mirror of
https://github.com/opencv/opencv.git
synced 2025-06-07 17:44:04 +08:00

dnn: TIM-VX NPU backend support * Add TimVX NPU backend for DNN module. * use official branch from tim-vx repo; fix detecting viv sdk Co-authored-by: fytao <yuantao.feng@outlook.com>
632 lines
21 KiB
C++
632 lines
21 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
|
|
// Copyright (C) 2017, Intel Corporation, all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#include "../precomp.hpp"
|
|
#include "layers_common.hpp"
|
|
#include "../op_cuda.hpp"
|
|
#include "../op_inf_engine.hpp"
|
|
#include "../ie_ngraph.hpp"
|
|
#include "../op_vkcom.hpp"
|
|
#include "../op_webnn.hpp"
|
|
#include "../op_timvx.hpp"
|
|
|
|
#include <float.h>
|
|
#include <algorithm>
|
|
|
|
#ifdef HAVE_OPENCL
|
|
#include "opencl_kernels_dnn.hpp"
|
|
#endif
|
|
|
|
#ifdef HAVE_CUDA
|
|
#include "../cuda4dnn/primitives/permute.hpp"
|
|
using namespace cv::dnn::cuda4dnn;
|
|
#endif
|
|
|
|
namespace cv
|
|
{
|
|
namespace dnn
|
|
{
|
|
class PermuteLayerImpl CV_FINAL : public PermuteLayer
|
|
{
|
|
public:
|
|
void checkNeedForPermutation()
|
|
{
|
|
_needsPermute = false;
|
|
for (size_t i = 0; i < _numAxes; ++i)
|
|
{
|
|
if (_order[i] != i)
|
|
{
|
|
_needsPermute = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
PermuteLayerImpl(const LayerParams ¶ms)
|
|
: _count(0), _needsPermute(false), _numAxes(0)
|
|
{
|
|
if (!params.has("order"))
|
|
{
|
|
return;
|
|
}
|
|
|
|
DictValue paramOrder = params.get("order");
|
|
_numAxes = paramOrder.size();
|
|
|
|
for (size_t i = 0; i < _numAxes; i++)
|
|
{
|
|
int currentOrder = paramOrder.get<int>(i);
|
|
if (currentOrder < 0 || currentOrder > _numAxes)
|
|
{
|
|
CV_Error(Error::StsBadArg,
|
|
format("Orders of dimensions in Permute layer parameter"
|
|
"must be in [0...%zu]", _numAxes - 1));
|
|
}
|
|
if (std::find(_order.begin(), _order.end(), currentOrder) != _order.end())
|
|
{
|
|
CV_Error(Error::StsBadArg,
|
|
"Permute layer parameter contains duplicated orders.");
|
|
}
|
|
_order.push_back(currentOrder);
|
|
}
|
|
|
|
zeropoint = params.get<int>("zeropoints", 0);
|
|
scale = params.get<float>("scales", 1.0f);
|
|
|
|
setParamsFrom(params);
|
|
checkNeedForPermutation();
|
|
}
|
|
|
|
virtual bool supportBackend(int backendId) CV_OVERRIDE
|
|
{
|
|
#ifdef HAVE_INF_ENGINE
|
|
if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
|
|
{
|
|
if (preferableTarget == DNN_TARGET_CPU)
|
|
return _order.size() <= 4 || !isArmComputePlugin();
|
|
return true;
|
|
}
|
|
#endif
|
|
|
|
#ifdef HAVE_TIMVX
|
|
if (backendId == DNN_BACKEND_TIMVX && haveTimVX())
|
|
{
|
|
int len = this->type.length();
|
|
if (len <= 4)
|
|
return false;
|
|
|
|
if (this->type.substr(len - 4) == "Int8")
|
|
return true;
|
|
else
|
|
return false;
|
|
}
|
|
#endif
|
|
return backendId == DNN_BACKEND_OPENCV ||
|
|
backendId == DNN_BACKEND_CUDA ||
|
|
backendId == DNN_BACKEND_WEBNN ||
