mirror of
https://github.com/opencv/opencv.git
synced 2024-11-29 22:00:25 +08:00
576 lines
19 KiB
C++
576 lines
19 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// Intel License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of Intel Corporation may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#include "precomp.hpp"
|
|
#include "gcgraph.hpp"
|
|
#include <limits>
|
|
|
|
using namespace cv;
|
|
|
|
/*
|
|
This is implementation of image segmentation algorithm GrabCut described in
|
|
"GrabCut — Interactive Foreground Extraction using Iterated Graph Cuts".
|
|
Carsten Rother, Vladimir Kolmogorov, Andrew Blake.
|
|
*/
|
|
|
|
/*
|
|
GMM - Gaussian Mixture Model
|
|
*/
|
|
class GMM
|
|
{
|
|
public:
|
|
static const int componentsCount = 5;
|
|
|
|
GMM( Mat& _model );
|
|
double operator()( const Vec3d color ) const;
|
|
double operator()( int ci, const Vec3d color ) const;
|
|
int whichComponent( const Vec3d color ) const;
|
|
|
|
void initLearning();
|
|
void addSample( int ci, const Vec3d color );
|
|
void endLearning();
|
|
|
|
private:
|
|
void calcInverseCovAndDeterm( int ci );
|
|
Mat model;
|
|
double* coefs;
|
|
double* mean;
|
|
double* cov;
|
|
|
|
double inverseCovs[componentsCount][3][3];
|
|
double covDeterms[componentsCount];
|
|
|
|
double sums[componentsCount][3];
|
|
double prods[componentsCount][3][3];
|
|
int sampleCounts[componentsCount];
|
|
int totalSampleCount;
|
|
};
|
|
|
|
GMM::GMM( Mat& _model )
|
|
{
|
|
const int modelSize = 3/*mean*/ + 9/*covariance*/ + 1/*component weight*/;
|
|
if( _model.empty() )
|
|
{
|
|
_model.create( 1, modelSize*componentsCount, CV_64FC1 );
|
|
_model.setTo(Scalar(0));
|
|
}
|
|
else if( (_model.type() != CV_64FC1) || (_model.rows != 1) || (_model.cols != modelSize*componentsCount) )
|
|
CV_Error( CV_StsBadArg, "_model must have CV_64FC1 type, rows == 1 and cols == 13*componentsCount" );
|
|
|
|
model = _model;
|
|
|
|
coefs = model.ptr<double>(0);
|
|
mean = coefs + componentsCount;
|
|
cov = mean + 3*componentsCount;
|
|
|
|
for( int ci = 0; ci < componentsCount; ci++ )
|
|
if( coefs[ci] > 0 )
|
|
calcInverseCovAndDeterm( ci );
|
|
}
|
|
|
|
double GMM::operator()( const Vec3d color ) const
|
|
{
|
|
double res = 0;
|
|
for( int ci = 0; ci < componentsCount; ci++ )
|
|
res += coefs[ci] * (*this)(ci, color );
|
|
return res;
|
|
}
|
|
|
|
double GMM::operator()( int ci, const Vec3d color ) const
|
|
{
|
|
double res = 0;
|
|
if( coefs[ci] > 0 )
|
|
{
|
|
CV_Assert( covDeterms[ci] > std::numeric_limits<double>::epsilon() );
|
|
Vec3d diff = color;
|
|
double* m = mean + 3*ci;
|
|
diff[0] -= m[0]; diff[1] -= m[1]; diff[2] -= m[2];
