opencv/modules/contrib/src/retina.cpp
2011-10-03 11:00:28 +00:00

438 lines
22 KiB
C++

/*#******************************************************************************
** IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
**
** By downloading, copying, installing or using the software you agree to this license.
** If you do not agree to this license, do not download, install,
** copy or use the software.
**
**
** HVStools : interfaces allowing OpenCV users to integrate Human Vision System models. Presented models originate from Jeanny Herault's original research and have been reused and adapted by the author&collaborators for computed vision applications since his thesis with Alice Caplier at Gipsa-Lab.
** Use: extract still images & image sequences features, from contours details to motion spatio-temporal features, etc. for high level visual scene analysis. Also contribute to image enhancement/compression such as tone mapping.
**
** Maintainers : Listic lab (code author current affiliation & applications) and Gipsa Lab (original research origins & applications)
**
** Creation - enhancement process 2007-2011
** Author: Alexandre Benoit (benoit.alexandre.vision@gmail.com), LISTIC lab, Annecy le vieux, France
**
** Theses algorithm have been developped by Alexandre BENOIT since his thesis with Alice Caplier at Gipsa-Lab (www.gipsa-lab.inpg.fr) and the research he pursues at LISTIC Lab (www.listic.univ-savoie.fr).
** Refer to the following research paper for more information:
** Benoit A., Caplier A., Durette B., Herault, J., "USING HUMAN VISUAL SYSTEM MODELING FOR BIO-INSPIRED LOW LEVEL IMAGE PROCESSING", Elsevier, Computer Vision and Image Understanding 114 (2010), pp. 758-773, DOI: http://dx.doi.org/10.1016/j.cviu.2010.01.011
** This work have been carried out thanks to Jeanny Herault who's research and great discussions are the basis of all this work, please take a look at his book:
** Vision: Images, Signals and Neural Networks: Models of Neural Processing in Visual Perception (Progress in Neural Processing),By: Jeanny Herault, ISBN: 9814273686. WAPI (Tower ID): 113266891.
**
** The retina filter includes the research contributions of phd/research collegues from which code has been redrawn by the author :
** _take a look at the retinacolor.hpp module to discover Brice Chaix de Lavarene color mosaicing/demosaicing and the reference paper:
** ====> B. Chaix de Lavarene, D. Alleysson, B. Durette, J. Herault (2007). "Efficient demosaicing through recursive filtering", IEEE International Conference on Image Processing ICIP 2007
** _take a look at imagelogpolprojection.hpp to discover retina spatial log sampling which originates from Barthelemy Durette phd with Jeanny Herault. A Retina / V1 cortex projection is also proposed and originates from Jeanny's discussions.