|
|
(backendId == DNN_BACKEND_VKCOM && haveVulkan());
|
|
}
|
|
|
|
bool getMemoryShapes(const std::vector<MatShape> &inputs,
|
|
const int requiredOutputs,
|
|
std::vector<MatShape> &outputs,
|
|
std::vector<MatShape> &internals) const CV_OVERRIDE
|
|
{
|
|
if(!_needsPermute)
|
|
{
|
|
Layer::getMemoryShapes(inputs, requiredOutputs, outputs, internals);
|
|
return true;
|
|
}
|
|
|
|
CV_Assert(inputs.size() > 0);
|
|
CV_Assert((int)_numAxes == inputs[0].size());
|
|
|
|
MatShape shapeBefore = inputs[0], shapeAfter;
|
|
for (size_t i = 0; i < _numAxes; i++)
|
|
{
|
|
shapeAfter.push_back(shapeBefore[_order[i]]);
|
|
}
|
|
|
|
outputs.clear();
|
|
|
|
for (size_t i = 0; i < inputs.size(); i++)
|
|
{
|
|
CV_Assert(total(inputs[i]) == total(shapeAfter));
|
|
outputs.push_back(shapeAfter);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
void computeStrides(const MatShape &shapeBefore, const MatShape &shapeAfter)
|
|
{
|
|
_oldStride.resize(_numAxes);
|
|
_newStride.resize(_numAxes);
|
|
|
|
_oldStride[_numAxes - 1] = 1;
|
|
_newStride[_numAxes - 1] = 1;
|
|
|
|
for(int i = _numAxes - 2; i >= 0; i--)
|
|
{
|
|
_oldStride[i] = _oldStride[i + 1] * shapeBefore[i + 1];
|
|
_newStride[i] = _newStride[i + 1] * shapeAfter[i + 1];
|
|
}
|
|
|
|
_count = _oldStride[0] * shapeBefore[0];
|
|
}
|
|
|
|
void finalize(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr) CV_OVERRIDE
|
|
{
|
|
if(!_needsPermute)
|
|
{
|
|
return;
|
|
}
|
|
std::vector<Mat> inputs, outputs;
|
|
inputs_arr.getMatVector(inputs);
|
|
outputs_arr.getMatVector(outputs);
|
|
|
|
CV_Assert(inputs.size() > 0);
|
|
const Mat& inp0 = inputs[0];
|
|
CV_Assert((int)_numAxes == inp0.dims);
|
|
|
|
computeStrides(shape(inputs[0]), shape(outputs[0]));
|
|
|
|
#ifdef HAVE_OPENCL
|
|
uorder.release();
|
|
uold_stride.release();
|
|
unew_stride.release();
|
|
#endif
|
|
}
|
|
|
|
template <class T>
|
|
class PermuteInvoker : public ParallelLoopBody
|
|
{
|
|
public:
|
|
const Mat* inp;
|
|
Mat* out;
|
|
const std::vector<size_t>* order;
|
|
int nstripes;
|
|
|
|
static void run(const Mat& inp, Mat& out, const std::vector<size_t>& order, int nstripes)
|
|
{
|
|
PermuteInvoker p;
|
|
p.inp = &inp;
|
|
p.out = &out;
|
|
p.order = ℴ
|
|
p.nstripes = nstripes;
|
|
|
|
CV_Assert( out.size[0] == inp.size[order[0]] &&
|
|
out.size[1] == inp.size[order[1]] &&
|
|
out.size[2] == inp.size[order[2]] &&
|
|
out.size[3] == inp.size[order[3]]);
|
|
|
|
parallel_for_(Range(0, nstripes), p, nstripes);
|
|
}
|
|
|
|
PermuteInvoker() : inp(0), out(0), order(0), nstripes(0) {}
|
|
|
|
void operator()(const Range& r) const CV_OVERRIDE
|
|
{
|
|
int n0 = out->size[0], n1 = out->size[1], n2 = out->size[2], n3 = out->size[3];
|
|
|
|
size_t orows = (size_t)n0*n1*n2;
|
|
size_t stripeSize = (orows + nstripes - 1)/nstripes;
|
|
size_t stripeStart = r.start*stripeSize;
|
|
size_t stripeEnd = std::min(r.end*stripeSize, orows);
|
|
|
|
