opencv/samples/cpp/linemod.cpp
Vladislav Vinogradov 0c7663eb3b Merge branch 'master' into gpu-cuda-rename
Conflicts:
	modules/core/include/opencv2/core/cuda.hpp
	modules/cudacodec/src/thread.cpp
	modules/cudacodec/src/thread.hpp
	modules/superres/perf/perf_superres.cpp
	modules/superres/src/btv_l1_cuda.cpp
	modules/superres/src/optical_flow.cpp
	modules/videostab/src/global_motion.cpp
	modules/videostab/src/inpainting.cpp
	samples/cpp/stitching_detailed.cpp
	samples/cpp/videostab.cpp
	samples/gpu/stereo_multi.cpp
2013-09-06 15:44:44 +04:00

705 lines
21 KiB
C++

#include <opencv2/core.hpp>
#include <opencv2/core/utility.hpp>
#include <opencv2/imgproc/imgproc_c.h> // cvFindContours
#include <opencv2/imgproc.hpp>
#include <opencv2/objdetect.hpp>
#include <opencv2/highgui.hpp>
#include <iterator>
#include <set>
#include <cstdio>
#include <iostream>
// Function prototypes
void subtractPlane(const cv::Mat& depth, cv::Mat& mask, std::vector<CvPoint>& chain, double f);
std::vector<CvPoint> maskFromTemplate(const std::vector<cv::linemod::Template>& templates,
int num_modalities, cv::Point offset, cv::Size size,
cv::Mat& mask, cv::Mat& dst);
void templateConvexHull(const std::vector<cv::linemod::Template>& templates,
int num_modalities, cv::Point offset, cv::Size size,
cv::Mat& dst);
void drawResponse(const std::vector<cv::linemod::Template>& templates,
int num_modalities, cv::Mat& dst, cv::Point offset, int T);
cv::Mat displayQuantized(const cv::Mat& quantized);
// Copy of cv_mouse from cv_utilities
class Mouse
{
public:
static void start(const std::string& a_img_name)
{
cv::setMouseCallback(a_img_name.c_str(), Mouse::cv_on_mouse, 0);
}
static int event(void)
{
int l_event = m_event;
m_event = -1;
return l_event;
}
static int x(void)
{
return m_x;
}
static int y(void)
{
return m_y;
}
private:
static void cv_on_mouse(int a_event, int a_x, int a_y, int, void *)
{
m_event = a_event;
m_x = a_x;
m_y = a_y;
}
static int m_event;
static int m_x;
static int m_y;
};
int Mouse::m_event;
int Mouse::m_x;
int Mouse::m_y;
static void help()
{
printf("Usage: openni_demo [templates.yml]\n\n"
"Place your object on a planar, featureless surface. With the mouse,\n"
"frame it in the 'color' window and right click to learn a first template.\n"
"Then press 'l' to enter online learning mode, and move the camera around.\n"
"When the match score falls between 90-95%% the demo will add a new template.\n\n"
"Keys:\n"
"\t h -- This help page\n"
"\t l -- Toggle online learning\n"
"\t m -- Toggle printing match result\n"
"\t t -- Toggle printing timings\n"
"\t w -- Write learned templates to disk\n"
"\t [ ] -- Adjust matching threshold: '[' down, ']' up\n"
"\t q -- Quit\n\n");
}
// Adapted from cv_timer in cv_utilities
class Timer
{
public:
Timer() : start_(0), time_(0) {}
void start()
{
start_ = cv::getTickCount();
}
void stop()
{
CV_Assert(start_ != 0);
int64 end = cv::getTickCount();
time_ += end - start_;
start_ = 0;
}
double time()
{
double ret = time_ / cv::getTickFrequency();
time_ = 0;
return ret;
}
private:
int64 start_, time_;
};
// Functions to store detector and templates in single XML/YAML file
static cv::Ptr<cv::linemod::Detector> readLinemod(const std::string& filename)
{
cv::Ptr<cv::linemod::Detector> detector = cv::makePtr<cv::linemod::Detector>();
cv::FileStorage fs(filename, cv::FileStorage::READ);
detector->read(fs.root());
cv::FileNode fn = fs["classes"];
for (cv::FileNodeIterator i = fn.begin(), iend = fn.end(); i != iend; ++i)
detector->readClass(*i);
return detector;
}
static void writeLinemod(const cv::Ptr<cv::linemod::Detector>& detector, const std::string& filename)
{
cv::FileStorage fs(filename, cv::FileStorage::WRITE);
detector->write(fs);
std::vector<cv::String> ids = detector->classIds();
fs << "classes" << "[";
for (int i = 0; i < (int)ids.size(); ++i)
{
fs << "{";
detector->writeClass(ids[i], fs);
fs << "}"; // current class
}
fs << "]"; // classes
}
int main(int argc, char * argv[])
{
// Various settings and flags
bool show_match_result = true;
bool show_timings = false;
bool learn_online = false;
int num_classes = 0;
int matching_threshold = 80;
/// @todo Keys for changing these?
