mirror of
https://github.com/opencv/opencv.git
synced 2025-01-10 22:28:13 +08:00
189 lines
6.5 KiB
C++
189 lines
6.5 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
|
|
// Copyright (C) 2017, Intel Corporation, all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#include "../precomp.hpp"
|
|
#include "layers_common.hpp"
|
|
#include "../op_inf_engine.hpp"
|
|
#include <float.h>
|
|
#include <algorithm>
|
|
#include <opencv2/dnn/shape_utils.hpp>
|
|
|
|
namespace cv
|
|
{
|
|
namespace dnn
|
|
{
|
|
|
|
class FlattenLayerImpl CV_FINAL : public FlattenLayer
|
|
{
|
|
public:
|
|
FlattenLayerImpl(const LayerParams ¶ms)
|
|
{
|
|
_startAxis = params.get<int>("axis", 1);
|
|
_endAxis = params.get<int>("end_axis", -1);
|
|
setParamsFrom(params);
|
|
}
|
|
|
|
virtual bool supportBackend(int backendId) CV_OVERRIDE
|
|
{
|
|
return backendId == DNN_BACKEND_OPENCV ||
|
|
backendId == DNN_BACKEND_INFERENCE_ENGINE && haveInfEngine();
|
|
}
|
|
|
|
bool getMemoryShapes(const std::vector<MatShape> &inputs,
|
|
const int requiredOutputs,
|
|
std::vector<MatShape> &outputs,
|
|
std::vector<MatShape> &internals) const CV_OVERRIDE
|
|
{
|
|
CV_Assert(inputs.size() > 0);
|
|
for (size_t i = 1; i < inputs.size(); i++)
|
|
{
|
|
CV_Assert(inputs[i] == inputs[0]);
|
|
}
|
|
|
|
int numAxes = inputs[0].size();
|
|
int startAxis = clamp(_startAxis, numAxes);
|
|
int endAxis = clamp(_endAxis, numAxes);
|
|
|
|
for (size_t i = 1; i < inputs.size(); i++)
|
|
{
|
|
CV_Assert(inputs[i] == inputs[0]);
|
|
}
|
|
|
|
|
|
CV_Assert(startAxis >= 0);
|
|
CV_Assert(endAxis >= startAxis && endAxis < (int)numAxes);
|
|
|
|
size_t flattenedDimensionSize = total(inputs[0], startAxis, endAxis + 1);
|
|
|
|
MatShape outputShapeVec;
|
|
for (int i = 0; i < startAxis; i++)
|
|
{
|
|
outputShapeVec.push_back(inputs[0][i]);
|
|
}
|
|
outputShapeVec.push_back(flattenedDimensionSize);
|
|
for (size_t i = endAxis + 1; i < numAxes; i++)
|
|
{
|
|
outputShapeVec.push_back(inputs[0][i]);
|
|
}
|
|
CV_Assert(outputShapeVec.size() <= 4);
|
|
|
|
outputs.resize(inputs.size(), outputShapeVec);
|
|
|
|
return true;
|
|
}
|
|
|
|
#ifdef HAVE_OPENCL
|
|
bool forward_ocl(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr)
|
|
{
|
|
std::vector<UMat> inpvec;
|
|
std::vector<UMat> outputs;
|
|
|
|
inputs_arr.getUMatVector(inpvec);
|
|
outputs_arr.getUMatVector(outputs);
|
|
|
|
std::vector<UMat*> inputs(inpvec.size());
|
|
for (int i = 0; i < inpvec.size(); i++)
|
|
inputs[i] = &inpvec[i];
|
|
|
|
for (size_t i = 0; i < inputs.size(); i++)
|
|
{
|
|
MatShape outShape = shape(outputs[i]);
|
|
UMat& output = outputs_arr.getUMatRef(i);
|
|
output = inputs[i]->reshape(1, (int)outShape.size(), &outShape[0]);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
#endif
|
|
|
|
void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr) CV_OVERRIDE
|
|
{
|
|
CV_TRACE_FUNCTION();
|
|
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
|
|
|
|
CV_OCL_RUN(IS_DNN_OPENCL_TARGET(preferableTarget) &&
|
|
outputs_arr.isUMatVector() &&
|
|
OCL_PERFORMANCE_CHECK(ocl::Device::getDefault().isIntel()),
|
|
forward_ocl(inputs_arr, outputs_arr, internals_arr))
|
|
|
|
Layer::forward_fallback(inputs_arr, outputs_arr, internals_arr);
|
|
}
|
|
|
|
void forward(std::vector<Mat*> &inputs, std::vector<Mat> &outputs, std::vector<Mat> &internals) CV_OVERRIDE
|
|
{
|
|
CV_TRACE_FUNCTION();
|
|
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
|
|
|
|
for (size_t i = 0; i < inputs.size(); i++)
|
|
{
|
|
MatShape outShape = shape(outputs[i]);
|
|
outputs[i] = inputs[i]->reshape(1, (int)outShape.size(), &outShape[0]);
|
|
}
|
|
}
|
|
|
|
virtual Ptr<BackendNode> initInfEngine(const std::vector<Ptr<BackendWrapper> >&) CV_OVERRIDE
|
|
{
|
|
#ifdef HAVE_INF_ENGINE
|
|
InferenceEngine::LayerParams lp;
|
|
lp.name = name;
|
|
lp.type = "Flatten";
|
|
lp.precision = InferenceEngine::Precision::FP32;
|
|
std::shared_ptr<InferenceEngine::CNNLayer> ieLayer(new InferenceEngine::CNNLayer(lp));
|
|
ieLayer->params["axis"] = format("%d", _startAxis);
|
|
ieLayer->params["end_axis"] = format("%d", _endAxis);
|
|
return Ptr<BackendNode>(new InfEngineBackendNode(ieLayer));
|
|
#endif // HAVE_INF_ENGINE
|
|
return Ptr<BackendNode>();
|
|
}
|
|
|
|
int _startAxis;
|
|
int _endAxis;
|
|
};
|
|
|
|
Ptr<FlattenLayer> FlattenLayer::create(const LayerParams& params)
|
|
{
|
|
return Ptr<FlattenLayer>(new FlattenLayerImpl(params));
|
|
}
|
|
|
|
}
|
|
}
|