const size_t esz = sizeof(T);
|
|
size_t ostep0 = out->step[0]/esz, ostep1 = out->step[1]/esz, ostep2 = out->step[2]/esz;
|
|
const size_t* ord = &order->at(0);
|
|
size_t istep0 = inp->step[ord[0]]/esz, istep1 = inp->step[ord[1]]/esz,
|
|
istep2 = inp->step[ord[2]]/esz, istep3 = inp->step[ord[3]]/esz;
|
|
|
|
size_t val = stripeStart;
|
|
int i2 = (int)(val % n2);
|
|
val /= n2;
|
|
int i1 = (int)(val % n1);
|
|
int i0 = (int)(val / n1);
|
|
|
|
const T* inptr_orig = inp->ptr<T>();
|
|
T* outptr_orig = out->ptr<T>();
|
|
|
|
for( size_t ofs = stripeStart; ofs < stripeEnd; ofs++ )
|
|
{
|
|
const T* inptr = inptr_orig + i0*istep0 + i1*istep1 + i2*istep2;
|
|
T* outptr = outptr_orig + i0*ostep0 + i1*ostep1 + i2*ostep2;
|
|
|
|
for( int i3 = 0; i3 < n3; i3++ )
|
|
outptr[i3] = inptr[i3*istep3];
|
|
|
|
if( ++i2 >= n2 )
|
|
{
|
|
i2 = 0;
|
|
if( ++i1 >= n1 )
|
|
{
|
|
i1 = 0;
|
|
if( ++i0 >= n0 )
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
#ifdef HAVE_OPENCL
|
|
bool forward_ocl(InputArrayOfArrays inps, OutputArrayOfArrays outs, OutputArrayOfArrays internals)
|
|
{
|
|
std::vector<UMat> inputs;
|
|
std::vector<UMat> outputs;
|
|
|
|
inps.getUMatVector(inputs);
|
|
outs.getUMatVector(outputs);
|
|
|
|
if (!_needsPermute)
|
|
return false;
|
|
|
|
if (uorder.empty())
|
|
{
|
|
std::vector<int> orderVec(_order.begin(), _order.end());;
|
|
Mat morder(1, orderVec.size(), CV_32SC1, &orderVec[0]);
|
|
|
|
std::vector<int> oldStrideVec(_oldStride.begin(), _oldStride.end());
|
|
Mat mold_stride(1, _oldStride.size(), CV_32SC1, &oldStrideVec[0]);
|
|
|
|
std::vector<int> newStrideVec(_newStride.begin(), _newStride.end());
|
|
Mat mnew_stride(1, newStrideVec.size(), CV_32SC1, &newStrideVec[0]);
|
|
|
|
morder.copyTo(uorder);
|
|
mold_stride.copyTo(uold_stride);
|
|
mnew_stride.copyTo(unew_stride);
|
|
}
|
|
|
|
bool use_half = (inps.depth() == CV_16S);
|
|
String opts = format("-DDtype=%s", use_half ? "half" : "float");
|
|
for (size_t i = 0; i < inputs.size(); i++)
|
|
{
|
|
ocl::Kernel kernel("permute", ocl::dnn::permute_oclsrc, opts);
|
|
|
|
kernel.set(0, (int)_count);
|
|
kernel.set(1, ocl::KernelArg::PtrReadOnly(inputs[i]));
|
|
kernel.set(2, ocl::KernelArg::PtrReadOnly(uorder));
|
|
kernel.set(3, ocl::KernelArg::PtrReadOnly(uold_stride));
|
|
kernel.set(4, ocl::KernelArg::PtrReadOnly(unew_stride));
|
|
kernel.set(5, (int)_numAxes);
|
|
kernel.set(6, ocl::KernelArg::PtrWriteOnly(outputs[i]));
|
|
|
|
if (!kernel.run(1, &_count, NULL, false))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
#endif
|
|
|
|
void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr) CV_OVERRIDE
|
|
{
|
|
CV_TRACE_FUNCTION();
|
|
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
|
|
|
|
CV_OCL_RUN(IS_DNN_OPENCL_TARGET(preferableTarget) &&
|
|
inputs_arr.depth() != CV_8S,
|
|
forward_ocl(inputs_arr, outputs_arr, internals_arr))
|
|
|
|
if (inputs_arr.depth() == CV_16S)
|
|
{
|
|