cv::Size roi_size(200, 200);
int learning_lower_bound = 90;
int learning_upper_bound = 95;
// Timers
Timer extract_timer;
Timer match_timer;
// Initialize HighGUI
help();
cv::namedWindow("color");
cv::namedWindow("normals");
Mouse::start("color");
// Initialize LINEMOD data structures
cv::Ptr<cv::linemod::Detector> detector;
std::string filename;
if (argc == 1)
{
filename = "linemod_templates.yml";
detector = cv::linemod::getDefaultLINEMOD();
}
else
{
detector = readLinemod(argv[1]);
std::vector<cv::String> ids = detector->classIds();
num_classes = detector->numClasses();
printf("Loaded %s with %d classes and %d templates\n",
argv[1], num_classes, detector->numTemplates());
if (!ids.empty())
{
printf("Class ids:\n");
std::copy(ids.begin(), ids.end(), std::ostream_iterator<std::string>(std::cout, "\n"));
}
}
int num_modalities = (int)detector->getModalities().size();
// Open Kinect sensor
cv::VideoCapture capture( cv::CAP_OPENNI );
if (!capture.isOpened())
{
printf("Could not open OpenNI-capable sensor\n");
return -1;
}
capture.set(cv::CAP_PROP_OPENNI_REGISTRATION, 1);
double focal_length = capture.get(cv::CAP_OPENNI_DEPTH_GENERATOR_FOCAL_LENGTH);
//printf("Focal length = %f\n", focal_length);
// Main loop
cv::Mat color, depth;
for(;;)
{
// Capture next color/depth pair
capture.grab();
capture.retrieve(depth, cv::CAP_OPENNI_DEPTH_MAP);
capture.retrieve(color, cv::CAP_OPENNI_BGR_IMAGE);
std::vector<cv::Mat> sources;
sources.push_back(color);
sources.push_back(depth);
cv::Mat display = color.clone();
if (!learn_online)
{
cv::Point mouse(Mouse::x(), Mouse::y());
int event = Mouse::event();
// Compute ROI centered on current mouse location
cv::Point roi_offset(roi_size.width / 2, roi_size.height / 2);
cv::Point pt1 = mouse - roi_offset; // top left
cv::Point pt2 = mouse + roi_offset; // bottom right
if (event == cv::EVENT_RBUTTONDOWN)
{
// Compute object mask by subtracting the plane within the ROI
std::vector<CvPoint> chain(4);
chain[0] = pt1;
chain[1] = cv::Point(pt2.x, pt1.y);
chain[2] = pt2;
chain[3] = cv::Point(pt1.x, pt2.y);
cv::Mat mask;
subtractPlane(depth, mask, chain, focal_length);
cv::imshow("mask", mask);
// Extract template
std::string class_id = cv::format("class%d", num_classes);
cv::Rect bb;
extract_timer.start();
int template_id = detector->addTemplate(sources, class_id, mask, &bb);
extract_timer.stop();
if (template_id != -1)
{
printf("*** Added template (id %d) for new object class %d***\n",
template_id, num_classes);
//printf("Extracted at (%d, %d) size %dx%d\n", bb.x, bb.y, bb.width, bb.height);
}
++num_classes;
}
// Draw ROI for display
cv::rectangle(display, pt1, pt2, CV_RGB(0,0,0), 3);
cv::rectangle(display, pt1, pt2, CV_RGB(255,255,0), 1);
}
// Perform matching
std::vector<cv::linemod::Match> matches;
std::vector<cv::String> class_ids;
std::vector<cv::Mat> quantized_images;
match_timer.start();
detector->match(sources, (float)matching_threshold, matches, class_ids, quantized_images);
match_timer.stop();
int classes_visited = 0;
std::set<std::string> visited;
for (int i = 0; (i < (int)matches.size()) && (classes_visited < num_classes); ++i)
{
cv::linemod::Match m = matches[i];
if (visited.insert(m.class_id).second)
{
++classes_visited;
if (show_match_result)
{
printf("Similarity: %5.1f%%; x: %3d; y: %3d; class: %s; template: %3d\n",
m.similarity, m.x, m.y, m.class_id.c_str(), m.template_id);
}
// Draw matching template
const std::vector<cv::linemod::Template>& templates = detector->getTemplates(m.class_id, m.template_id);
drawResponse(templates, num_modalities, display, cv::Point(m.x, m.y), detector->getT(0));
if (learn_online == true)
{
/// @todo Online learning possibly broken by new gradient feature extraction,
/// which assumes an accurate object outline.