** ====> more informations in the above cited Jeanny Heraults's book.
**
** License Agreement
** For Open Source Computer Vision Library
**
** Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
** Copyright (C) 2008-2011, Willow Garage Inc., all rights reserved.
**
** For Human Visual System tools (hvstools)
** Copyright (C) 2007-2011, LISTIC Lab, Annecy le Vieux and GIPSA Lab, Grenoble, France, all rights reserved.
**
** Third party copyrights are property of their respective owners.
**
** Redistribution and use in source and binary forms, with or without modification,
** are permitted provided that the following conditions are met:
**
** * Redistributions of source code must retain the above copyright notice,
** this list of conditions and the following disclaimer.
**
** * Redistributions in binary form must reproduce the above copyright notice,
** this list of conditions and the following disclaimer in the documentation
** and/or other materials provided with the distribution.
**
** * The name of the copyright holders may not be used to endorse or promote products
** derived from this software without specific prior written permission.
**
** This software is provided by the copyright holders and contributors "as is" and
** any express or implied warranties, including, but not limited to, the implied
** warranties of merchantability and fitness for a particular purpose are disclaimed.
** In no event shall the Intel Corporation or contributors be liable for any direct,
** indirect, incidental, special, exemplary, or consequential damages
** (including, but not limited to, procurement of substitute goods or services;
** loss of use, data, or profits; or business interruption) however caused
** and on any theory of liability, whether in contract, strict liability,
** or tort (including negligence or otherwise) arising in any way out of
** the use of this software, even if advised of the possibility of such damage.
*******************************************************************************/
/*
* Retina.cpp
*
* Created on: Jul 19, 2011
* Author: Alexandre Benoit
*/
#include "precomp.hpp"
#include "retinafilter.hpp"
#include <iostream>
namespace cv
{
Retina::Retina(const std::string parametersSaveFile, const cv::Size inputSize)
{
_retinaFilter = 0;
_init(parametersSaveFile, inputSize, true, RETINA_COLOR_BAYER, false);
}
Retina::Retina(const std::string parametersSaveFile, const cv::Size inputSize, const bool colorMode, RETINA_COLORSAMPLINGMETHOD colorSamplingMethod, const bool useRetinaLogSampling, const double reductionFactor, const double samplingStrenght)
{
_retinaFilter = 0;
_init(parametersSaveFile, inputSize, colorMode, colorSamplingMethod, useRetinaLogSampling, reductionFactor, samplingStrenght);
};
Retina::~Retina()
{
if (_retinaFilter)
delete _retinaFilter;
}
void Retina::setColorSaturation(const bool saturateColors, const float colorSaturationValue)
{
_retinaFilter->setColorSaturation(saturateColors, colorSaturationValue);
}
void Retina::setup(std::string retinaParameterFile, const bool applyDefaultSetupOnFailure)
{
// open specified parameters file
std::cout<<"Retina::setup: setting up retina from parameter file : "<<retinaParameterFile<<std::endl;
// very UGLY cases processing... to be updated...
try
{
// rewriting a new parameter file...
if (_parametersSaveFile.isOpened())
_parametersSaveFile.release();
_parametersSaveFile.open(_parametersSaveFileName, cv::FileStorage::WRITE);
// opening retinaParameterFile in read mode
cv::FileStorage fs(retinaParameterFile, cv::FileStorage::READ);
// read parameters file if it exists or apply default setup if asked for
if (!fs.isOpened())
{
