opencv/modules/dnn/src/layers/permute_layer.cpp
Zihao Mu 7b582b71ba
Merge pull request #21036 from fengyuentau:timvx_backend_support
dnn: TIM-VX NPU backend support

* Add TimVX NPU backend for DNN module.

* use official branch from tim-vx repo; fix detecting viv sdk

Co-authored-by: fytao <yuantao.feng@outlook.com>
2022-03-31 21:42:11 +00:00

632 lines
21 KiB
C++

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Copyright (C) 2017, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "../precomp.hpp"
#include "layers_common.hpp"
#include "../op_cuda.hpp"
#include "../op_inf_engine.hpp"
#include "../ie_ngraph.hpp"
#include "../op_vkcom.hpp"
#include "../op_webnn.hpp"
#include "../op_timvx.hpp"
#include <float.h>
#include <algorithm>
#ifdef HAVE_OPENCL
#include "opencl_kernels_dnn.hpp"
#endif
#ifdef HAVE_CUDA
#include "../cuda4dnn/primitives/permute.hpp"
using namespace cv::dnn::cuda4dnn;
#endif
namespace cv
{
namespace dnn
{
class PermuteLayerImpl CV_FINAL : public PermuteLayer
{
public:
void checkNeedForPermutation()
{
_needsPermute = false;
for (size_t i = 0; i < _numAxes; ++i)
{
if (_order[i] != i)
{
_needsPermute = true;
break;
}
}
}
PermuteLayerImpl(const LayerParams &params)
: _count(0), _needsPermute(false), _numAxes(0)
{
if (!params.has("order"))
{
return;
}
DictValue paramOrder = params.get("order");
_numAxes = paramOrder.size();
for (size_t i = 0; i < _numAxes; i++)
{
int currentOrder = paramOrder.get<int>(i);
if (currentOrder < 0 || currentOrder > _numAxes)
{
CV_Error(Error::StsBadArg,
format("Orders of dimensions in Permute layer parameter"
"must be in [0...%zu]", _numAxes - 1));
}
if (std::find(_order.begin(), _order.end(), currentOrder) != _order.end())
{
CV_Error(Error::StsBadArg,
"Permute layer parameter contains duplicated orders.");
}
_order.push_back(currentOrder);
}
zeropoint = params.get<int>("zeropoints", 0);
scale = params.get<float>("scales", 1.0f);
setParamsFrom(params);
checkNeedForPermutation();
}
virtual bool supportBackend(int backendId) CV_OVERRIDE
{
#ifdef HAVE_INF_ENGINE
if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
{
if (preferableTarget == DNN_TARGET_CPU)
return _order.size() <= 4 || !isArmComputePlugin();
return true;
}
#endif
#ifdef HAVE_TIMVX
if (backendId == DNN_BACKEND_TIMVX && haveTimVX())
{
int len = this->type.length();
if (len <= 4)
return false;
if (this->type.substr(len - 4) == "Int8")
return true;
else
return false;
}
#endif
return backendId == DNN_BACKEND_OPENCV ||
backendId == DNN_BACKEND_CUDA ||
backendId == DNN_BACKEND_WEBNN ||
(backendId == DNN_BACKEND_VKCOM && haveVulkan());
}
bool getMemoryShapes(const std::vector<MatShape> &inputs,
const int requiredOutputs,
std::vector<MatShape> &outputs,
std::vector<MatShape> &internals) const CV_OVERRIDE
{
if(!_needsPermute)
{
Layer::getMemoryShapes(inputs, requiredOutputs, outputs, internals);
