mirror of
https://github.com/opencv/opencv.git
synced 2025-01-06 10:18:12 +08:00
f8fb3a7f55
#25006 #25314 This pull request removes hed_pretrained caffe model to the SOTA dexined onnx model for edge detection. Usage of conventional methods like canny has also been added The obsolete cpp and python sample has been removed TODO: - [ ] Remove temporary hack for quantized models. Refer issue https://github.com/opencv/opencv_zoo/issues/273 ### Pull Request Readiness Checklist See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request - [x] I agree to contribute to the project under Apache 2 License. - [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV - [x] The PR is proposed to the proper branch - [x] There is a reference to the original bug report and related work - [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable Patch to opencv_extra has the same branch name. - [x] The feature is well documented and sample code can be built with the project CMake
307 lines
9.4 KiB
YAML
307 lines
9.4 KiB
YAML
%YAML 1.0
|
|
---
|
|
################################################################################
|
|
# Object detection models.
|
|
################################################################################
|
|
|
|
# YOLOv8 object detection family from ultralytics (https://github.com/ultralytics/ultralytics)
|
|
# Might be used for all YOLOv8n YOLOv8s YOLOv8m YOLOv8l and YOLOv8x
|
|
yolov8x:
|
|
load_info:
|
|
url: "https://huggingface.co/cabelo/yolov8/resolve/main/yolov8x.onnx?download=true"
|
|
sha1: "462f15d668c046d38e27d3df01fe8142dd004cb4"
|
|
model: "yolov8x.onnx"
|
|
mean: 0.0
|
|
scale: 0.00392
|
|
width: 640
|
|
height: 640
|
|
rgb: true
|
|
classes: "object_detection_classes_yolo.txt"
|
|
background_label_id: 0
|
|
sample: "yolo_detector"
|
|
|
|
yolov8s:
|
|
load_info:
|
|
url: "https://github.com/CVHub520/X-AnyLabeling/releases/download/v0.1.0/yolov8s.onnx"
|
|
sha1: "82cd83984396fe929909ecb58212b0e86d0904b1"
|
|
model: "yolov8s.onnx"
|
|
mean: 0.0
|
|
scale: 0.00392
|
|
width: 640
|
|
height: 640
|
|
rgb: true
|
|
classes: "object_detection_classes_yolo.txt"
|
|
background_label_id: 0
|
|
sample: "yolo_detector"
|
|
|
|
yolov8n:
|
|
load_info:
|
|
url: "https://github.com/CVHub520/X-AnyLabeling/releases/download/v0.1.0/yolov8n.onnx"
|
|
sha1: "68f864475d06e2ec4037181052739f268eeac38d"
|
|
model: "yolov8n.onnx"
|
|
mean: 0.0
|
|
scale: 0.00392
|
|
width: 640
|
|
height: 640
|
|
rgb: true
|
|
classes: "object_detection_classes_yolo.txt"
|
|
background_label_id: 0
|
|
sample: "yolo_detector"
|
|
|
|
yolov8m:
|
|
load_info:
|
|
url: "https://github.com/CVHub520/X-AnyLabeling/releases/download/v0.1.0/yolov8m.onnx"
|
|
sha1: "656ffeb4f3b067bc30df956728b5f9c61a4cb090"
|
|
model: "yolov8m.onnx"
|
|
mean: 0.0
|
|
scale: 0.00392
|
|
width: 640
|
|
height: 640
|
|
rgb: true
|
|
classes: "object_detection_classes_yolo.txt"
|
|
background_label_id: 0
|
|
sample: "yolo_detector"
|
|
|
|
yolov8l:
|
|
load_info:
|
|
url: "https://github.com/CVHub520/X-AnyLabeling/releases/download/v0.1.0/yolov8l.onnx"
|
|
sha1: "462df53ca3a85d110bf6be7fc2e2bb1277124395"
|
|
model: "yolov8l.onnx"
|
|
mean: 0.0
|
|
scale: 0.00392
|
|
width: 640
|
|
height: 640
|
|
rgb: true
|
|
classes: "object_detection_classes_yolo.txt"
|
|
background_label_id: 0
|
|
sample: "yolo_detector"
|
|
|
|
# YOLO4 object detection family from Darknet (https://github.com/AlexeyAB/darknet)
|
|
# YOLO object detection family from Darknet (https://pjreddie.com/darknet/yolo/)
|
|
# Might be used for all YOLOv2, TinyYolov2, YOLOv3, YOLOv4 and TinyYolov4
|
|
yolov4:
|
|
load_info:
|
|
url: "https://github.com/AlexeyAB/darknet/releases/download/darknet_yolo_v3_optimal/yolov4.weights"
|
|
sha1: "0143deb6c46fcc7f74dd35bf3c14edc3784e99ee"
|
|
model: "yolov4.weights"
|
|
config: "yolov4.cfg"
|
|
mean: [0, 0, 0]
|
|
scale: 0.00392
|
|
width: 416