forward_fallback(inputs_arr, outputs_arr, internals_arr);
|
|
return;
|
|
}
|
|
|
|
std::vector<Mat> inputs, outputs;
|
|
inputs_arr.getMatVector(inputs);
|
|
outputs_arr.getMatVector(outputs);
|
|
|
|
size_t k, ninputs = inputs.size();
|
|
if(!_needsPermute)
|
|
{
|
|
for (k = 0; k < ninputs; k++)
|
|
{
|
|
CV_Assert(outputs[k].total() == inputs[k].total());
|
|
if (outputs[k].data != inputs[k].data)
|
|
inputs[k].copyTo(outputs[k]);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
size_t i, j, count = _count, numAxes = _numAxes;
|
|
const size_t* newStride = &_newStride[0];
|
|
const size_t* oldStride = &_oldStride[0];
|
|
const size_t* order = &_order[0];
|
|
|
|
for (k = 0; k < ninputs; k++)
|
|
{
|
|
const Mat& inp = inputs[k];
|
|
Mat& out = outputs[k];
|
|
|
|
CV_Assert(inp.dims == numAxes && inp.size == inputs[0].size);
|
|
CV_Assert(out.dims == numAxes && out.size == outputs[0].size);
|
|
|
|
CV_Assert(inp.isContinuous() && out.isContinuous());
|
|
// CV_Assert(inp.type() == CV_32F && out.type() == CV_32F);
|
|
|
|
if( numAxes == 4 )
|
|
{
|
|
int nstripes = getNumThreads();
|
|
if (inp.type() == CV_8S)
|
|
PermuteInvoker<int8_t>::run(inp, out, _order, nstripes);
|
|
else
|
|
PermuteInvoker<float>::run(inp, out, _order, nstripes);
|
|
}
|
|
else
|
|
{
|
|
if (inp.type() == CV_8S)
|
|
{
|
|
const int8_t *srcData = inp.ptr<int8_t>();
|
|
int8_t *dstData = out.ptr<int8_t>();
|
|
|
|
for (i = 0; i < count; ++i)
|
|
{
|
|
size_t oldPosition = 0;
|
|
size_t newPosition = i;
|
|
|
|
for (j = 0; j < numAxes; ++j)
|
|
{
|
|
oldPosition += (newPosition / newStride[j]) * oldStride[order[j]];
|
|
newPosition %= newStride[j];
|
|
}
|
|
dstData[i] = srcData[oldPosition];
|
|
}
|
|
}
|
|
else
|
|
{
|
|
const float *srcData = inp.ptr<float>();
|
|
float *dstData = out.ptr<float>();
|
|
|
|
for (i = 0; i < count; ++i)
|
|
{
|
|
size_t oldPosition = 0;
|
|
size_t newPosition = i;
|
|
|
|
for (j = 0; j < numAxes; ++j)
|
|
{
|
|
oldPosition += (newPosition / newStride[j]) * oldStride[order[j]];
|
|
newPosition %= newStride[j];
|
|
}
|
|
dstData[i] = srcData[oldPosition];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
#ifdef HAVE_DNN_NGRAPH
|
|
virtual Ptr<BackendNode> initNgraph(const std::vector<Ptr<BackendWrapper> >& inputs,
|
|
const std::vector<Ptr<BackendNode> >& nodes) CV_OVERRIDE
|
|
{
|
|
auto& ieInpNode = nodes[0].dynamicCast<InfEngineNgraphNode>()->node;
|
|
std::vector<int64_t> order(_order.begin(), _order.end());
|
|
auto tr_axes = std::make_shared<ngraph::op::Constant>(ngraph::element::i64,
|
|
ngraph::Shape({order.size()}), order.data());
|
|
auto transpose = std::make_shared<ngraph::op::Transpose>(ieInpNode, tr_axes);
|
|
return Ptr<BackendNode>(new InfEngineNgraphNode(transpose));
|
|
}
|
|
#endif // HAVE_DNN_NGRAPH
|
|
|
|
#ifdef HAVE_WEBNN
|
|
virtual Ptr<BackendNode> initWebnn(const std::vector<Ptr<BackendWrapper> >& inputs, const std::vector<Ptr<BackendNode> >& nodes) CV_OVERRIDE