return true;
}
CV_Assert(inputs.size() > 0);
CV_Assert((int)_numAxes == inputs[0].size());
MatShape shapeBefore = inputs[0], shapeAfter;
for (size_t i = 0; i < _numAxes; i++)
{
shapeAfter.push_back(shapeBefore[_order[i]]);
}
outputs.clear();
for (size_t i = 0; i < inputs.size(); i++)
{
CV_Assert(total(inputs[i]) == total(shapeAfter));
outputs.push_back(shapeAfter);
}
return false;
}
void computeStrides(const MatShape &shapeBefore, const MatShape &shapeAfter)
{
_oldStride.resize(_numAxes);
_newStride.resize(_numAxes);
_oldStride[_numAxes - 1] = 1;
_newStride[_numAxes - 1] = 1;
for(int i = _numAxes - 2; i >= 0; i--)
{
_oldStride[i] = _oldStride[i + 1] * shapeBefore[i + 1];
_newStride[i] = _newStride[i + 1] * shapeAfter[i + 1];
}
_count = _oldStride[0] * shapeBefore[0];
}
void finalize(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr) CV_OVERRIDE
{
if(!_needsPermute)
{
return;
}
std::vector<Mat> inputs, outputs;
inputs_arr.getMatVector(inputs);
outputs_arr.getMatVector(outputs);
CV_Assert(inputs.size() > 0);
const Mat& inp0 = inputs[0];
CV_Assert((int)_numAxes == inp0.dims);
computeStrides(shape(inputs[0]), shape(outputs[0]));
#ifdef HAVE_OPENCL
uorder.release();
uold_stride.release();
unew_stride.release();
#endif
}
template <class T>
class PermuteInvoker : public ParallelLoopBody
{
public:
const Mat* inp;
Mat* out;
const std::vector<size_t>* order;
int nstripes;
static void run(const Mat& inp, Mat& out, const std::vector<size_t>& order, int nstripes)
{
PermuteInvoker p;
p.inp = &inp;
p.out = &out;
p.order = &order;
p.nstripes = nstripes;
CV_Assert( out.size[0] == inp.size[order[0]] &&
out.size[1] == inp.size[order[1]] &&
out.size[2] == inp.size[order[2]] &&
out.size[3] == inp.size[order[3]]);
parallel_for_(Range(0, nstripes), p, nstripes);
}
PermuteInvoker() : inp(0), out(0), order(0), nstripes(0) {}
void operator()(const Range& r) const CV_OVERRIDE
{
int n0 = out->size[0], n1 = out->size[1], n2 = out->size[2], n3 = out->size[3];
size_t orows = (size_t)n0*n1*n2;
size_t stripeSize = (orows + nstripes - 1)/nstripes;
size_t stripeStart = r.start*stripeSize;
size_t stripeEnd = std::min(r.end*stripeSize, orows);
const size_t esz = sizeof(T);
size_t ostep0 = out->step[0]/esz, ostep1 = out->step[1]/esz, ostep2 = out->step[2]/esz;
const size_t* ord = &order->at(0);
size_t istep0 = inp->step[ord[0]]/esz, istep1 = inp->step[ord[1]]/esz,
istep2 = inp->step[ord[2]]/esz, istep3 = inp->step[ord[3]]/esz;
size_t val = stripeStart;
int i2 = (int)(val % n2);
val /= n2;
int i1 = (int)(val % n1);
int i0 = (int)(val / n1);
const T* inptr_orig = inp->ptr<T>();
T* outptr_orig = out->ptr<T>();
for( size_t ofs = stripeStart; ofs < stripeEnd; ofs++ )
{
const T* inptr = inptr_orig + i0*istep0 + i1*istep1 + i2*istep2;
T* outptr = outptr_orig + i0*ostep0 + i1*ostep1 + i2*ostep2;
for( int i3 = 0; i3 < n3; i3++ )
