opencv/modules/ocl/src/pyrlk.cpp

412 lines
14 KiB
C++

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// @Authors
// Dachuan Zhao, dachuan@multicorewareinc.com
// Yao Wang, bitwangyaoyao@gmail.com
// Nathan, liujun@multicorewareinc.com
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other oclMaterials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
using namespace std;
using namespace cv;
using namespace cv::ocl;
namespace cv
{
namespace ocl
{
///////////////////////////OpenCL kernel strings///////////////////////////
extern const char *pyrlk;
extern const char *pyrlk_no_image;
extern const char *arithm_mul;
}
}
struct dim3
{
unsigned int x, y, z;
};
struct float2
{
float x, y;
};
struct int2
{
int x, y;
};
namespace
{
void calcPatchSize(cv::Size winSize, int cn, dim3 &block, dim3 &patch, bool isDeviceArch11)
{
winSize.width *= cn;
if (winSize.width > 32 && winSize.width > 2 * winSize.height)
{
block.x = isDeviceArch11 ? 16 : 32;
block.y = 8;
}
else
{
block.x = 16;
block.y = isDeviceArch11 ? 8 : 16;
}
patch.x = (winSize.width + block.x - 1) / block.x;
patch.y = (winSize.height + block.y - 1) / block.y;
block.z = patch.z = 1;
}
}
static void multiply_cus(const oclMat &src1, oclMat &dst, float scalar)
{
if(!src1.clCxt->supportsFeature(Context::CL_DOUBLE) && src1.type() == CV_64F)
{
CV_Error(CV_GpuNotSupported, "Selected device don't support double\r\n");
return;
}
CV_Assert(src1.cols == dst.cols &&
src1.rows == dst.rows);
CV_Assert(src1.type() == dst.type());
CV_Assert(src1.depth() != CV_8S);
Context *clCxt = src1.clCxt;
size_t localThreads[3] = { 16, 16, 1 };
size_t globalThreads[3] = { src1.cols,
src1.rows,
1
};
int dst_step1 = dst.cols * dst.elemSize();
vector<pair<size_t , const void *> > args;
args.push_back( make_pair( sizeof(cl_mem), (void *)&src1.data ));
args.push_back( make_pair( sizeof(cl_int), (void *)&src1.step ));
args.push_back( make_pair( sizeof(cl_int), (void *)&src1.offset ));
args.push_back( make_pair( sizeof(cl_mem), (void *)&dst.data ));
args.push_back( make_pair( sizeof(cl_int), (void *)&dst.step ));
args.push_back( make_pair( sizeof(cl_int), (void *)&dst.offset ));
args.push_back( make_pair( sizeof(cl_int), (void *)&src1.rows ));
args.push_back( make_pair( sizeof(cl_int), (void *)&src1.cols ));
args.push_back( make_pair( sizeof(cl_int), (void *)&dst_step1 ));
args.push_back( make_pair( sizeof(float), (float *)&scalar ));
openCLExecuteKernel(clCxt, &arithm_mul, "arithm_muls", globalThreads, localThreads, args, -1, src1.depth());
}
static void lkSparse_run(oclMat &I, oclMat &J,
const oclMat &prevPts, oclMat &nextPts, oclMat &status, oclMat& err, bool /*GET_MIN_EIGENVALS*/, int ptcount,
int level, dim3 patch, Size winSize, int iters)
{
Context *clCxt = I.clCxt;
int elemCntPerRow = I.step / I.elemSize();
string kernelName = "lkSparse";
bool isImageSupported = support_image2d();
size_t localThreads[3] = { 8, isImageSupported ? 8 : 32, 1 };
size_t globalThreads[3] = { 8 * ptcount, isImageSupported ? 8 : 32, 1};
int cn = I.oclchannels();
char calcErr;
if (level == 0)
{
calcErr = 1;
}
else
{
calcErr = 0;
}
vector<pair<size_t , const void *> > args;
cl_mem ITex = isImageSupported ? bindTexture(I) : (cl_mem)I.data;
cl_mem JTex = isImageSupported ? bindTexture(J) : (cl_mem)J.data;