|
|
{
|
|
Ptr<WebnnBackendNode> node = nodes[0].dynamicCast<WebnnBackendNode>();
|
|
auto& webnnInpOperand = node->operand;
|
|
auto& webnnGraphBuilder = node->net->builder;
|
|
std::vector<int32_t> permutation(_order.begin(), _order.end());
|
|
ml::TransposeOptions options;
|
|
options.permutation = permutation.data();
|
|
options.permutationCount = permutation.size();
|
|
auto operand = webnnGraphBuilder.Transpose(webnnInpOperand, &options);
|
|
return Ptr<BackendNode>(new WebnnBackendNode(operand));
|
|
}
|
|
#endif
|
|
|
|
#ifdef HAVE_CUDA
|
|
Ptr<BackendNode> initCUDA(
|
|
void *context_,
|
|
const std::vector<Ptr<BackendWrapper>>& inputs,
|
|
const std::vector<Ptr<BackendWrapper>>& outputs
|
|
) override
|
|
{
|
|
auto context = reinterpret_cast<csl::CSLContext*>(context_);
|
|
return make_cuda_node<cuda4dnn::PermuteOp>(preferableTarget, std::move(context->stream), _order);
|
|
}
|
|
#endif
|
|
|
|
|
|
#ifdef HAVE_VULKAN
|
|
virtual Ptr<BackendNode> initVkCom(const std::vector<Ptr<BackendWrapper> > &input) CV_OVERRIDE
|
|
{
|
|
CV_Assert(!_order.empty());
|
|
std::shared_ptr<vkcom::OpBase> op(new vkcom::OpPermute(_order));
|
|
return Ptr<BackendNode>(new VkComBackendNode(input, op));
|
|
}
|
|
#endif // HAVE_VULKAN
|
|
|
|
#ifdef HAVE_TIMVX
|
|
virtual Ptr<BackendNode> initTimVX(void* timVXInfo_,
|
|
const std::vector<Ptr<BackendWrapper> > &inputsWrapper,
|
|
const std::vector<Ptr<BackendWrapper> > &outputsWrapper,
|
|
bool isLast) CV_OVERRIDE
|
|
{
|
|
// tvGraph Initialization.
|
|
auto timVxInfo = reinterpret_cast<TimVXInfo *>(timVXInfo_);
|
|
CV_Assert(timVxInfo);
|
|
Ptr<TimVXGraph> tvGraph = timVxInfo->getGraph();
|
|
CV_Assert(tvGraph);
|
|
Ptr<tim::vx::Graph> graph = tvGraph->graph;
|
|
|
|
std::vector<int> inputsIndex, outputsIndex;
|
|
int input_index = -1, output_index = -1;
|
|
|
|
if (outputsWrapper.size() != 1) // only work for single outputBlob
|
|
return Ptr<BackendNode>();
|
|
|
|
// Input
|
|
Ptr<TimVXBackendWrapper> inputWrapper = inputsWrapper[0].dynamicCast<TimVXBackendWrapper>();
|
|
if (inputWrapper->isTensor())
|
|
{
|
|
input_index = tvGraph->getTensorIndex(inputWrapper->getTensor());
|
|
if (input_index == -1)
|
|
{
|
|
// Copy To New inputWrapper
|
|
Mat tmp = inputWrapper->getMat();
|
|
inputWrapper = Ptr<TimVXBackendWrapper>(new TimVXBackendWrapper(tmp));
|
|
}
|
|
}
|
|
|
|
if (!inputWrapper->isTensor())
|
|
{
|
|
Ptr<tim::vx::Quantization> tvInputQuant = Ptr<tim::vx::Quantization>(
|
|
new tim::vx::Quantization(tim::vx::QuantType::ASYMMETRIC, scale, zeropoint));
|
|
inputWrapper->createTensor(graph,tim::vx::TensorAttribute::INPUT, tvInputQuant);
|
|
input_index = tvGraph->addWrapper(inputWrapper);
|
|
}
|
|
inputsIndex.push_back(input_index);
|
|
|
|
//Output
|
|
Ptr<TimVXBackendWrapper> outputWrapper = outputsWrapper[0].dynamicCast<TimVXBackendWrapper>();
|
|
// output has the same quantized attrib.