// Compute masks based on convex hull of matched template
cv::Mat color_mask, depth_mask;
std::vector<CvPoint> chain = maskFromTemplate(templates, num_modalities,
cv::Point(m.x, m.y), color.size(),
color_mask, display);
subtractPlane(depth, depth_mask, chain, focal_length);
cv::imshow("mask", depth_mask);
// If pretty sure (but not TOO sure), add new template
if (learning_lower_bound < m.similarity && m.similarity < learning_upper_bound)
{
extract_timer.start();
int template_id = detector->addTemplate(sources, m.class_id, depth_mask);
extract_timer.stop();
if (template_id != -1)
{
printf("*** Added template (id %d) for existing object class %s***\n",
template_id, m.class_id.c_str());
}
}
}
}
}
if (show_match_result && matches.empty())
printf("No matches found...\n");
if (show_timings)
{
printf("Training: %.2fs\n", extract_timer.time());
printf("Matching: %.2fs\n", match_timer.time());
}
if (show_match_result || show_timings)
printf("------------------------------------------------------------\n");
cv::imshow("color", display);
cv::imshow("normals", quantized_images[1]);
cv::FileStorage fs;
char key = (char)cv::waitKey(10);
if( key == 'q' )
break;
switch (key)
{
case 'h':
help();
break;
case 'm':
// toggle printing match result
show_match_result = !show_match_result;
printf("Show match result %s\n", show_match_result ? "ON" : "OFF");
break;
case 't':
// toggle printing timings
show_timings = !show_timings;
printf("Show timings %s\n", show_timings ? "ON" : "OFF");
break;
case 'l':
// toggle online learning
learn_online = !learn_online;
printf("Online learning %s\n", learn_online ? "ON" : "OFF");
break;
case '[':
// decrement threshold
matching_threshold = std::max(matching_threshold - 1, -100);
printf("New threshold: %d\n", matching_threshold);
break;
case ']':
// increment threshold
matching_threshold = std::min(matching_threshold + 1, +100);
printf("New threshold: %d\n", matching_threshold);
break;
case 'w':
// write model to disk
writeLinemod(detector, filename);
printf("Wrote detector and templates to %s\n", filename.c_str());
break;
default:
;
}
}
return 0;
}
static void reprojectPoints(const std::vector<cv::Point3d>& proj, std::vector<cv::Point3d>& real, double f)
{
real.resize(proj.size());
double f_inv = 1.0 / f;
for (int i = 0; i < (int)proj.size(); ++i)
{
double Z = proj[i].z;
real[i].x = (proj[i].x - 320.) * (f_inv * Z);
real[i].y = (proj[i].y - 240.) * (f_inv * Z);
real[i].z = Z;
}
}
static void filterPlane(IplImage * ap_depth, std::vector<IplImage *> & a_masks, std::vector<CvPoint> & a_chain, double f)
{
const int l_num_cost_pts = 200;
float l_thres = 4;
IplImage * lp_mask = cvCreateImage(cvGetSize(ap_depth), IPL_DEPTH_8U, 1);
cvSet(lp_mask, cvRealScalar(0));
std::vector<CvPoint> l_chain_vector;
float l_chain_length = 0;
float * lp_seg_length = new float[a_chain.size()];