|
|
height: 416
|
|
rgb: true
|
|
classes: "object_detection_classes_yolo.txt"
|
|
background_label_id: 0
|
|
sample: "object_detection"
|
|
|
|
yolov4-tiny:
|
|
load_info:
|
|
url: "https://github.com/AlexeyAB/darknet/releases/download/darknet_yolo_v4_pre/yolov4-tiny.weights"
|
|
sha1: "451caaab22fb9831aa1a5ee9b5ba74a35ffa5dcb"
|
|
model: "yolov4-tiny.weights"
|
|
config: "yolov4-tiny.cfg"
|
|
mean: [0, 0, 0]
|
|
scale: 0.00392
|
|
width: 416
|
|
height: 416
|
|
rgb: true
|
|
classes: "object_detection_classes_yolo.txt"
|
|
background_label_id: 0
|
|
sample: "object_detection"
|
|
|
|
yolov3:
|
|
load_info:
|
|
url: "https://pjreddie.com/media/files/yolov3.weights"
|
|
sha1: "520878f12e97cf820529daea502acca380f1cb8e"
|
|
model: "yolov3.weights"
|
|
config: "yolov3.cfg"
|
|
mean: [0, 0, 0]
|
|
scale: 0.00392
|
|
width: 416
|
|
height: 416
|
|
rgb: true
|
|
classes: "object_detection_classes_yolo.txt"
|
|
background_label_id: 0
|
|
sample: "object_detection"
|
|
|
|
tiny-yolo-voc:
|
|
load_info:
|
|
url: "https://pjreddie.com/media/files/yolov2-tiny-voc.weights"
|
|
sha1: "24b4bd049fc4fa5f5e95f684a8967e65c625dff9"
|
|
model: "tiny-yolo-voc.weights"
|
|
config: "tiny-yolo-voc.cfg"
|
|
mean: [0, 0, 0]
|
|
scale: 0.00392
|
|
width: 416
|
|
height: 416
|
|
rgb: true
|
|
classes: "object_detection_classes_pascal_voc.txt"
|
|
background_label_id: 0
|
|
sample: "object_detection"
|
|
|
|
yolov8:
|
|
load_info:
|
|
url: "https://github.com/CVHub520/X-AnyLabeling/releases/download/v0.1.0/yolov8n.onnx"
|
|
sha1: "68f864475d06e2ec4037181052739f268eeac38d"
|
|
model: "yolov8n.onnx"
|
|
mean: [0, 0, 0]
|
|
scale: 0.00392
|
|
width: 640
|
|
height: 640
|
|
rgb: true
|
|
postprocessing: "yolov8"
|
|
classes: "object_detection_classes_yolo.txt"
|
|
sample: "object_detection"
|
|
|
|
# Caffe implementation of SSD model from https://github.com/chuanqi305/MobileNet-SSD
|
|
ssd_caffe:
|
|
load_info:
|
|
url: "https://drive.google.com/uc?export=download&id=0B3gersZ2cHIxRm5PMWRoTkdHdHc"
|
|
sha1: "994d30a8afaa9e754d17d2373b2d62a7dfbaaf7a"
|
|
model: "MobileNetSSD_deploy.caffemodel"
|
|
config: "MobileNetSSD_deploy.prototxt"
|
|
mean: [127.5, 127.5, 127.5]
|
|
scale: 0.007843
|
|
width: 300
|
|
height: 300
|
|
rgb: false
|
|
classes: "object_detection_classes_pascal_voc.txt"
|
|
sample: "object_detection"
|
|
|
|
# TensorFlow implementation of SSD model from https://github.com/tensorflow/models/tree/master/research/object_detection
|
|
ssd_tf:
|
|
load_info:
|
|
url: "http://download.tensorflow.org/models/object_detection/ssd_mobilenet_v1_coco_2017_11_17.tar.gz"
|
|
sha1: "9e4bcdd98f4c6572747679e4ce570de4f03a70e2"
|
|
download_sha: "6157ddb6da55db2da89dd561eceb7f944928e317"
|
|
download_name: "ssd_mobilenet_v1_coco_2017_11_17.tar.gz"
|
|
member: "ssd_mobilenet_v1_coco_2017_11_17/frozen_inference_graph.pb"
|
|
model: "ssd_mobilenet_v1_coco_2017_11_17.pb"
|
|
config: "ssd_mobilenet_v1_coco_2017_11_17.pbtxt"
|
|
mean: [0, 0, 0]
|
|
scale: 1.0
|
|
width: 300
|
|
height: 300
|
|
rgb: true
|
|
classes: "object_detection_classes_coco.txt"
|
|
sample: "object_detection"
|
|
|
|
# TensorFlow implementation of Faster-RCNN model from https://github.com/tensorflow/models/tree/master/research/object_detection
|
|
faster_rcnn_tf:
|
|
load_info:
|
|
url: "http://download.tensorflow.org/models/object_detection/faster_rcnn_inception_v2_coco_2018_01_28.tar.gz"
|
|
sha1: "f2e4bf386b9bb3e25ddfcbbd382c20f417e444f3"
|
|
download_sha: "c710f25e5c6a3ce85fe793d5bf266d581ab1c230"
|
|
download_name: "faster_rcnn_inception_v2_coco_2018_01_28.tar.gz"
|
|
member: "faster_rcnn_inception_v2_coco_2018_01_28/frozen_inference_graph.pb"
|
|
model: "faster_rcnn_inception_v2_coco_2018_01_28.pb"
|
|
config: "faster_rcnn_inception_v2_coco_2018_01_28.pbtxt"
|
|
mean: [0, 0, 0]
|
|
scale: 1.0
|
|
width: 800
|
|
height: 600
|
|
rgb: true
|
|
sample: "object_detection"