|
|
Ptr<tim::vx::Quantization> outputQuant = inputWrapper->getTensorQuantization();
|
|
|
|
if (isLast)
|
|
{
|
|
auto shapeType = getShapeTypeFromMat(outputWrapper->getMat());
|
|
|
|
// For Graph Output tensor, we need to set tensor shape before createTensor().
|
|
outputWrapper->setTensorShape(shapeType);
|
|
outputWrapper->createTensor(graph, tim::vx::TensorAttribute::OUTPUT, outputQuant);
|
|
}
|
|
else
|
|
{
|
|
outputWrapper->createTensor(graph, tim::vx::TensorAttribute::TRANSIENT, outputQuant);
|
|
}
|
|
output_index = tvGraph->addWrapper(outputWrapper);
|
|
outputsIndex.push_back(output_index);
|
|
|
|
std::vector<uint32_t> tvOrder;
|
|
if (getOrderWHCN(tvOrder))
|
|
{
|
|
std::shared_ptr<tim::vx::Operation> tvPermute = graph->CreateOperation<tim::vx::ops::Transpose>(tvOrder);
|
|
|
|
Ptr<TimVXBackendNode> tvBackendNode = new TimVXBackendNode(tvGraph, tvPermute, inputsIndex, outputsIndex);
|
|
|
|
return tvBackendNode;
|
|
}
|
|
else
|
|
{
|
|
return Ptr<BackendNode>();
|
|
}
|
|
}
|
|
#endif // HAVE_TIMVX
|
|
|
|
virtual bool tryQuantize(const std::vector<std::vector<float> > &scales,
|
|
const std::vector<std::vector<int> > &zeropoints, LayerParams& params) CV_OVERRIDE
|
|
{
|
|
return true;
|
|
}
|
|
|
|
// convert OpenCV NCHW order to WHCN order.
|
|
bool getOrderWHCN(std::vector<uint32_t>& orderWHCN)
|
|
{
|
|
std::map<int, int> lookup;
|
|
int orderLen = _order.size();
|
|
if (orderLen <2)
|
|
return false;
|
|
orderWHCN.assign(_order.begin(), _order.end());
|
|
|
|
if (orderLen == 2)
|
|
{
|
|
return true;
|
|
}
|
|
else if (orderLen >= 3)
|
|
{
|
|
for (int i = 0; i < orderLen; i++)
|
|
{
|
|
lookup[i] = orderLen - i - 1;
|
|
}
|
|
|
|
for (int i = 0; i < orderLen; i++)
|
|
{
|
|
orderWHCN[i] = lookup[_order[i]];
|
|
}
|
|
std::reverse(orderWHCN.begin(), orderWHCN.end());
|
|
return true;
|
|
}
|
|
else
|
|
return false;
|
|
}
|
|
|
|
size_t _count;
|
|
std::vector<size_t> _order;
|
|
|
|
std::vector<int> _oldDimensionSize;
|
|
std::vector<int> _newDimensionSize;
|
|
|
|
std::vector<size_t> _oldStride;
|
|
std::vector<size_t> _newStride;
|
|
bool _needsPermute;
|
|
|
|
#ifdef HAVE_OPENCL
|
|
UMat uorder, uold_stride, unew_stride;
|
|
#endif
|
|
|
|
size_t _numAxes;
|
|
int zeropoint;
|
|
float scale;
|
|
};
|
|
|
|
Ptr<PermuteLayer> PermuteLayer::create(const LayerParams ¶ms)
|
|
{
|
|
return Ptr<PermuteLayer>(new PermuteLayerImpl(params));
|
|
}
|
|
|
|
}
|
|
}
|