
else:
print('Unexpected field format')
exit(0)
required = False
if action == 'store_true':
default = 1 if default == 'true' else (0 if default == 'false' else default)
assert(default is None or default == 0 or default == 1)
parser.add_argument('--' + name, required=required, help=help, default=bool(default),
action=action)
else:
parser.add_argument('--' + name, required=required, help=help, default=default,
action=action, nargs=nargs, type=type)
def add_preproc_args(zoo, parser, sample, alias=None, prefix=""):
aliases = []
if os.path.isfile(zoo):
fs = cv.FileStorage(zoo, cv.FILE_STORAGE_READ)
root = fs.root()
for name in root.keys():
model = root.getNode(name)
if model.getNode('sample').string() == sample:
aliases.append(name)
parser.add_argument(prefix+'alias', nargs='?', choices=aliases,
help='An alias name of model to extract preprocessing parameters from models.yml file.')
add_argument(zoo, parser, prefix+'model',
help='Path to a binary file of model contains trained weights. '
'It could be a file with extensions .caffemodel (Caffe), '
'.pb (TensorFlow), .weights (Darknet), .bin (OpenVINO)', alias=alias)
add_argument(zoo, parser, prefix+'config',
help='Path to a text file of model contains network configuration. '
'It could be a file with extensions .prototxt (Caffe), .pbtxt or .config (TensorFlow), .cfg (Darknet), .xml (OpenVINO)', alias=alias)
add_argument(zoo, parser, prefix+'mean', nargs='+', type=float, default=[0, 0, 0],
help='Preprocess input image by subtracting mean values. '
'Mean values should be in BGR order.', alias=alias)
add_argument(zoo, parser, prefix+'std', nargs='+', type=float, default=[0, 0, 0],
help='Preprocess input image by dividing on a standard deviation.', alias=alias)
add_argument(zoo, parser, prefix+'scale', type=float, default=1.0,
help='Preprocess input image by multiplying on a scale factor.', alias=alias)
add_argument(zoo, parser, prefix+'width', type=int,
help='Preprocess input image by resizing to a specific width.', alias=alias)
add_argument(zoo, parser, prefix+'height', type=int,
help='Preprocess input image by resizing to a specific height.', alias=alias)
add_argument(zoo, parser, prefix+'rgb', action='store_true',
help='Indicate that model works with RGB input images instead BGR ones.', alias=alias)
add_argument(zoo, parser, prefix+'labels',
help='Optional path to a text file with names of labels to label detected objects.', alias=alias)
add_argument(zoo, parser, prefix+'postprocessing', type=str,
help='Post-processing kind depends on model topology.', alias=alias)
add_argument(zoo, parser, prefix+'background_label_id', type=int, default=-1,
help='An index of background class in predictions. If not negative, exclude such class from list of classes.', alias=alias)
add_argument(zoo, parser, prefix+'sha1', type=str,
help='Optional path to hashsum of downloaded model to be loaded from models.yml', alias=alias)
add_argument(zoo, parser, prefix+'config_sha1', type=str,
help='Optional path to hashsum of downloaded config to be loaded from models.yml', alias=alias)
add_argument(zoo, parser, prefix+'download_sha', type=str,
help='Optional path to hashsum of downloaded model to be loaded from models.yml', alias=alias)
def findModel(filename, sha1):
if filename:
if os.path.exists(filename):
return filename
fpath = cv.samples.findFile(filename, False)
if fpath:
return fpath
if os.getenv('OPENCV_DOWNLOAD_CACHE_DIR') is None:
print('[WARN] Please specify a path to model download directory in OPENCV_DOWNLOAD_CACHE_DIR environment variable.')
return findFile(filename)
if os.path.exists(os.path.join(os.environ['OPENCV_DOWNLOAD_CACHE_DIR'], sha1, filename)):
return os.path.join(os.environ['OPENCV_DOWNLOAD_CACHE_DIR'], sha1, filename)
if os.path.exists(os.path.join(os.environ['OPENCV_DOWNLOAD_CACHE_DIR'], filename)):
return os.path.join(os.environ['OPENCV_DOWNLOAD_CACHE_DIR'], filename)
raise FileNotFoundError('File ' + filename + ' not found! Please specify a path to '
'model download directory in OPENCV_DOWNLOAD_CACHE_DIR '
'environment variable or pass a full path to ' + filename)
def findFile(filename):
if filename:
if os.path.exists(filename):
return filename
fpath = cv.samples.findFile(filename, False)
if fpath:
return fpath
if os.getenv('OPENCV_SAMPLES_DATA_PATH') is None:
print('[WARN] Please specify a path to `/samples/data` in OPENCV_SAMPLES_DATA_PATH environment variable.')
exit(0)
if os.path.exists(os.path.join(os.environ['OPENCV_SAMPLES_DATA_PATH'], filename)):
return os.path.join(os.environ['OPENCV_SAMPLES_DATA_PATH'], filename)
for path in ['OPENCV_DNN_TEST_DATA_PATH', 'OPENCV_TEST_DATA_PATH', 'OPENCV_SAMPLES_DATA_PATH']:
try:
extraPath = os.environ[path]
absPath = os.path.join(extraPath, 'dnn', filename)
if os.path.exists(absPath):
return absPath
except KeyError:
pass
raise FileNotFoundError(
'File ' + filename + ' not found! Please specify the path to '
'/opencv/samples/data in the OPENCV_SAMPLES_DATA_PATH environment variable, '
'or specify the path to opencv_extra/testdata in the OPENCV_DNN_TEST_DATA_PATH environment variable, '
'or specify the path to the model download cache directory in the OPENCV_DOWNLOAD_CACHE_DIR environment variable, '
'or pass the full path to ' + filename + '.'
)
def get_backend_id(backend_name):
backend_ids = {
"default": cv.dnn.DNN_BACKEND_DEFAULT,
"openvino": cv.dnn.DNN_BACKEND_INFERENCE_ENGINE,
"opencv": cv.dnn.DNN_BACKEND_OPENCV,
"vkcom": cv.dnn.DNN_BACKEND_VKCOM,
"cuda": cv.dnn.DNN_BACKEND_CUDA
}
if backend_name not in backend_ids:
raise ValueError(f"Invalid backend name: {backend_name}")
return backend_ids[backend_name]
def get_target_id(target_name):
target_ids = {
"cpu": cv.dnn.DNN_TARGET_CPU,
"opencl": cv.dnn.DNN_TARGET_OPENCL,
"opencl_fp16": cv.dnn.DNN_TARGET_OPENCL_FP16,
"ncs2_vpu": cv.dnn.DNN_TARGET_MYRIAD,
"hddl_vpu": cv.dnn.DNN_TARGET_HDDL,
"vulkan": cv.dnn.DNN_TARGET_VULKAN,
"cuda": cv.dnn.DNN_TARGET_CUDA,
"cuda_fp16": cv.dnn.DNN_TARGET_CUDA_FP16
}
if target_name not in target_ids:
raise ValueError(f"Invalid target name: {target_name}")
return target_ids[target_name]