args.push_back( make_pair( sizeof(cl_mem), (void *)&ITex ));
args.push_back( make_pair( sizeof(cl_mem), (void *)&JTex ));
args.push_back( make_pair( sizeof(cl_mem), (void *)&prevPts.data ));
args.push_back( make_pair( sizeof(cl_int), (void *)&prevPts.step ));
args.push_back( make_pair( sizeof(cl_mem), (void *)&nextPts.data ));
args.push_back( make_pair( sizeof(cl_int), (void *)&nextPts.step ));
args.push_back( make_pair( sizeof(cl_mem), (void *)&status.data ));
args.push_back( make_pair( sizeof(cl_mem), (void *)&err.data ));
args.push_back( make_pair( sizeof(cl_int), (void *)&level ));
args.push_back( make_pair( sizeof(cl_int), (void *)&I.rows ));
args.push_back( make_pair( sizeof(cl_int), (void *)&I.cols ));
if (!isImageSupported)
args.push_back( make_pair( sizeof(cl_int), (void *)&elemCntPerRow ) );
args.push_back( make_pair( sizeof(cl_int), (void *)&patch.x ));
args.push_back( make_pair( sizeof(cl_int), (void *)&patch.y ));
args.push_back( make_pair( sizeof(cl_int), (void *)&cn ));
args.push_back( make_pair( sizeof(cl_int), (void *)&winSize.width ));
args.push_back( make_pair( sizeof(cl_int), (void *)&winSize.height ));
args.push_back( make_pair( sizeof(cl_int), (void *)&iters ));
args.push_back( make_pair( sizeof(cl_char), (void *)&calcErr ));
bool is_cpu;
queryDeviceInfo(IS_CPU_DEVICE, &is_cpu);
if (is_cpu)
{
openCLExecuteKernel(clCxt, &pyrlk, kernelName, globalThreads, localThreads, args, I.oclchannels(), I.depth(), (char*)" -D CPU");
releaseTexture(ITex);
releaseTexture(JTex);
}
else
{
if(isImageSupported)
{
openCLExecuteKernel(clCxt, &pyrlk, kernelName, globalThreads, localThreads, args, I.oclchannels(), I.depth());
releaseTexture(ITex);
releaseTexture(JTex);
}
else
{
openCLExecuteKernel(clCxt, &pyrlk_no_image, kernelName, globalThreads, localThreads, args, I.oclchannels(), I.depth());
}
}
}
void cv::ocl::PyrLKOpticalFlow::sparse(const oclMat &prevImg, const oclMat &nextImg, const oclMat &prevPts, oclMat &nextPts, oclMat &status, oclMat *err)
{
if (prevPts.empty())
{
nextPts.release();
status.release();
if (err) err->release();
return;
}
derivLambda = std::min(std::max(derivLambda, 0.0), 1.0);
iters = std::min(std::max(iters, 0), 100);
const int cn = prevImg.oclchannels();
dim3 block, patch;
calcPatchSize(winSize, cn, block, patch, isDeviceArch11_);
CV_Assert(derivLambda >= 0);
CV_Assert(maxLevel >= 0 && winSize.width > 2 && winSize.height > 2);
CV_Assert(prevImg.size() == nextImg.size() && prevImg.type() == nextImg.type());
CV_Assert(patch.x > 0 && patch.x < 6 && patch.y > 0 && patch.y < 6);
CV_Assert(prevPts.rows == 1 && prevPts.type() == CV_32FC2);
if (useInitialFlow)
CV_Assert(nextPts.size() == prevPts.size() && nextPts.type() == CV_32FC2);
else
ensureSizeIsEnough(1, prevPts.cols, prevPts.type(), nextPts);
oclMat temp1 = (useInitialFlow ? nextPts : prevPts).reshape(1);
oclMat temp2 = nextPts.reshape(1);
multiply_cus(temp1, temp2, 1.0f / (1 << maxLevel) / 2.0f);
//::multiply(temp1, 1.0f / (1 << maxLevel) / 2.0f, temp2);
ensureSizeIsEnough(1, prevPts.cols, CV_8UC1, status);
status.setTo(Scalar::all(1));
bool errMat = false;
if (!err)
{
err = new oclMat(1, prevPts.cols, CV_32FC1);
errMat = true;
}
else
ensureSizeIsEnough(1, prevPts.cols, CV_32FC1, *err);
// build the image pyramids.
