mirror of
https://github.com/opencv/opencv.git
synced 2025-01-09 21:27:59 +08:00
5ff1fababc
ml: refactored tests * use parametrized tests where appropriate * use stable theRNG in most tests * use modern style with EXPECT_/ASSERT_ checks
55 lines
1.3 KiB
C++
55 lines
1.3 KiB
C++
// This file is part of OpenCV project.
|
|
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
|
// of this distribution and at http://opencv.org/license.html.
|
|
|
|
#include "test_precomp.hpp"
|
|
|
|
namespace opencv_test { namespace {
|
|
|
|
TEST(ML_RTrees, getVotes)
|
|
{
|
|
int n = 12;
|
|
int count, i;
|
|
int label_size = 3;
|
|
int predicted_class = 0;
|
|
int max_votes = -1;
|
|
int val;
|
|
// RTrees for classification
|
|
Ptr<ml::RTrees> rt = cv::ml::RTrees::create();
|
|
|
|
//data
|
|
Mat data(n, 4, CV_32F);
|
|
randu(data, 0, 10);
|
|
|
|
//labels
|
|
Mat labels = (Mat_<int>(n,1) << 0,0,0,0, 1,1,1,1, 2,2,2,2);
|
|
|
|
rt->train(data, ml::ROW_SAMPLE, labels);
|
|
|
|
//run function
|
|
Mat test(1, 4, CV_32F);
|
|
Mat result;
|
|
randu(test, 0, 10);
|
|
rt->getVotes(test, result, 0);
|
|
|
|
//count vote amount and find highest vote
|
|
count = 0;
|
|
const int* result_row = result.ptr<int>(1);
|
|
for( i = 0; i < label_size; i++ )
|
|
{
|
|
val = result_row[i];
|
|
//predicted_class = max_votes < val? i;
|
|
if( max_votes < val )
|
|
{
|
|
max_votes = val;
|
|
predicted_class = i;
|
|
}
|
|
count += val;
|
|
}
|
|
|
|
EXPECT_EQ(count, (int)rt->getRoots().size());
|
|
EXPECT_EQ(result.at<float>(0, predicted_class), rt->predict(test));
|
|
}
|
|
|
|
}} // namespace
|