|
|
double mult = diff[0]*(diff[0]*inverseCovs[ci][0][0] + diff[1]*inverseCovs[ci][1][0] + diff[2]*inverseCovs[ci][2][0])
|
|
+ diff[1]*(diff[0]*inverseCovs[ci][0][1] + diff[1]*inverseCovs[ci][1][1] + diff[2]*inverseCovs[ci][2][1])
|
|
+ diff[2]*(diff[0]*inverseCovs[ci][0][2] + diff[1]*inverseCovs[ci][1][2] + diff[2]*inverseCovs[ci][2][2]);
|
|
res = 1.0f/sqrt(covDeterms[ci]) * exp(-0.5f*mult);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
int GMM::whichComponent( const Vec3d color ) const
|
|
{
|
|
int k = 0;
|
|
double max = 0;
|
|
|
|
for( int ci = 0; ci < componentsCount; ci++ )
|
|
{
|
|
double p = (*this)( ci, color );
|
|
if( p > max )
|
|
{
|
|
k = ci;
|
|
max = p;
|
|
}
|
|
}
|
|
return k;
|
|
}
|
|
|
|
void GMM::initLearning()
|
|
{
|
|
for( int ci = 0; ci < componentsCount; ci++)
|
|
{
|
|
sums[ci][0] = sums[ci][1] = sums[ci][2] = 0;
|
|
prods[ci][0][0] = prods[ci][0][1] = prods[ci][0][2] = 0;
|
|
prods[ci][1][0] = prods[ci][1][1] = prods[ci][1][2] = 0;
|
|
prods[ci][2][0] = prods[ci][2][1] = prods[ci][2][2] = 0;
|
|
sampleCounts[ci] = 0;
|
|
}
|
|
totalSampleCount = 0;
|
|
}
|
|
|
|
void GMM::addSample( int ci, const Vec3d color )
|
|
{
|
|
sums[ci][0] += color[0]; sums[ci][1] += color[1]; sums[ci][2] += color[2];
|
|
prods[ci][0][0] += color[0]*color[0]; prods[ci][0][1] += color[0]*color[1]; prods[ci][0][2] += color[0]*color[2];
|
|
prods[ci][1][0] += color[1]*color[0]; prods[ci][1][1] += color[1]*color[1]; prods[ci][1][2] += color[1]*color[2];
|
|
prods[ci][2][0] += color[2]*color[0]; prods[ci][2][1] += color[2]*color[1]; prods[ci][2][2] += color[2]*color[2];
|
|
sampleCounts[ci]++;
|
|
totalSampleCount++;
|
|
}
|
|
|
|
void GMM::endLearning()
|
|
{
|
|
const double variance = 0.01;
|
|
for( int ci = 0; ci < componentsCount; ci++ )
|
|
{
|
|
int n = sampleCounts[ci];
|
|
if( n == 0 )
|
|
coefs[ci] = 0;
|
|
else
|
|
{
|
|
coefs[ci] = (double)n/totalSampleCount;
|
|
|
|
double* m = mean + 3*ci;
|
|
m[0] = sums[ci][0]/n; m[1] = sums[ci][1]/n; m[2] = sums[ci][2]/n;
|
|
|
|
double* c = cov + 9*ci;
|
|
c[0] = prods[ci][0][0]/n - m[0]*m[0]; c[1] = prods[ci][0][1]/n - m[0]*m[1]; c[2] = prods[ci][0][2]/n - m[0]*m[2];
|
|
c[3] = prods[ci][1][0]/n - m[1]*m[0]; c[4] = prods[ci][1][1]/n - m[1]*m[1]; c[5] = prods[ci][1][2]/n - m[1]*m[2];
|
|
c[6] = prods[ci][2][0]/n - m[2]*m[0]; c[7] = prods[ci][2][1]/n - m[2]*m[1]; c[8] = prods[ci][2][2]/n - m[2]*m[2];
|
|
|
|
double dtrm = c[0]*(c[4]*c[8]-c[5]*c[7]) - c[1]*(c[3]*c[8]-c[5]*c[6]) + c[2]*(c[3]*c[7]-c[4]*c[6]);
|
|
if( dtrm <= std::numeric_limits<double>::epsilon() )
|
|
{
|
|
// Adds the white noise to avoid singular covariance matrix.