std::cout<<"Retina::setup: provided parameters file could not be open... skeeping configuration"<<std::endl;
return;
// implicit else case : retinaParameterFile could be open (it exists at least)
}
// preparing parameter setup
bool colorMode, normaliseOutput;
float photoreceptorsLocalAdaptationSensitivity, photoreceptorsTemporalConstant, photoreceptorsSpatialConstant, horizontalCellsGain, hcellsTemporalConstant, hcellsSpatialConstant, ganglionCellsSensitivity;
// OPL and Parvo init first
cv::FileNode rootFn = fs.root(), currFn=rootFn["OPLandIPLparvo"];
currFn["colorMode"]>>colorMode;
currFn["normaliseOutput"]>>normaliseOutput;
currFn["photoreceptorsLocalAdaptationSensitivity"]>>photoreceptorsLocalAdaptationSensitivity;
currFn["photoreceptorsTemporalConstant"]>>photoreceptorsTemporalConstant;
currFn["photoreceptorsSpatialConstant"]>>photoreceptorsSpatialConstant;
currFn["horizontalCellsGain"]>>horizontalCellsGain;
currFn["hcellsTemporalConstant"]>>hcellsTemporalConstant;
currFn["hcellsSpatialConstant"]>>hcellsSpatialConstant;
currFn["ganglionCellsSensitivity"]>>ganglionCellsSensitivity;
setupOPLandIPLParvoChannel(colorMode, normaliseOutput, photoreceptorsLocalAdaptationSensitivity, photoreceptorsTemporalConstant, photoreceptorsSpatialConstant, horizontalCellsGain, hcellsTemporalConstant, hcellsSpatialConstant, ganglionCellsSensitivity);
// init retina IPL magno setup
currFn=rootFn["IPLmagno"];
currFn["normaliseOutput"]>>normaliseOutput;
float parasolCells_beta, parasolCells_tau, parasolCells_k, amacrinCellsTemporalCutFrequency, V0CompressionParameter, localAdaptintegration_tau, localAdaptintegration_k;
currFn["parasolCells_beta"]>>parasolCells_beta;
currFn["parasolCells_tau"]>>parasolCells_tau;
currFn["parasolCells_k"]>>parasolCells_k;
currFn["amacrinCellsTemporalCutFrequency"]>>amacrinCellsTemporalCutFrequency;
currFn["V0CompressionParameter"]>>V0CompressionParameter;
currFn["localAdaptintegration_tau"]>>localAdaptintegration_tau;
currFn["localAdaptintegration_k"]>>localAdaptintegration_k;
setupIPLMagnoChannel(normaliseOutput, parasolCells_beta, parasolCells_tau, parasolCells_k, amacrinCellsTemporalCutFrequency,
V0CompressionParameter, localAdaptintegration_tau, localAdaptintegration_k);
}catch(Exception &e)
{
std::cout<<"Retina::setup: resetting retina with default parameters"<<std::endl;
if (applyDefaultSetupOnFailure)
{
setupOPLandIPLParvoChannel();
setupIPLMagnoChannel();
}
std::cout<<"Retina::setup: wrong/unappropriate xml parameter file : error report :`n=>"<<e.what()<<std::endl;
std::cout<<"=> keeping current parameters"<<std::endl;
}
_parametersSaveFile.release(); // close file after setup
// report current configuration
std::cout<<printSetup()<<std::endl;
}
const std::string Retina::printSetup()
{
std::stringstream outmessage;
try
{
cv::FileStorage parametersReader(_parametersSaveFileName, cv::FileStorage::READ);
if (!parametersReader.isOpened())
{
outmessage<<"Retina is not already settled up";
}
else
{
// accessing xml parameters nodes
cv::FileNode rootFn = parametersReader.root();
cv::FileNode currFn=rootFn["OPLandIPLparvo"];
// displaying OPL and IPL parvo setup
outmessage<<"Current Retina instance setup :"
<<"\nOPLandIPLparvo"<<"{"
<< "\n==> colorMode : " << currFn["colorMode"].operator int()
<< "\n==> normalizeParvoOutput :" << currFn["normaliseOutput"].operator int()
<< "\n==> photoreceptorsLocalAdaptationSensitivity : " << currFn["photoreceptorsLocalAdaptationSensitivity"].operator float()
<< "\n==> photoreceptorsTemporalConstant : " << currFn["photoreceptorsTemporalConstant"].operator float()
<< "\n==> photoreceptorsSpatialConstant : " << currFn["photoreceptorsSpatialConstant"].operator float()