for (int l_i = 0; l_i < (int)a_chain.size(); ++l_i)
{
float x_diff = (float)(a_chain[(l_i + 1) % a_chain.size()].x - a_chain[l_i].x);
float y_diff = (float)(a_chain[(l_i + 1) % a_chain.size()].y - a_chain[l_i].y);
lp_seg_length[l_i] = sqrt(x_diff*x_diff + y_diff*y_diff);
l_chain_length += lp_seg_length[l_i];
}
for (int l_i = 0; l_i < (int)a_chain.size(); ++l_i)
{
if (lp_seg_length[l_i] > 0)
{
int l_cur_num = cvRound(l_num_cost_pts * lp_seg_length[l_i] / l_chain_length);
float l_cur_len = lp_seg_length[l_i] / l_cur_num;
for (int l_j = 0; l_j < l_cur_num; ++l_j)
{
float l_ratio = (l_cur_len * l_j / lp_seg_length[l_i]);
CvPoint l_pts;
l_pts.x = cvRound(l_ratio * (a_chain[(l_i + 1) % a_chain.size()].x - a_chain[l_i].x) + a_chain[l_i].x);
l_pts.y = cvRound(l_ratio * (a_chain[(l_i + 1) % a_chain.size()].y - a_chain[l_i].y) + a_chain[l_i].y);
l_chain_vector.push_back(l_pts);
}
}
}
std::vector<cv::Point3d> lp_src_3Dpts(l_chain_vector.size());
for (int l_i = 0; l_i < (int)l_chain_vector.size(); ++l_i)
{
lp_src_3Dpts[l_i].x = l_chain_vector[l_i].x;
lp_src_3Dpts[l_i].y = l_chain_vector[l_i].y;
lp_src_3Dpts[l_i].z = CV_IMAGE_ELEM(ap_depth, unsigned short, cvRound(lp_src_3Dpts[l_i].y), cvRound(lp_src_3Dpts[l_i].x));
//CV_IMAGE_ELEM(lp_mask,unsigned char,(int)lp_src_3Dpts[l_i].Y,(int)lp_src_3Dpts[l_i].X)=255;
}
//cv_show_image(lp_mask,"hallo2");
reprojectPoints(lp_src_3Dpts, lp_src_3Dpts, f);
CvMat * lp_pts = cvCreateMat((int)l_chain_vector.size(), 4, CV_32F);
CvMat * lp_v = cvCreateMat(4, 4, CV_32F);
CvMat * lp_w = cvCreateMat(4, 1, CV_32F);
for (int l_i = 0; l_i < (int)l_chain_vector.size(); ++l_i)
{
CV_MAT_ELEM(*lp_pts, float, l_i, 0) = (float)lp_src_3Dpts[l_i].x;
CV_MAT_ELEM(*lp_pts, float, l_i, 1) = (float)lp_src_3Dpts[l_i].y;
CV_MAT_ELEM(*lp_pts, float, l_i, 2) = (float)lp_src_3Dpts[l_i].z;
CV_MAT_ELEM(*lp_pts, float, l_i, 3) = 1.0f;
}
cvSVD(lp_pts, lp_w, 0, lp_v);
float l_n[4] = {CV_MAT_ELEM(*lp_v, float, 0, 3),
CV_MAT_ELEM(*lp_v, float, 1, 3),
CV_MAT_ELEM(*lp_v, float, 2, 3),
CV_MAT_ELEM(*lp_v, float, 3, 3)};
float l_norm = sqrt(l_n[0] * l_n[0] + l_n[1] * l_n[1] + l_n[2] * l_n[2]);
l_n[0] /= l_norm;
l_n[1] /= l_norm;
l_n[2] /= l_norm;
l_n[3] /= l_norm;
float l_max_dist = 0;
for (int l_i = 0; l_i < (int)l_chain_vector.size(); ++l_i)
{
float l_dist = l_n[0] * CV_MAT_ELEM(*lp_pts, float, l_i, 0) +
l_n[1] * CV_MAT_ELEM(*lp_pts, float, l_i, 1) +
l_n[2] * CV_MAT_ELEM(*lp_pts, float, l_i, 2) +
l_n[3] * CV_MAT_ELEM(*lp_pts, float, l_i, 3);
if (fabs(l_dist) > l_max_dist)
l_max_dist = l_dist;
}
//std::cerr << "plane: " << l_n[0] << ";" << l_n[1] << ";" << l_n[2] << ";" << l_n[3] << " maxdist: " << l_max_dist << " end" << std::endl;
int l_minx = ap_depth->width;
int l_miny = ap_depth->height;
int l_maxx = 0;
int l_maxy = 0;
for (int l_i = 0; l_i < (int)a_chain.size(); ++l_i)
{
l_minx = std::min(l_minx, a_chain[l_i].x);