|
|
c[0] += variance;
|
|
c[4] += variance;
|
|
c[8] += variance;
|
|
}
|
|
|
|
calcInverseCovAndDeterm(ci);
|
|
}
|
|
}
|
|
}
|
|
|
|
void GMM::calcInverseCovAndDeterm( int ci )
|
|
{
|
|
if( coefs[ci] > 0 )
|
|
{
|
|
double *c = cov + 9*ci;
|
|
double dtrm =
|
|
covDeterms[ci] = c[0]*(c[4]*c[8]-c[5]*c[7]) - c[1]*(c[3]*c[8]-c[5]*c[6]) + c[2]*(c[3]*c[7]-c[4]*c[6]);
|
|
|
|
CV_Assert( dtrm > std::numeric_limits<double>::epsilon() );
|
|
inverseCovs[ci][0][0] = (c[4]*c[8] - c[5]*c[7]) / dtrm;
|
|
inverseCovs[ci][1][0] = -(c[3]*c[8] - c[5]*c[6]) / dtrm;
|
|
inverseCovs[ci][2][0] = (c[3]*c[7] - c[4]*c[6]) / dtrm;
|
|
inverseCovs[ci][0][1] = -(c[1]*c[8] - c[2]*c[7]) / dtrm;
|
|
inverseCovs[ci][1][1] = (c[0]*c[8] - c[2]*c[6]) / dtrm;
|
|
inverseCovs[ci][2][1] = -(c[0]*c[7] - c[1]*c[6]) / dtrm;
|
|
inverseCovs[ci][0][2] = (c[1]*c[5] - c[2]*c[4]) / dtrm;
|
|
inverseCovs[ci][1][2] = -(c[0]*c[5] - c[2]*c[3]) / dtrm;
|
|
inverseCovs[ci][2][2] = (c[0]*c[4] - c[1]*c[3]) / dtrm;
|
|
}
|
|
}
|
|
|
|
/*
|
|
Calculate beta - parameter of GrabCut algorithm.
|
|
beta = 1/(2*avg(sqr(||color[i] - color[j]||)))
|
|
*/
|
|
static double calcBeta( const Mat& img )
|
|
{
|
|
double beta = 0;
|
|
for( int y = 0; y < img.rows; y++ )
|
|
{
|
|
for( int x = 0; x < img.cols; x++ )
|
|
{
|
|
Vec3d color = img.at<Vec3b>(y,x);
|
|
if( x>0 ) // left
|
|
{
|
|
Vec3d diff = color - (Vec3d)img.at<Vec3b>(y,x-1);
|
|
beta += diff.dot(diff);
|
|
}
|
|
if( y>0 && x>0 ) // upleft
|
|
{
|
|
Vec3d diff = color - (Vec3d)img.at<Vec3b>(y-1,x-1);
|
|
beta += diff.dot(diff);
|
|
}
|
|
if( y>0 ) // up
|
|
{
|
|
Vec3d diff = color - (Vec3d)img.at<Vec3b>(y-1,x);
|
|
beta += diff.dot(diff);
|
|
}
|
|
if( y>0 && x<img.cols-1) // upright
|
|
{
|
|
Vec3d diff = color - (Vec3d)img.at<Vec3b>(y-1,x+1);
|
|
beta += diff.dot(diff);
|
|
}
|
|
}
|
|
}
|
|
if( beta <= std::numeric_limits<double>::epsilon() )
|
|
beta = 0;
|
|
else
|
|
beta = 1.f / (2 * beta/(4*img.cols*img.rows - 3*img.cols - 3*img.rows + 2) );
|
|
|
|
return beta;
|
|
}
|
|
|
|
/*
|
|
Calculate weights of noterminal vertices of graph.
|
|
beta and gamma - parameters of GrabCut algorithm.
|
|
*/
|
|
static void calcNWeights( const Mat& img, Mat& leftW, Mat& upleftW, Mat& upW, Mat& uprightW, double beta, double gamma )
|
|
{
|
|
const double gammaDivSqrt2 = gamma / std::sqrt(2.0f);
|
|
leftW.create( img.rows, img.cols, CV_64FC1 );
|
|
upleftW.create( img.rows, img.cols, CV_64FC1 );
|
|
upW.create( img.rows, img.cols, CV_64FC1 );
|
|
uprightW.create( img.rows, img.cols, CV_64FC1 );
|
|
for( int y = 0; y < img.rows; y++ )
|
|
{
|
|
for( int x = 0; x < img.cols; x++ )
|
|
{
|
|
Vec3d color = img.at<Vec3b>(y,x);
|
|
if( x-1>=0 ) // left
|
|
{
|
|
Vec3d diff = color - (Vec3d)img.at<Vec3b>(y,x-1);
|
|
leftW.at<double>(y,x) = gamma * exp(-beta*diff.dot(diff));
|
|
}
|
|
else
|
|
leftW.at<double>(y,x) = 0;
|
|
if( x-1>=0 && y-1>=0 ) // upleft
|
|
{
|
|
Vec3d diff = color - (Vec3d)img.at<Vec3b>(y-1,x-1);
|
|
upleftW.at<double>(y,x) = gammaDivSqrt2 * exp(-beta*diff.dot(diff));
|
|
}
|
|
else
|
|
upleftW.at<double>(y,x) = 0;
|
|
if( y-1>=0 ) // up
|
|
{
|
|
Vec3d diff = color - (Vec3d)img.at<Vec3b>(y-1,x);
|
|
upW.at<double>(y,x) = gamma * exp(-beta*diff.dot(diff));
|
|
}
|
|
else
|
|
upW.at<double>(y,x) = 0;
|
|
if( x+1<img.cols && y-1>=0 ) // upright
|
|
{
|
|
Vec3d diff = color - (Vec3d)img.at<Vec3b>(y-1,x+1);
|
|
uprightW.at<double>(y,x) = gammaDivSqrt2 * exp(-beta*diff.dot(diff));
|
|
}
|
|
else
|
|
uprightW.at<double>(y,x) = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
Check size, type and element values of mask matrix.