<< "\n==> horizontalCellsGain : " << currFn["horizontalCellsGain"].operator float()
<< "\n==> hcellsTemporalConstant : " << currFn["hcellsTemporalConstant"].operator float()
<< "\n==> hcellsSpatialConstant : " << currFn["hcellsSpatialConstant"].operator float()
<< "\n==> parvoGanglionCellsSensitivity : " << currFn["ganglionCellsSensitivity"].operator float()
<<"}\n";
// displaying IPL magno setup
currFn=rootFn["IPLmagno"];
outmessage<<"Current Retina instance setup :"
<<"\nIPLmagno"<<"{"
<< "\n==> normaliseOutput : " << currFn["normaliseOutput"].operator int()
<< "\n==> parasolCells_beta : " << currFn["parasolCells_beta"].operator float()
<< "\n==> parasolCells_tau : " << currFn["parasolCells_tau"].operator float()
<< "\n==> parasolCells_k : " << currFn["parasolCells_k"].operator float()
<< "\n==> amacrinCellsTemporalCutFrequency : " << currFn["amacrinCellsTemporalCutFrequency"].operator float()
<< "\n==> V0CompressionParameter : " << currFn["V0CompressionParameter"].operator float()
<< "\n==> localAdaptintegration_tau : " << currFn["localAdaptintegration_tau"].operator float()
<< "\n==> localAdaptintegration_k : " << currFn["localAdaptintegration_k"].operator float()
<<"}";
}
}catch(cv::Exception &e)
{
outmessage<<"Error reading parameters configuration file : "<<e.what()<<std::endl;
}
return outmessage.str();
}
void Retina::setupOPLandIPLParvoChannel(const bool colorMode, const bool normaliseOutput, const float photoreceptorsLocalAdaptationSensitivity, const float photoreceptorsTemporalConstant, const float photoreceptorsSpatialConstant, const float horizontalCellsGain, const float HcellsTemporalConstant, const float HcellsSpatialConstant, const float ganglionCellsSensitivity)
{
// parameters setup (default setup)
_retinaFilter->setColorMode(colorMode);
_retinaFilter->setPhotoreceptorsLocalAdaptationSensitivity(photoreceptorsLocalAdaptationSensitivity);
_retinaFilter->setOPLandParvoParameters(0, photoreceptorsTemporalConstant, photoreceptorsSpatialConstant, horizontalCellsGain, HcellsTemporalConstant, HcellsSpatialConstant, ganglionCellsSensitivity);
_retinaFilter->setParvoGanglionCellsLocalAdaptationSensitivity(ganglionCellsSensitivity);
_retinaFilter->activateNormalizeParvoOutput_0_maxOutputValue(normaliseOutput);
// save parameters in the xml parameters tree... if parameters file is already open
if (!_parametersSaveFile.isOpened())
return;
_parametersSaveFile<<"OPLandIPLparvo"<<"{";
_parametersSaveFile << "colorMode" << colorMode;
_parametersSaveFile << "normaliseOutput" << normaliseOutput;
_parametersSaveFile << "photoreceptorsLocalAdaptationSensitivity" << photoreceptorsLocalAdaptationSensitivity;
_parametersSaveFile << "photoreceptorsTemporalConstant" << photoreceptorsTemporalConstant;
_parametersSaveFile << "photoreceptorsSpatialConstant" << photoreceptorsSpatialConstant;
_parametersSaveFile << "horizontalCellsGain" << horizontalCellsGain;
_parametersSaveFile << "hcellsTemporalConstant" << HcellsTemporalConstant;
_parametersSaveFile << "hcellsSpatialConstant" << HcellsSpatialConstant;
_parametersSaveFile << "ganglionCellsSensitivity" << ganglionCellsSensitivity;
_parametersSaveFile << "}";
}
void Retina::setupIPLMagnoChannel(const bool normaliseOutput, const float parasolCells_beta, const float parasolCells_tau, const float parasolCells_k, const float amacrinCellsTemporalCutFrequency, const float V0CompressionParameter, const float localAdaptintegration_tau, const float localAdaptintegration_k)
{
_retinaFilter->setMagnoCoefficientsTable(parasolCells_beta, parasolCells_tau, parasolCells_k, amacrinCellsTemporalCutFrequency, V0CompressionParameter, localAdaptintegration_tau, localAdaptintegration_k);
_retinaFilter->activateNormalizeMagnoOutput_0_maxOutputValue(normaliseOutput);