outptr[i3] = inptr[i3*istep3];
if( ++i2 >= n2 )
{
i2 = 0;
if( ++i1 >= n1 )
{
i1 = 0;
if( ++i0 >= n0 )
break;
}
}
}
}
};
#ifdef HAVE_OPENCL
bool forward_ocl(InputArrayOfArrays inps, OutputArrayOfArrays outs, OutputArrayOfArrays internals)
{
std::vector<UMat> inputs;
std::vector<UMat> outputs;
inps.getUMatVector(inputs);
outs.getUMatVector(outputs);
if (!_needsPermute)
return false;
if (uorder.empty())
{
std::vector<int> orderVec(_order.begin(), _order.end());;
Mat morder(1, orderVec.size(), CV_32SC1, &orderVec[0]);
std::vector<int> oldStrideVec(_oldStride.begin(), _oldStride.end());
Mat mold_stride(1, _oldStride.size(), CV_32SC1, &oldStrideVec[0]);
std::vector<int> newStrideVec(_newStride.begin(), _newStride.end());
Mat mnew_stride(1, newStrideVec.size(), CV_32SC1, &newStrideVec[0]);
morder.copyTo(uorder);
mold_stride.copyTo(uold_stride);
mnew_stride.copyTo(unew_stride);
}
bool use_half = (inps.depth() == CV_16S);
String opts = format("-DDtype=%s", use_half ? "half" : "float");
for (size_t i = 0; i < inputs.size(); i++)
{
ocl::Kernel kernel("permute", ocl::dnn::permute_oclsrc, opts);
kernel.set(0, (int)_count);
kernel.set(1, ocl::KernelArg::PtrReadOnly(inputs[i]));
kernel.set(2, ocl::KernelArg::PtrReadOnly(uorder));
kernel.set(3, ocl::KernelArg::PtrReadOnly(uold_stride));
kernel.set(4, ocl::KernelArg::PtrReadOnly(unew_stride));
kernel.set(5, (int)_numAxes);
kernel.set(6, ocl::KernelArg::PtrWriteOnly(outputs[i]));
if (!kernel.run(1, &_count, NULL, false))
return false;
}
return true;
}
#endif
void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr) CV_OVERRIDE
{
CV_TRACE_FUNCTION();
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
CV_OCL_RUN(IS_DNN_OPENCL_TARGET(preferableTarget) &&
inputs_arr.depth() != CV_8S,
forward_ocl(inputs_arr, outputs_arr, internals_arr))
if (inputs_arr.depth() == CV_16S)
{
forward_fallback(inputs_arr, outputs_arr, internals_arr);
return;
}
std::vector<Mat> inputs, outputs;
inputs_arr.getMatVector(inputs);
outputs_arr.getMatVector(outputs);
size_t k, ninputs = inputs.size();
if(!_needsPermute)
{
for (k = 0; k < ninputs; k++)
{
CV_Assert(outputs[k].total() == inputs[k].total());
if (outputs[k].data != inputs[k].data)
inputs[k].copyTo(outputs[k]);
}
}
else
{
size_t i, j, count = _count, numAxes = _numAxes;
const size_t* newStride = &_newStride[0];
const size_t* oldStride = &_oldStride[0];
const size_t* order = &_order[0];
for (k = 0; k < ninputs; k++)
{
const Mat& inp = inputs[k];
Mat& out = outputs[k];
CV_Assert(inp.dims == numAxes && inp.size == inputs[0].size);
CV_Assert(out.dims == numAxes && out.size == outputs[0].size);
CV_Assert(inp.isContinuous() && out.isContinuous());
// CV_Assert(inp.type() == CV_32F && out.type() == CV_32F);
if( numAxes == 4 )
{
int nstripes = getNumThreads();
if (inp.type() == CV_8S)
PermuteInvoker<int8_t>::run(inp, out, _order, nstripes);