|
|
*/
|
|
static void checkMask( const Mat& img, const Mat& mask )
|
|
{
|
|
if( mask.empty() )
|
|
CV_Error( CV_StsBadArg, "mask is empty" );
|
|
if( mask.type() != CV_8UC1 )
|
|
CV_Error( CV_StsBadArg, "mask must have CV_8UC1 type" );
|
|
if( mask.cols != img.cols || mask.rows != img.rows )
|
|
CV_Error( CV_StsBadArg, "mask must have as many rows and cols as img" );
|
|
for( int y = 0; y < mask.rows; y++ )
|
|
{
|
|
for( int x = 0; x < mask.cols; x++ )
|
|
{
|
|
uchar val = mask.at<uchar>(y,x);
|
|
if( val!=GC_BGD && val!=GC_FGD && val!=GC_PR_BGD && val!=GC_PR_FGD )
|
|
CV_Error( CV_StsBadArg, "mask element value must be equel"
|
|
"GC_BGD or GC_FGD or GC_PR_BGD or GC_PR_FGD" );
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
Initialize mask using rectangular.
|
|
*/
|
|
static void initMaskWithRect( Mat& mask, Size imgSize, Rect rect )
|
|
{
|
|
mask.create( imgSize, CV_8UC1 );
|
|
mask.setTo( GC_BGD );
|
|
|
|
rect.x = max(0, rect.x);
|
|
rect.y = max(0, rect.y);
|
|
rect.width = min(rect.width, imgSize.width-rect.x);
|
|
rect.height = min(rect.height, imgSize.height-rect.y);
|
|
|
|
(mask(rect)).setTo( Scalar(GC_PR_FGD) );
|
|
}
|
|
|
|
/*
|
|
Initialize GMM background and foreground models using kmeans algorithm.
|
|
*/
|
|
static void initGMMs( const Mat& img, const Mat& mask, GMM& bgdGMM, GMM& fgdGMM )
|
|
{
|
|
const int kMeansItCount = 10;
|
|
const int kMeansType = KMEANS_PP_CENTERS;
|
|
|
|
Mat bgdLabels, fgdLabels;
|
|
vector<Vec3f> bgdSamples, fgdSamples;
|
|
Point p;
|
|
for( p.y = 0; p.y < img.rows; p.y++ )
|
|
{
|
|
for( p.x = 0; p.x < img.cols; p.x++ )
|
|
{
|
|
if( mask.at<uchar>(p) == GC_BGD || mask.at<uchar>(p) == GC_PR_BGD )
|
|
bgdSamples.push_back( (Vec3f)img.at<Vec3b>(p) );
|
|
else // GC_FGD | GC_PR_FGD
|
|
fgdSamples.push_back( (Vec3f)img.at<Vec3b>(p) );
|
|
}
|
|
}
|
|
CV_Assert( !bgdSamples.empty() && !fgdSamples.empty() );
|
|
Mat _bgdSamples( (int)bgdSamples.size(), 3, CV_32FC1, &bgdSamples[0][0] );
|
|
kmeans( _bgdSamples, GMM::componentsCount, bgdLabels,
|
|
TermCriteria( CV_TERMCRIT_ITER, kMeansItCount, 0.0), 0, kMeansType );
|
|
Mat _fgdSamples( (int)fgdSamples.size(), 3, CV_32FC1, &fgdSamples[0][0] );
|
|
kmeans( _fgdSamples, GMM::componentsCount, fgdLabels,
|
|
TermCriteria( CV_TERMCRIT_ITER, kMeansItCount, 0.0), 0, kMeansType );
|
|
|
|
bgdGMM.initLearning();
|
|
for( int i = 0; i < (int)bgdSamples.size(); i++ )
|
|
bgdGMM.addSample( bgdLabels.at<int>(i,0), bgdSamples[i] );
|
|
bgdGMM.endLearning();
|
|
|
|
fgdGMM.initLearning();
|
|
for( int i = 0; i < (int)fgdSamples.size(); i++ )
|
|
fgdGMM.addSample( fgdLabels.at<int>(i,0), fgdSamples[i] );
|
|
fgdGMM.endLearning();
|
|
}
|
|
|
|
/*
|
|
Assign GMMs components for each pixel.