l_miny = std::min(l_miny, a_chain[l_i].y);
l_maxx = std::max(l_maxx, a_chain[l_i].x);
l_maxy = std::max(l_maxy, a_chain[l_i].y);
}
int l_w = l_maxx - l_minx + 1;
int l_h = l_maxy - l_miny + 1;
int l_nn = (int)a_chain.size();
CvPoint * lp_chain = new CvPoint[l_nn];
for (int l_i = 0; l_i < l_nn; ++l_i)
lp_chain[l_i] = a_chain[l_i];
cvFillPoly(lp_mask, &lp_chain, &l_nn, 1, cvScalar(255, 255, 255));
delete[] lp_chain;
//cv_show_image(lp_mask,"hallo1");
std::vector<cv::Point3d> lp_dst_3Dpts(l_h * l_w);
int l_ind = 0;
for (int l_r = 0; l_r < l_h; ++l_r)
{
for (int l_c = 0; l_c < l_w; ++l_c)
{
lp_dst_3Dpts[l_ind].x = l_c + l_minx;
lp_dst_3Dpts[l_ind].y = l_r + l_miny;
lp_dst_3Dpts[l_ind].z = CV_IMAGE_ELEM(ap_depth, unsigned short, l_r + l_miny, l_c + l_minx);
++l_ind;
}
}
reprojectPoints(lp_dst_3Dpts, lp_dst_3Dpts, f);
l_ind = 0;
for (int l_r = 0; l_r < l_h; ++l_r)
{
for (int l_c = 0; l_c < l_w; ++l_c)
{
float l_dist = (float)(l_n[0] * lp_dst_3Dpts[l_ind].x + l_n[1] * lp_dst_3Dpts[l_ind].y + lp_dst_3Dpts[l_ind].z * l_n[2] + l_n[3]);
++l_ind;
if (CV_IMAGE_ELEM(lp_mask, unsigned char, l_r + l_miny, l_c + l_minx) != 0)
{
if (fabs(l_dist) < std::max(l_thres, (l_max_dist * 2.0f)))
{
for (int l_p = 0; l_p < (int)a_masks.size(); ++l_p)
{
int l_col = cvRound((l_c + l_minx) / (l_p + 1.0));
int l_row = cvRound((l_r + l_miny) / (l_p + 1.0));
CV_IMAGE_ELEM(a_masks[l_p], unsigned char, l_row, l_col) = 0;
}
}
else
{
for (int l_p = 0; l_p < (int)a_masks.size(); ++l_p)
{
int l_col = cvRound((l_c + l_minx) / (l_p + 1.0));
int l_row = cvRound((l_r + l_miny) / (l_p + 1.0));
CV_IMAGE_ELEM(a_masks[l_p], unsigned char, l_row, l_col) = 255;
}
}
}
}
}
cvReleaseImage(&lp_mask);
cvReleaseMat(&lp_pts);
cvReleaseMat(&lp_w);
cvReleaseMat(&lp_v);
}
void subtractPlane(const cv::Mat& depth, cv::Mat& mask, std::vector<CvPoint>& chain, double f)
{
mask = cv::Mat::zeros(depth.size(), CV_8U);
std::vector<IplImage*> tmp;
IplImage mask_ipl = mask;
tmp.push_back(&mask_ipl);
IplImage depth_ipl = depth;
filterPlane(&depth_ipl, tmp, chain, f);
}
std::vector<CvPoint> maskFromTemplate(const std::vector<cv::linemod::Template>& templates,
int num_modalities, cv::Point offset, cv::Size size,
cv::Mat& mask, cv::Mat& dst)
{
templateConvexHull(templates, num_modalities, offset, size, mask);
const int OFFSET = 30;
cv::dilate(mask, mask, cv::Mat(), cv::Point(-1,-1), OFFSET);
CvMemStorage * lp_storage = cvCreateMemStorage(0);
CvTreeNodeIterator l_iterator;
CvSeqReader l_reader;
CvSeq * lp_contour = 0;
cv::Mat mask_copy = mask.clone();
IplImage mask_copy_ipl = mask_copy;
cvFindContours(&mask_copy_ipl, lp_storage, &lp_contour, sizeof(CvContour),
CV_RETR_CCOMP, CV_CHAIN_APPROX_SIMPLE);
std::vector<CvPoint> l_pts1; // to use as input to cv_primesensor::filter_plane
cvInitTreeNodeIterator(&l_iterator, lp_contour, 1);