else
PermuteInvoker<float>::run(inp, out, _order, nstripes);
}
else
{
if (inp.type() == CV_8S)
{
const int8_t *srcData = inp.ptr<int8_t>();
int8_t *dstData = out.ptr<int8_t>();
for (i = 0; i < count; ++i)
{
size_t oldPosition = 0;
size_t newPosition = i;
for (j = 0; j < numAxes; ++j)
{
oldPosition += (newPosition / newStride[j]) * oldStride[order[j]];
newPosition %= newStride[j];
}
dstData[i] = srcData[oldPosition];
}
}
else
{
const float *srcData = inp.ptr<float>();
float *dstData = out.ptr<float>();
for (i = 0; i < count; ++i)
{
size_t oldPosition = 0;
size_t newPosition = i;
for (j = 0; j < numAxes; ++j)
{
oldPosition += (newPosition / newStride[j]) * oldStride[order[j]];
newPosition %= newStride[j];
}
dstData[i] = srcData[oldPosition];
}
}
}
}
}
}
#ifdef HAVE_DNN_NGRAPH
virtual Ptr<BackendNode> initNgraph(const std::vector<Ptr<BackendWrapper> >& inputs,
const std::vector<Ptr<BackendNode> >& nodes) CV_OVERRIDE
{
auto& ieInpNode = nodes[0].dynamicCast<InfEngineNgraphNode>()->node;
std::vector<int64_t> order(_order.begin(), _order.end());
auto tr_axes = std::make_shared<ngraph::op::Constant>(ngraph::element::i64,
ngraph::Shape({order.size()}), order.data());
auto transpose = std::make_shared<ngraph::op::Transpose>(ieInpNode, tr_axes);
return Ptr<BackendNode>(new InfEngineNgraphNode(transpose));
}
#endif // HAVE_DNN_NGRAPH
#ifdef HAVE_WEBNN
virtual Ptr<BackendNode> initWebnn(const std::vector<Ptr<BackendWrapper> >& inputs, const std::vector<Ptr<BackendNode> >& nodes) CV_OVERRIDE
{
Ptr<WebnnBackendNode> node = nodes[0].dynamicCast<WebnnBackendNode>();
auto& webnnInpOperand = node->operand;
auto& webnnGraphBuilder = node->net->builder;
std::vector<int32_t> permutation(_order.begin(), _order.end());
ml::TransposeOptions options;
options.permutation = permutation.data();
options.permutationCount = permutation.size();
auto operand = webnnGraphBuilder.Transpose(webnnInpOperand, &options);
return Ptr<BackendNode>(new WebnnBackendNode(operand));
}
#endif
#ifdef HAVE_CUDA
Ptr<BackendNode> initCUDA(
void *context_,
const std::vector<Ptr<BackendWrapper>>& inputs,
const std::vector<Ptr<BackendWrapper>>& outputs
) override
{
auto context = reinterpret_cast<csl::CSLContext*>(context_);
return make_cuda_node<cuda4dnn::PermuteOp>(preferableTarget, std::move(context->stream), _order);
}
#endif
#ifdef HAVE_VULKAN
virtual Ptr<BackendNode> initVkCom(const std::vector<Ptr<BackendWrapper> > &input) CV_OVERRIDE
{
CV_Assert(!_order.empty());
std::shared_ptr<vkcom::OpBase> op(new vkcom::OpPermute(_order));
return Ptr<BackendNode>(new VkComBackendNode(input, op));
}
#endif // HAVE_VULKAN
#ifdef HAVE_TIMVX
virtual Ptr<BackendNode> initTimVX(void* timVXInfo_,
const std::vector<Ptr<BackendWrapper> > &inputsWrapper,
const std::vector<Ptr<BackendWrapper> > &outputsWrapper,
bool isLast) CV_OVERRIDE
{
// tvGraph Initialization.
