mirror of
https://github.com/opencv/opencv.git
synced 2024-12-21 05:28:01 +08:00
240 lines
9.2 KiB
C++
240 lines
9.2 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#include "exposure_compensate.hpp"
|
|
#include "util.hpp"
|
|
|
|
using namespace std;
|
|
using namespace cv;
|
|
using namespace cv::gpu;
|
|
|
|
|
|
Ptr<ExposureCompensator> ExposureCompensator::createDefault(int type)
|
|
{
|
|
if (type == NO)
|
|
return new NoExposureCompensator();
|
|
if (type == GAIN)
|
|
return new GainCompensator();
|
|
if (type == GAIN_BLOCKS)
|
|
return new BlocksGainCompensator();
|
|
CV_Error(CV_StsBadArg, "unsupported exposure compensation method");
|
|
return NULL;
|
|
}
|
|
|
|
|
|
void ExposureCompensator::feed(const vector<Point> &corners, const vector<Mat> &images,
|
|
const vector<Mat> &masks)
|
|
{
|
|
vector<pair<Mat,uchar> > level_masks;
|
|
for (size_t i = 0; i < masks.size(); ++i)
|
|
level_masks.push_back(make_pair(masks[i], 255));
|
|
feed(corners, images, level_masks);
|
|
}
|
|
|
|
|
|
void GainCompensator::feed(const vector<Point> &corners, const vector<Mat> &images,
|
|
const vector<pair<Mat,uchar> > &masks)
|
|
{
|
|
CV_Assert(corners.size() == images.size() && images.size() == masks.size());
|
|
|
|
const int num_images = static_cast<int>(images.size());
|
|
Mat_<int> N(num_images, num_images); N.setTo(0);
|
|
Mat_<double> I(num_images, num_images); I.setTo(0);
|
|
|
|
Rect dst_roi = resultRoi(corners, images);
|
|
Mat subimg1, subimg2;
|
|
Mat_<uchar> submask1, submask2, intersect;
|
|
|
|
for (int i = 0; i < num_images; ++i)
|
|
{
|
|
for (int j = i; j < num_images; ++j)
|
|
{
|
|
Rect roi;
|
|
if (overlapRoi(corners[i], corners[j], images[i].size(), images[j].size(), roi))
|
|
{
|
|
subimg1 = images[i](Rect(roi.tl() - corners[i], roi.br() - corners[i]));
|
|
subimg2 = images[j](Rect(roi.tl() - corners[j], roi.br() - corners[j]));
|
|
|
|
submask1 = masks[i].first(Rect(roi.tl() - corners[i], roi.br() - corners[i]));
|
|
submask2 = masks[j].first(Rect(roi.tl() - corners[j], roi.br() - corners[j]));
|
|
intersect = (submask1 == masks[i].second) & (submask2 == masks[j].second);
|
|
|
|
N(i, j) = N(j, i) = max(1, countNonZero(intersect));
|
|
|
|
double Isum1 = 0, Isum2 = 0;
|
|
for (int y = 0; y < roi.height; ++y)
|
|
{
|
|
const Point3_<uchar>* r1 = subimg1.ptr<Point3_<uchar> >(y);
|
|
const Point3_<uchar>* r2 = subimg2.ptr<Point3_<uchar> >(y);
|
|
for (int x = 0; x < roi.width; ++x)
|
|
{
|
|
if (intersect(y, x))
|
|
{
|
|
Isum1 += sqrt(static_cast<double>(sqr(r1[x].x) + sqr(r1[x].y) + sqr(r1[x].z)));
|
|
Isum2 += sqrt(static_cast<double>(sqr(r2[x].x) + sqr(r2[x].y) + sqr(r2[x].z)));
|
|
}
|
|
}
|
|
}
|
|
I(i, j) = Isum1 / N(i, j);
|
|
I(j, i) = Isum2 / N(i, j);
|
|
}
|
|
}
|
|
}
|
|
|
|
double alpha = 0.01;
|
|
double beta = 100;
|
|
|
|
Mat_<double> A(num_images, num_images); A.setTo(0);
|
|
Mat_<double> b(num_images, 1); b.setTo(0);
|
|
for (int i = 0; i < num_images; ++i)
|
|
{
|
|
for (int j = 0; j < num_images; ++j)
|
|
{
|
|
b(i, 0) += beta * N(i, j);
|
|
A(i, i) += beta * N(i, j);
|
|
if (j == i) continue;
|
|
A(i, i) += 2 * alpha * I(i, j) * I(i, j) * N(i, j);
|
|
A(i, j) -= 2 * alpha * I(i, j) * I(j, i) * N(i, j);
|
|
}
|
|
}
|
|
|
|
solve(A, b, gains_);
|
|
}
|
|
|
|
|
|
