opencv/samples/dnn/common.hpp
Gursimar Singh f8fb3a7f55
Merge pull request #25515 from gursimarsingh:improved_edge_detection_sample
#25006 #25314 
This pull request removes hed_pretrained caffe model to the SOTA dexined onnx model for edge detection. Usage of conventional methods like canny has also been added

The obsolete cpp and python sample has been removed

TODO:
- [  ]  Remove temporary hack for quantized models. Refer issue https://github.com/opencv/opencv_zoo/issues/273

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2024-09-06 12:47:04 +03:00

178 lines
7.8 KiB
C++

#include <opencv2/core/utils/filesystem.hpp>
#include<iostream>
using namespace cv;
std::string genArgument(const std::string& argName, const std::string& help,
const std::string& modelName, const std::string& zooFile,
char key = ' ', std::string defaultVal = "");
std::string genPreprocArguments(const std::string& modelName, const std::string& zooFile);
std::string findFile(const std::string& filename);
std::string findModel(const std::string& filename, const std::string& sha1);
inline int getBackendID(const String& backend) {
std::map<String, int> backendIDs = {
{"default", cv::dnn::DNN_BACKEND_DEFAULT},
{"openvino", cv::dnn::DNN_BACKEND_INFERENCE_ENGINE},
{"opencv", cv::dnn::DNN_BACKEND_OPENCV},
{"vkcom", cv::dnn::DNN_BACKEND_VKCOM},
{"cuda", cv::dnn::DNN_BACKEND_CUDA},
{"webnn", cv::dnn::DNN_BACKEND_WEBNN}
};
if(backendIDs.find(backend) != backendIDs.end()){
return backendIDs[backend];
}else {
throw std::invalid_argument("Invalid backend name: " + backend);
}
}
inline int getTargetID(const String& target) {
std::map<String, int> targetIDs = {
{"cpu", cv::dnn::DNN_TARGET_CPU},
{"opencl", cv::dnn::DNN_TARGET_OPENCL},
{"opencl_fp16", cv::dnn::DNN_TARGET_OPENCL_FP16},
{"vpu", cv::dnn::DNN_TARGET_MYRIAD},
{"vulkan", cv::dnn::DNN_TARGET_VULKAN},
{"cuda", cv::dnn::DNN_TARGET_CUDA},
{"cuda_fp16", cv::dnn::DNN_TARGET_CUDA_FP16}
};
if(targetIDs.find(target) != targetIDs.end()){
return targetIDs[target];
}else {
throw std::invalid_argument("Invalid target name: " + target);
}
}
std::string genArgument(const std::string& argName, const std::string& help,
const std::string& modelName, const std::string& zooFile,
char key, std::string defaultVal)
{
if (!modelName.empty())
{
FileStorage fs(zooFile, FileStorage::READ);
if (fs.isOpened())
{
FileNode node = fs[modelName];
if (!node.empty())
{
FileNode value = node[argName];
if(argName == "sha1"){
value = node["load_info"][argName];
}
if (!value.empty())
{
if (value.isReal())
defaultVal = format("%f", (float)value);
else if (value.isString())
defaultVal = (std::string)value;
else if (value.isInt())
defaultVal = format("%d", (int)value);
else if (value.isSeq())
{
for (size_t i = 0; i < value.size(); ++i)
{
FileNode v = value[(int)i];
if (v.isInt())
defaultVal += format("%d ", (int)v);
else if (v.isReal())
defaultVal += format("%f ", (float)v);
else
CV_Error(Error::StsNotImplemented, "Unexpected value format");
}
}
else
CV_Error(Error::StsNotImplemented, "Unexpected field format");
}
}
}
}
return "{ " + argName + " " + key + " | " + defaultVal + " | " + help + " }";
}
std::string findModel(const std::string& filename, const std::string& sha1)
{
if (filename.empty() || utils::fs::exists(filename))
return filename;
if(!getenv("OPENCV_DOWNLOAD_CACHE_DIR")){