while ((lp_contour = (CvSeq *)cvNextTreeNode(&l_iterator)) != 0)
{
CvPoint l_pt0;
cvStartReadSeq(lp_contour, &l_reader, 0);
CV_READ_SEQ_ELEM(l_pt0, l_reader);
l_pts1.push_back(l_pt0);
for (int i = 0; i < lp_contour->total; ++i)
{
CvPoint l_pt1;
CV_READ_SEQ_ELEM(l_pt1, l_reader);
/// @todo Really need dst at all? Can just as well do this outside
cv::line(dst, l_pt0, l_pt1, CV_RGB(0, 255, 0), 2);
l_pt0 = l_pt1;
l_pts1.push_back(l_pt0);
}
}
cvReleaseMemStorage(&lp_storage);
return l_pts1;
}
// Adapted from cv_show_angles
cv::Mat displayQuantized(const cv::Mat& quantized)
{
cv::Mat color(quantized.size(), CV_8UC3);
for (int r = 0; r < quantized.rows; ++r)
{
const uchar* quant_r = quantized.ptr(r);
cv::Vec3b* color_r = color.ptr<cv::Vec3b>(r);
for (int c = 0; c < quantized.cols; ++c)
{
cv::Vec3b& bgr = color_r[c];
switch (quant_r[c])
{
case 0: bgr[0]= 0; bgr[1]= 0; bgr[2]= 0; break;
case 1: bgr[0]= 55; bgr[1]= 55; bgr[2]= 55; break;
case 2: bgr[0]= 80; bgr[1]= 80; bgr[2]= 80; break;
case 4: bgr[0]=105; bgr[1]=105; bgr[2]=105; break;
case 8: bgr[0]=130; bgr[1]=130; bgr[2]=130; break;
case 16: bgr[0]=155; bgr[1]=155; bgr[2]=155; break;
case 32: bgr[0]=180; bgr[1]=180; bgr[2]=180; break;
case 64: bgr[0]=205; bgr[1]=205; bgr[2]=205; break;
case 128: bgr[0]=230; bgr[1]=230; bgr[2]=230; break;
case 255: bgr[0]= 0; bgr[1]= 0; bgr[2]=255; break;
default: bgr[0]= 0; bgr[1]=255; bgr[2]= 0; break;
}
}
}
return color;
}
// Adapted from cv_line_template::convex_hull
void templateConvexHull(const std::vector<cv::linemod::Template>& templates,
int num_modalities, cv::Point offset, cv::Size size,
cv::Mat& dst)
{
std::vector<cv::Point> points;
for (int m = 0; m < num_modalities; ++m)
{
for (int i = 0; i < (int)templates[m].features.size(); ++i)
{
cv::linemod::Feature f = templates[m].features[i];
points.push_back(cv::Point(f.x, f.y) + offset);
}
}
std::vector<cv::Point> hull;
cv::convexHull(points, hull);
dst = cv::Mat::zeros(size, CV_8U);
const int hull_count = (int)hull.size();
const cv::Point* hull_pts = &hull[0];
cv::fillPoly(dst, &hull_pts, &hull_count, 1, cv::Scalar(255));
}
void drawResponse(const std::vector<cv::linemod::Template>& templates,
int num_modalities, cv::Mat& dst, cv::Point offset, int T)
{
static const cv::Scalar COLORS[5] = { CV_RGB(0, 0, 255),
CV_RGB(0, 255, 0),
CV_RGB(255, 255, 0),
CV_RGB(255, 140, 0),
CV_RGB(255, 0, 0) };
for (int m = 0; m < num_modalities; ++m)
{
// NOTE: Original demo recalculated max response for each feature in the TxT
// box around it and chose the display color based on that response. Here
// the display color just depends on the modality.
cv::Scalar color = COLORS[m];
for (int i = 0; i < (int)templates[m].features.size(); ++i)
{
cv::linemod::Feature f = templates[m].features[i];
cv::Point pt(f.x + offset.x, f.y + offset.y);
cv::circle(dst, pt, T / 2, color);
}
}
}