|
|
|
|
################################################################################
|
|
# Image classification models.
|
|
################################################################################
|
|
|
|
squeezenet:
|
|
load_info:
|
|
url: "https://github.com/onnx/models/raw/main/validated/vision/classification/squeezenet/model/squeezenet1.1-7.onnx?download="
|
|
sha1: "ec31942d17715941bb9b81f3a91dc59def9236be"
|
|
model: "squeezenet1.1-7.onnx"
|
|
mean: [0.485, 0.456, 0.406]
|
|
std: [0.229, 0.224, 0.225]
|
|
scale: 0.003921
|
|
width: 224
|
|
height: 224
|
|
rgb: true
|
|
labels: "classification_classes_ILSVRC2012.txt"
|
|
sample: "classification"
|
|
|
|
googlenet:
|
|
load_info:
|
|
url: "https://github.com/onnx/models/raw/69c5d3751dda5349fd3fc53f525395d180420c07/vision/classification/inception_and_googlenet/googlenet/model/googlenet-8.onnx"
|
|
sha1: "da39a3ee5e6b4b0d3255bfef95601890afd80709"
|
|
model: "googlenet-8.onnx"
|
|
mean: [103.939, 116.779, 123.675]
|
|
std: [1, 1, 1]
|
|
scale: 1.0
|
|
width: 224
|
|
height: 224
|
|
rgb: false
|
|
labels: "classification_classes_ILSVRC2012.txt"
|
|
sample: "classification"
|
|
|
|
resnet:
|
|
load_info:
|
|
url: "https://github.com/onnx/models/raw/main/validated/vision/classification/resnet/model/resnet50-v2-7.onnx"
|
|
sha1: "c3a67b3cb2f0a61a7eb75eb8bd9139c89557cbe0"
|
|
model: "resnet50-v2-7.onnx"
|
|
mean: [123.675, 116.28, 103.53]
|
|
std: [58.395, 57.12, 57.375]
|
|
scale: 1.0
|
|
width: 224
|
|
height: 224
|
|
rgb: true
|
|
labels: "classification_classes_ILSVRC2012.txt"
|
|
sample: "classification"
|
|
|
|
################################################################################
|
|
# Semantic segmentation models.
|
|
################################################################################
|
|
|
|
fcnresnet50:
|
|
load_info:
|
|
url: "https://github.com/onnx/models/raw/491ce05590abb7551d7fae43c067c060eeb575a6/validated/vision/object_detection_segmentation/fcn/model/fcn-resnet50-12.onnx"
|
|
sha1: "1bb0c7e0034038969aecc6251166f1612a139230"
|
|
model: "fcn-resnet50-12.onnx"
|
|
mean: [103.5, 116.2, 123.6]
|
|
scale: 0.019
|
|
width: 500
|
|
height: 500
|
|
rgb: false
|
|
sample: "segmentation"
|
|
|
|
fcnresnet101:
|
|
load_info:
|
|
url: "https://github.com/onnx/models/raw/fb8271d5d5d9b90dbb1eb5e8e40f8f580fb248b3/vision/object_detection_segmentation/fcn/model/fcn-resnet101-11.onnx"
|
|
sha1: "e7e76474bf6b73334ab32c4be1374c9e605f5aed"
|
|
model: "fcn-resnet101-11.onnx"
|
|
mean: [103.5, 116.2, 123.6]
|
|
scale: 0.019
|
|
width: 500
|
|
height: 500
|
|
rgb: false
|
|
sample: "segmentation"
|
|
|
|
u2netp:
|
|
load_info:
|
|
url: "https://github.com/danielgatis/rembg/releases/download/v0.0.0/u2netp.onnx"
|
|
sha1: "0a99236f0d5c1916a99a8c401b23e5ef32038606"
|
|
model: "u2netp.onnx"
|
|
mean: [123.6, 116.2, 103.5]
|
|
scale: 0.019
|
|
width: 320
|
|
height: 320
|
|
rgb: true
|
|
sample: "segmentation"
|
|
|
|
################################################################################
|
|
# Edge Detection models.
|
|
################################################################################
|
|
|
|
dexined:
|
|
load_info:
|
|
url: "https://github.com/gursimarsingh/opencv_zoo/raw/dexined_model/models/edge_detection_dexined/dexined.onnx"
|
|
sha1: "f86f2d32c3cf892771f76b5e6b629b16a66510e9"
|
|
model: "dexined.onnx"
|
|
mean: [103.5, 116.2, 123.6]
|
|
scale: 1.0
|
|
width: 512
|
|
height: 512
|
|
rgb: false
|
|
sample: "edge_detection"
|