std::cout<< "[WARN] Please specify a path to model download directory in OPENCV_DOWNLOAD_CACHE_DIR environment variable"<<std::endl;
return findFile(filename);
}
else{
std::string modelPath = utils::fs::join(getenv("OPENCV_DOWNLOAD_CACHE_DIR"), utils::fs::join(sha1, filename));
if (utils::fs::exists(modelPath))
return modelPath;
modelPath = utils::fs::join(getenv("OPENCV_DOWNLOAD_CACHE_DIR"),filename);
if (utils::fs::exists(modelPath))
return modelPath;
}
std::cout << "File " + filename + " not found! "
<< "Please specify a path to model download directory in OPENCV_DOWNLOAD_CACHE_DIR "
<< "environment variable or pass a full path to " + filename
<< std::endl;
std::exit(1);
}
std::string findFile(const std::string& filename)
{
if (filename.empty() || utils::fs::exists(filename))
return filename;
if(!getenv("OPENCV_SAMPLES_DATA_PATH")){
std::cout<< "[WARN] Please specify a path to opencv/samples/data in OPENCV_SAMPLES_DATA_PATH environment variable"<<std::endl;
}
else{
std::string samplePath = utils::fs::join(getenv("OPENCV_SAMPLES_DATA_PATH"), filename);
if (utils::fs::exists(samplePath))
return samplePath;
}
const char* extraPaths[] = {getenv("OPENCV_SAMPLES_DATA_PATH"),
getenv("OPENCV_DNN_TEST_DATA_PATH"),
getenv("OPENCV_TEST_DATA_PATH")};
for (int i = 0; i < 3; ++i)
{
if (extraPaths[i] == NULL)
continue;
std::string absPath = utils::fs::join(extraPaths[i], utils::fs::join("dnn", filename));
if (utils::fs::exists(absPath))
return absPath;
}
std::cout << "File " + filename + " not found! "
<< "Please specify the path to /opencv/samples/data in the OPENCV_SAMPLES_DATA_PATH environment variable, "
<< "or specify the path to opencv_extra/testdata in the OPENCV_DNN_TEST_DATA_PATH environment variable, "
<< "or specify the path to the model download cache directory in the OPENCV_DOWNLOAD_CACHE_DIR environment variable, "
<< "or pass the full path to " + filename + "."
<< std::endl;
std::exit(1);
}
std::string genPreprocArguments(const std::string& modelName, const std::string& zooFile)
{
return genArgument("model", "Path to a binary file of model contains trained weights. "
"It could be a file with extensions .caffemodel (Caffe), "
".pb (TensorFlow), .weights (Darknet), .bin (OpenVINO).",
modelName, zooFile, 'm') +
genArgument("config", "Path to a text file of model contains network configuration. "
"It could be a file with extensions .prototxt (Caffe), .pbtxt (TensorFlow), .cfg (Darknet), .xml (OpenVINO).",
modelName, zooFile, 'c') +
genArgument("mean", "Preprocess input image by subtracting mean values. Mean values should be in BGR order and delimited by spaces.",
modelName, zooFile) +
genArgument("std", "Preprocess input image by dividing on a standard deviation.",
modelName, zooFile) +
genArgument("scale", "Preprocess input image by multiplying on a scale factor.",
modelName, zooFile, ' ', "1.0") +
genArgument("width", "Preprocess input image by resizing to a specific width.",
modelName, zooFile, ' ', "-1") +
genArgument("height", "Preprocess input image by resizing to a specific height.",
modelName, zooFile, ' ', "-1") +
genArgument("rgb", "Indicate that model works with RGB input images instead BGR ones.",
modelName, zooFile)+
genArgument("labels", "Path to a text file with names of classes to label detected objects.",
modelName, zooFile)+
genArgument("sha1", "Optional path to hashsum of downloaded model to be loaded from models.yml",
modelName, zooFile);
}