// save parameters in the xml parameters tree... if parameters file is already open
if (!_parametersSaveFile.isOpened())
return;
_parametersSaveFile<<"IPLmagno"<<"{";
_parametersSaveFile << "normaliseOutput" << normaliseOutput;
_parametersSaveFile << "parasolCells_beta" << parasolCells_beta;
_parametersSaveFile << "parasolCells_tau" << parasolCells_tau;
_parametersSaveFile << "parasolCells_k" << parasolCells_k;
_parametersSaveFile << "amacrinCellsTemporalCutFrequency" << amacrinCellsTemporalCutFrequency;
_parametersSaveFile << "V0CompressionParameter" << V0CompressionParameter;
_parametersSaveFile << "localAdaptintegration_tau" << localAdaptintegration_tau;
_parametersSaveFile << "localAdaptintegration_k" << localAdaptintegration_k;
_parametersSaveFile<<"}";
}
void Retina::run(const cv::Mat &inputMatToConvert)
{
// first convert input image to the compatible format : std::valarray<float>
const bool colorMode = _convertCvMat2ValarrayBuffer(inputMatToConvert, _inputBuffer);
// process the retina
if (!_retinaFilter->runFilter(_inputBuffer, colorMode, false, colorMode, false))
throw cv::Exception(-1, "Retina cannot be applied, wrong input buffer size", "Retina::run", "Retina.h", 0);
}
void Retina::getParvo(cv::Mat &retinaOutput_parvo)
{
if (_retinaFilter->getColorMode())
{
// reallocate output buffer (if necessary)
_convertValarrayBuffer2cvMat(_retinaFilter->getColorOutput(), _retinaFilter->getOutputNBrows(), _retinaFilter->getOutputNBcolumns(), true, retinaOutput_parvo);
}else
{
// reallocate output buffer (if necessary)
_convertValarrayBuffer2cvMat(_retinaFilter->getContours(), _retinaFilter->getOutputNBrows(), _retinaFilter->getOutputNBcolumns(), false, retinaOutput_parvo);
}
//retinaOutput_parvo/=255.0;
}
void Retina::getMagno(cv::Mat &retinaOutput_magno)
{
// reallocate output buffer (if necessary)
_convertValarrayBuffer2cvMat(_retinaFilter->getMovingContours(), _retinaFilter->getOutputNBrows(), _retinaFilter->getOutputNBcolumns(), false, retinaOutput_magno);
//retinaOutput_magno/=255.0;
}
// original API level data accessors
void Retina::getMagno(std::valarray<float> &){_retinaFilter->getMovingContours();}
void Retina::getParvo(std::valarray<float> &){_retinaFilter->getContours();}
// private method called by constructirs
void Retina::_init(const std::string parametersSaveFile, const cv::Size inputSize, const bool colorMode, RETINA_COLORSAMPLINGMETHOD colorSamplingMethod, const bool useRetinaLogSampling, const double reductionFactor, const double samplingStrenght)
{
_parametersSaveFileName = parametersSaveFile;
// basic error check
if (inputSize.height*inputSize.width <= 0)
throw cv::Exception(-1, "Bad retina size setup : size height and with must be superior to zero", "Retina::setup", "Retina.h", 0);
unsigned int nbPixels=inputSize.height*inputSize.width;
// resize buffers if size does not match
_inputBuffer.resize(nbPixels*3); // buffer supports gray images but also 3 channels color buffers... (larger is better...)
// allocate the retina model
if (_retinaFilter)
delete _retinaFilter;
_retinaFilter = new RetinaFilter(inputSize.height, inputSize.width, colorMode, colorSamplingMethod, useRetinaLogSampling, reductionFactor, samplingStrenght);
// prepare the parameter XML tree
_parametersSaveFile.open(parametersSaveFile, cv::FileStorage::WRITE );
_parametersSaveFile<<"InputSize"<<"{";
_parametersSaveFile<<"height"<<inputSize.height;
_parametersSaveFile<<"width"<<inputSize.width;
_parametersSaveFile<<"}";
// clear all retina buffers
// apply default setup
setupOPLandIPLParvoChannel();
setupIPLMagnoChannel();
// write current parameters to params file
_parametersSaveFile.release();
// init retina