|
|
*/
|
|
static void assignGMMsComponents( const Mat& img, const Mat& mask, const GMM& bgdGMM, const GMM& fgdGMM, Mat& compIdxs )
|
|
{
|
|
Point p;
|
|
for( p.y = 0; p.y < img.rows; p.y++ )
|
|
{
|
|
for( p.x = 0; p.x < img.cols; p.x++ )
|
|
{
|
|
Vec3d color = img.at<Vec3b>(p);
|
|
compIdxs.at<int>(p) = mask.at<uchar>(p) == GC_BGD || mask.at<uchar>(p) == GC_PR_BGD ?
|
|
bgdGMM.whichComponent(color) : fgdGMM.whichComponent(color);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
Learn GMMs parameters.
|
|
*/
|
|
static void learnGMMs( const Mat& img, const Mat& mask, const Mat& compIdxs, GMM& bgdGMM, GMM& fgdGMM )
|
|
{
|
|
bgdGMM.initLearning();
|
|
fgdGMM.initLearning();
|
|
Point p;
|
|
for( int ci = 0; ci < GMM::componentsCount; ci++ )
|
|
{
|
|
for( p.y = 0; p.y < img.rows; p.y++ )
|
|
{
|
|
for( p.x = 0; p.x < img.cols; p.x++ )
|
|
{
|
|
if( compIdxs.at<int>(p) == ci )
|
|
{
|
|
if( mask.at<uchar>(p) == GC_BGD || mask.at<uchar>(p) == GC_PR_BGD )
|
|
bgdGMM.addSample( ci, img.at<Vec3b>(p) );
|
|
else
|
|
fgdGMM.addSample( ci, img.at<Vec3b>(p) );
|
|
}
|
|
}
|
|
}
|
|
}
|
|
bgdGMM.endLearning();
|
|
fgdGMM.endLearning();
|
|
}
|
|
|
|
/*
|
|
Construct GCGraph
|
|
*/
|
|
static void constructGCGraph( const Mat& img, const Mat& mask, const GMM& bgdGMM, const GMM& fgdGMM, double lambda,
|
|
const Mat& leftW, const Mat& upleftW, const Mat& upW, const Mat& uprightW,
|
|
GCGraph<double>& graph )
|
|
{
|
|
int vtxCount = img.cols*img.rows,
|
|
edgeCount = 2*(4*img.cols*img.rows - 3*(img.cols + img.rows) + 2);
|
|
graph.create(vtxCount, edgeCount);
|
|
Point p;
|
|
for( p.y = 0; p.y < img.rows; p.y++ )
|
|
{
|
|
for( p.x = 0; p.x < img.cols; p.x++)
|
|
{
|
|
// add node
|
|
int vtxIdx = graph.addVtx();
|
|
Vec3b color = img.at<Vec3b>(p);
|
|
|
|
// set t-weights
|
|
double fromSource, toSink;
|
|
if( mask.at<uchar>(p) == GC_PR_BGD || mask.at<uchar>(p) == GC_PR_FGD )
|
|
{
|
|
fromSource = -log( bgdGMM(color) );
|
|
toSink = -log( fgdGMM(color) );
|
|
}
|
|
else if( mask.at<uchar>(p) == GC_BGD )
|
|
{
|
|
fromSource = 0;
|
|
toSink = lambda;
|
|
}
|
|
else // GC_FGD
|
|
{
|
|
fromSource = lambda;
|
|
toSink = 0;
|
|
}
|
|
graph.addTermWeights( vtxIdx, fromSource, toSink );
|
|
|
|
// set n-weights
|
|
if( p.x>0 )
|
|
{
|
|
double w = leftW.at<double>(p);
|
|
graph.addEdges( vtxIdx, vtxIdx-1, w, w );
|
|
}
|
|
if( p.x>0 && p.y>0 )
|
|
{
|
|
double w = upleftW.at<double>(p);
|
|