void GainCompensator::apply(int index, Point /*corner*/, Mat &image, const Mat &/*mask*/)
|
|
{
|
|
image *= gains_(index, 0);
|
|
}
|
|
|
|
|
|
vector<double> GainCompensator::gains() const
|
|
{
|
|
vector<double> gains_vec(gains_.rows);
|
|
for (int i = 0; i < gains_.rows; ++i)
|
|
gains_vec[i] = gains_(i, 0);
|
|
return gains_vec;
|
|
}
|
|
|
|
|
|
void BlocksGainCompensator::feed(const vector<Point> &corners, const vector<Mat> &images,
|
|
const vector<pair<Mat,uchar> > &masks)
|
|
{
|
|
CV_Assert(corners.size() == images.size() && images.size() == masks.size());
|
|
|
|
const int num_images = static_cast<int>(images.size());
|
|
|
|
vector<Size> bl_per_imgs(num_images);
|
|
vector<Point> block_corners;
|
|
vector<Mat> block_images;
|
|
vector<pair<Mat,uchar> > block_masks;
|
|
|
|
// Construct blocks for gain compensator
|
|
for (int img_idx = 0; img_idx < num_images; ++img_idx)
|
|
{
|
|
Size bl_per_img((images[img_idx].cols + bl_width_ - 1) / bl_width_,
|
|
(images[img_idx].rows + bl_height_ - 1) / bl_height_);
|
|
int bl_width = (images[img_idx].cols + bl_per_img.width - 1) / bl_per_img.width;
|
|
int bl_height = (images[img_idx].rows + bl_per_img.height - 1) / bl_per_img.height;
|
|
bl_per_imgs[img_idx] = bl_per_img;
|
|
for (int by = 0; by < bl_per_img.height; ++by)
|
|
{
|
|
for (int bx = 0; bx < bl_per_img.width; ++bx)
|
|
{
|
|
Point bl_tl(bx * bl_width, by * bl_height);
|
|
Point bl_br(min(bl_tl.x + bl_width, images[img_idx].cols),
|
|
min(bl_tl.y + bl_height, images[img_idx].rows));
|
|
|
|
block_corners.push_back(corners[img_idx] + bl_tl);
|
|
block_images.push_back(images[img_idx](Rect(bl_tl, bl_br)));
|
|
block_masks.push_back(make_pair(masks[img_idx].first(Rect(bl_tl, bl_br)),
|
|
masks[img_idx].second));
|
|
}
|
|
}
|
|
}
|
|
|
|
GainCompensator compensator;
|
|
compensator.feed(block_corners, block_images, block_masks);
|
|
vector<double> gains = compensator.gains();
|
|
gain_maps_.resize(num_images);
|
|
|
|
Mat_<float> ker(1, 3);
|
|
ker(0,0) = 0.25; ker(0,1) = 0.5; ker(0,2) = 0.25;
|
|
|
|
int bl_idx = 0;
|
|
for (int img_idx = 0; img_idx < num_images; ++img_idx)
|
|
{
|
|
Size bl_per_img = bl_per_imgs[img_idx];
|
|
gain_maps_[img_idx].create(bl_per_img);
|
|
|
|
for (int by = 0; by < bl_per_img.height; ++by)
|
|
for (int bx = 0; bx < bl_per_img.width; ++bx, ++bl_idx)
|
|
gain_maps_[img_idx](by, bx) = static_cast<float>(gains[bl_idx]);
|
|
|
|
sepFilter2D(gain_maps_[img_idx], gain_maps_[img_idx], CV_32F, ker, ker);
|
|
sepFilter2D(gain_maps_[img_idx], gain_maps_[img_idx], CV_32F, ker, ker);
|
|
}
|
|
}
|
|
|
|
|
|
void BlocksGainCompensator::apply(int index, Point /*corner*/, Mat &image, const Mat &/*mask*/)
|
|
{
|
|
CV_Assert(image.type() == CV_8UC3);
|
|
|
|
Mat_<float> gain_map;
|
|
if (gain_maps_[index].size() == image.size())
|
|
gain_map = gain_maps_[index];
|
|
else
|
|
resize(gain_maps_[index], gain_map, image.size(), 0, 0, INTER_LINEAR);
|
|
|
|
for (int y = 0; y < image.rows; ++y)
|
|
{
|
|
const float* gain_row = gain_map.ptr<float>(y);
|
|
Point3_<uchar>* row = image.ptr<Point3_<uchar> >(y);
|
|
for (int x = 0; x < image.cols; ++x)
|
|
{
|
|
row[x].x = saturate_cast<uchar>(row[x].x * gain_row[x]);
|
|
row[x].y = saturate_cast<uchar>(row[x].y * gain_row[x]);
|
|
row[x].z = saturate_cast<uchar>(row[x].z * gain_row[x]);
|
|
}
|
|
}
|
|
} |