_retinaFilter->clearAllBuffers();
// report current configuration
std::cout<<printSetup()<<std::endl;
}
void Retina::_convertValarrayBuffer2cvMat(const std::valarray<float> &grayMatrixToConvert, const unsigned int nbRows, const unsigned int nbColumns, const bool colorMode, cv::Mat &outBuffer)
{
// fill output buffer with the valarray buffer
const float *valarrayPTR=get_data(grayMatrixToConvert);
if (!colorMode)
{
outBuffer.create(cv::Size(nbColumns, nbRows), CV_8U);
for (unsigned int i=0;i<nbRows;++i)
{
for (unsigned int j=0;j<nbColumns;++j)
{
cv::Point2d pixel(j,i);
outBuffer.at<unsigned char>(pixel)=(unsigned char)*(valarrayPTR++);
}
}
}else
{
const unsigned int doubleNBpixels=_retinaFilter->getOutputNBpixels()*2;
outBuffer.create(cv::Size(nbColumns, nbRows), CV_8UC3);
for (unsigned int i=0;i<nbRows;++i)
{
for (unsigned int j=0;j<nbColumns;++j,++valarrayPTR)
{
cv::Point2d pixel(j,i);
cv::Vec3b pixelValues;
pixelValues[2]=(unsigned char)*(valarrayPTR);
pixelValues[1]=(unsigned char)*(valarrayPTR+_retinaFilter->getOutputNBpixels());
pixelValues[0]=(unsigned char)*(valarrayPTR+doubleNBpixels);
outBuffer.at<cv::Vec3b>(pixel)=pixelValues;
}
}
}
}
const bool Retina::_convertCvMat2ValarrayBuffer(const cv::Mat inputMatToConvert, std::valarray<float> &outputValarrayMatrix)
{
// first check input consistency
if (inputMatToConvert.empty())
throw cv::Exception(-1, "Retina cannot be applied, input buffer is empty", "Retina::run", "Retina.h", 0);
// retreive color mode from image input
int imageNumberOfChannels = inputMatToConvert.channels();
// convert to float AND fill the valarray buffer
typedef float T; // define here the target pixel format, here, float
const int dsttype = DataType<T>::depth; // output buffer is float format
if(imageNumberOfChannels==4)
{
// create a cv::Mat table (for RGBA planes)
cv::Mat planes[] =
{
cv::Mat(inputMatToConvert.size(), dsttype, &outputValarrayMatrix[_retinaFilter->getInputNBpixels()*2]),
cv::Mat(inputMatToConvert.size(), dsttype, &outputValarrayMatrix[_retinaFilter->getInputNBpixels()]),
cv::Mat(inputMatToConvert.size(), dsttype, &outputValarrayMatrix[0]),
cv::Mat(inputMatToConvert.size(), dsttype) // last channel (alpha) does not point on the valarray (not usefull in our case)
};
// split color cv::Mat in 4 planes... it fills valarray directely
cv::split(cv::Mat_<Vec<T, 4> >(inputMatToConvert), planes);
}else if (imageNumberOfChannels==3)
{
// create a cv::Mat table (for RGB planes)
cv::Mat planes[] =
{
cv::Mat(inputMatToConvert.size(), dsttype, &outputValarrayMatrix[_retinaFilter->getInputNBpixels()*2]),
cv::Mat(inputMatToConvert.size(), dsttype, &outputValarrayMatrix[_retinaFilter->getInputNBpixels()]),
cv::Mat(inputMatToConvert.size(), dsttype, &outputValarrayMatrix[0])
};
// split color cv::Mat in 3 planes... it fills valarray directely
cv::split(cv::Mat_<Vec<T, 3> >(inputMatToConvert), planes);
}else if(imageNumberOfChannels==1)
{
// create a cv::Mat header for the valarray
cv::Mat dst(inputMatToConvert.size(), dsttype, &outputValarrayMatrix[0]);
inputMatToConvert.convertTo(dst, dsttype);
}
else
CV_Error(CV_StsUnsupportedFormat, "input image must be single channel (gray levels), bgr format (color) or bgra (color with transparency which won't be considered");
return imageNumberOfChannels>1; // return bool : false for gray level image processing, true for color mode
}
void Retina::clearBuffers() {_retinaFilter->clearAllBuffers();}
void Retina::activateMovingContoursProcessing(const bool activate){_retinaFilter->activateMovingContoursProcessing(activate);}
void Retina::activateContoursProcessing(const bool activate){_retinaFilter->activateMovingContoursProcessing(activate);}
} // end of namespace cv