graph.addEdges( vtxIdx, vtxIdx-img.cols-1, w, w );
|
|
}
|
|
if( p.y>0 )
|
|
{
|
|
double w = upW.at<double>(p);
|
|
graph.addEdges( vtxIdx, vtxIdx-img.cols, w, w );
|
|
}
|
|
if( p.x<img.cols-1 && p.y>0 )
|
|
{
|
|
double w = uprightW.at<double>(p);
|
|
graph.addEdges( vtxIdx, vtxIdx-img.cols+1, w, w );
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
Estimate segmentation using MaxFlow algorithm
|
|
*/
|
|
static void estimateSegmentation( GCGraph<double>& graph, Mat& mask )
|
|
{
|
|
graph.maxFlow();
|
|
Point p;
|
|
for( p.y = 0; p.y < mask.rows; p.y++ )
|
|
{
|
|
for( p.x = 0; p.x < mask.cols; p.x++ )
|
|
{
|
|
if( mask.at<uchar>(p) == GC_PR_BGD || mask.at<uchar>(p) == GC_PR_FGD )
|
|
{
|
|
if( graph.inSourceSegment( p.y*mask.cols+p.x /*vertex index*/ ) )
|
|
mask.at<uchar>(p) = GC_PR_FGD;
|
|
else
|
|
mask.at<uchar>(p) = GC_PR_BGD;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void cv::grabCut( InputArray _img, InputOutputArray _mask, Rect rect,
|
|
InputOutputArray _bgdModel, InputOutputArray _fgdModel,
|
|
int iterCount, int mode )
|
|
{
|
|
Mat img = _img.getMat();
|
|
Mat& mask = _mask.getMatRef();
|
|
Mat& bgdModel = _bgdModel.getMatRef();
|
|
Mat& fgdModel = _fgdModel.getMatRef();
|
|
|
|
if( img.empty() )
|
|
CV_Error( CV_StsBadArg, "image is empty" );
|
|
if( img.type() != CV_8UC3 )
|
|
CV_Error( CV_StsBadArg, "image mush have CV_8UC3 type" );
|
|
|
|
GMM bgdGMM( bgdModel ), fgdGMM( fgdModel );
|
|
Mat compIdxs( img.size(), CV_32SC1 );
|
|
|
|
if( mode == GC_INIT_WITH_RECT || mode == GC_INIT_WITH_MASK )
|
|
{
|
|
if( mode == GC_INIT_WITH_RECT )
|
|
initMaskWithRect( mask, img.size(), rect );
|
|
else // flag == GC_INIT_WITH_MASK
|
|
checkMask( img, mask );
|
|
initGMMs( img, mask, bgdGMM, fgdGMM );
|
|
}
|
|
|
|
if( iterCount <= 0)
|
|
return;
|
|
|
|
if( mode == GC_EVAL )
|
|
checkMask( img, mask );
|
|
|
|
const double gamma = 50;
|
|
const double lambda = 9*gamma;
|
|
const double beta = calcBeta( img );
|
|
|
|
Mat leftW, upleftW, upW, uprightW;
|
|
calcNWeights( img, leftW, upleftW, upW, uprightW, beta, gamma );
|
|
|
|
for( int i = 0; i < iterCount; i++ )
|
|
{
|
|
GCGraph<double> graph;
|
|
assignGMMsComponents( img, mask, bgdGMM, fgdGMM, compIdxs );
|
|
learnGMMs( img, mask, compIdxs, bgdGMM, fgdGMM );
|
|
constructGCGraph(img, mask, bgdGMM, fgdGMM, lambda, leftW, upleftW, upW, uprightW, graph );
|
|
estimateSegmentation( graph, mask );
|
|
}
|
|
}
|