auto timVxInfo = reinterpret_cast<TimVXInfo *>(timVXInfo_);
CV_Assert(timVxInfo);
Ptr<TimVXGraph> tvGraph = timVxInfo->getGraph();
CV_Assert(tvGraph);
Ptr<tim::vx::Graph> graph = tvGraph->graph;
std::vector<int> inputsIndex, outputsIndex;
int input_index = -1, output_index = -1;
if (outputsWrapper.size() != 1) // only work for single outputBlob
return Ptr<BackendNode>();
// Input
Ptr<TimVXBackendWrapper> inputWrapper = inputsWrapper[0].dynamicCast<TimVXBackendWrapper>();
if (inputWrapper->isTensor())
{
input_index = tvGraph->getTensorIndex(inputWrapper->getTensor());
if (input_index == -1)
{
// Copy To New inputWrapper
Mat tmp = inputWrapper->getMat();
inputWrapper = Ptr<TimVXBackendWrapper>(new TimVXBackendWrapper(tmp));
}
}
if (!inputWrapper->isTensor())
{
Ptr<tim::vx::Quantization> tvInputQuant = Ptr<tim::vx::Quantization>(
new tim::vx::Quantization(tim::vx::QuantType::ASYMMETRIC, scale, zeropoint));
inputWrapper->createTensor(graph,tim::vx::TensorAttribute::INPUT, tvInputQuant);
input_index = tvGraph->addWrapper(inputWrapper);
}
inputsIndex.push_back(input_index);
//Output
Ptr<TimVXBackendWrapper> outputWrapper = outputsWrapper[0].dynamicCast<TimVXBackendWrapper>();
// output has the same quantized attrib.
Ptr<tim::vx::Quantization> outputQuant = inputWrapper->getTensorQuantization();
if (isLast)
{
auto shapeType = getShapeTypeFromMat(outputWrapper->getMat());
// For Graph Output tensor, we need to set tensor shape before createTensor().
outputWrapper->setTensorShape(shapeType);
outputWrapper->createTensor(graph, tim::vx::TensorAttribute::OUTPUT, outputQuant);
}
else
{
outputWrapper->createTensor(graph, tim::vx::TensorAttribute::TRANSIENT, outputQuant);
}
output_index = tvGraph->addWrapper(outputWrapper);
outputsIndex.push_back(output_index);
std::vector<uint32_t> tvOrder;
if (getOrderWHCN(tvOrder))
{
std::shared_ptr<tim::vx::Operation> tvPermute = graph->CreateOperation<tim::vx::ops::Transpose>(tvOrder);
Ptr<TimVXBackendNode> tvBackendNode = new TimVXBackendNode(tvGraph, tvPermute, inputsIndex, outputsIndex);
return tvBackendNode;
}
else
{
return Ptr<BackendNode>();
}
}
#endif // HAVE_TIMVX
virtual bool tryQuantize(const std::vector<std::vector<float> > &scales,
const std::vector<std::vector<int> > &zeropoints, LayerParams& params) CV_OVERRIDE
{
return true;
}
// convert OpenCV NCHW order to WHCN order.
bool getOrderWHCN(std::vector<uint32_t>& orderWHCN)
{
std::map<int, int> lookup;
int orderLen = _order.size();
if (orderLen <2)
return false;
orderWHCN.assign(_order.begin(), _order.end());
if (orderLen == 2)
{
return true;
}
else if (orderLen >= 3)
{
for (int i = 0; i < orderLen; i++)
{
lookup[i] = orderLen - i - 1;
}
for (int i = 0; i < orderLen; i++)
{
orderWHCN[i] = lookup[_order[i]];
}
std::reverse(orderWHCN.begin(), orderWHCN.end());
return true;
}
else
return false;
}
size_t _count;
std::vector<size_t> _order;
std::vector<int> _oldDimensionSize;
std::vector<int> _newDimensionSize;
std::vector<size_t> _oldStride;
std::vector<size_t> _newStride;
bool _needsPermute;
#ifdef HAVE_OPENCL
UMat uorder, uold_stride, unew_stride;
#endif
size_t _numAxes;
int zeropoint;
float scale;
};
Ptr<PermuteLayer> PermuteLayer::create(const LayerParams &params)
{
return Ptr<PermuteLayer>(new PermuteLayerImpl(params));
}
}
}