prevPyr_.resize(maxLevel + 1);
nextPyr_.resize(maxLevel + 1);
if (cn == 1 || cn == 4)
{
prevImg.convertTo(prevPyr_[0], CV_32F);
nextImg.convertTo(nextPyr_[0], CV_32F);
}
for (int level = 1; level <= maxLevel; ++level)
{
pyrDown(prevPyr_[level - 1], prevPyr_[level]);
pyrDown(nextPyr_[level - 1], nextPyr_[level]);
}
// dI/dx ~ Ix, dI/dy ~ Iy
for (int level = maxLevel; level >= 0; level--)
{
lkSparse_run(prevPyr_[level], nextPyr_[level],
prevPts, nextPts, status, *err, getMinEigenVals, prevPts.cols,
level, patch, winSize, iters);
}
if(errMat)
delete err;
}
static void lkDense_run(oclMat &I, oclMat &J, oclMat &u, oclMat &v,
oclMat &prevU, oclMat &prevV, oclMat *err, Size winSize, int iters)
{
Context *clCxt = I.clCxt;
bool isImageSupported = support_image2d();
int elemCntPerRow = I.step / I.elemSize();
string kernelName = "lkDense";
size_t localThreads[3] = { 16, 16, 1 };
size_t globalThreads[3] = { I.cols, I.rows, 1};
bool calcErr;
if (err)
{
calcErr = true;
}
else
{
calcErr = false;
}
cl_mem ITex;
cl_mem JTex;
if (isImageSupported)
{
ITex = bindTexture(I);
JTex = bindTexture(J);
}
else
{
ITex = (cl_mem)I.data;
JTex = (cl_mem)J.data;
}
vector<pair<size_t , const void *> > args;
args.push_back( make_pair( sizeof(cl_mem), (void *)&ITex ));
args.push_back( make_pair( sizeof(cl_mem), (void *)&JTex ));
args.push_back( make_pair( sizeof(cl_mem), (void *)&u.data ));
args.push_back( make_pair( sizeof(cl_int), (void *)&u.step ));
args.push_back( make_pair( sizeof(cl_mem), (void *)&v.data ));
args.push_back( make_pair( sizeof(cl_int), (void *)&v.step ));
args.push_back( make_pair( sizeof(cl_mem), (void *)&prevU.data ));
args.push_back( make_pair( sizeof(cl_int), (void *)&prevU.step ));
args.push_back( make_pair( sizeof(cl_mem), (void *)&prevV.data ));
args.push_back( make_pair( sizeof(cl_int), (void *)&prevV.step ));
args.push_back( make_pair( sizeof(cl_int), (void *)&I.rows ));
args.push_back( make_pair( sizeof(cl_int), (void *)&I.cols ));
//args.push_back( make_pair( sizeof(cl_mem), (void *)&(*err).data ));
//args.push_back( make_pair( sizeof(cl_int), (void *)&(*err).step ));
if (!isImageSupported)
{
args.push_back( make_pair( sizeof(cl_int), (void *)&elemCntPerRow ) );
}
args.push_back( make_pair( sizeof(cl_int), (void *)&winSize.width ));
args.push_back( make_pair( sizeof(cl_int), (void *)&winSize.height ));
args.push_back( make_pair( sizeof(cl_int), (void *)&iters ));
args.push_back( make_pair( sizeof(cl_char), (void *)&calcErr ));
if (isImageSupported)
{
openCLExecuteKernel(clCxt, &pyrlk, kernelName, globalThreads, localThreads, args, I.oclchannels(), I.depth());
releaseTexture(ITex);
releaseTexture(JTex);
}
else
{
openCLExecuteKernel(clCxt, &pyrlk_no_image, kernelName, globalThreads, localThreads, args, I.oclchannels(), I.depth());
}
}
void cv::ocl::PyrLKOpticalFlow::dense(const oclMat &prevImg, const oclMat &nextImg, oclMat &u, oclMat &v, oclMat *err)
{
CV_Assert(prevImg.type() == CV_8UC1);
CV_Assert(prevImg.size() == nextImg.size() && prevImg.type() == nextImg.type());
CV_Assert(maxLevel >= 0);
CV_Assert(winSize.width > 2 && winSize.height > 2);
if (err)
err->create(prevImg.size(), CV_32FC1);
prevPyr_.resize(maxLevel + 1);
nextPyr_.resize(maxLevel + 1);
prevPyr_[0] = prevImg;
nextImg.convertTo(nextPyr_[0], CV_32F);
for (int level = 1; level <= maxLevel; ++level)
{
pyrDown(prevPyr_[level - 1], prevPyr_[level]);
pyrDown(nextPyr_[level - 1], nextPyr_[level]);
}
ensureSizeIsEnough(prevImg.size(), CV_32FC1, uPyr_[0]);
ensureSizeIsEnough(prevImg.size(), CV_32FC1, vPyr_[0]);
ensureSizeIsEnough(prevImg.size(), CV_32FC1, uPyr_[1]);
ensureSizeIsEnough(prevImg.size(), CV_32FC1, vPyr_[1]);
uPyr_[1].setTo(Scalar::all(0));
vPyr_[1].setTo(Scalar::all(0));
Size winSize2i(winSize.width, winSize.height);
int idx = 0;
for (int level = maxLevel; level >= 0; level--)
{
int idx2 = (idx + 1) & 1;
lkDense_run(prevPyr_[level], nextPyr_[level], uPyr_[idx], vPyr_[idx], uPyr_[idx2], vPyr_[idx2],
level == 0 ? err : 0, winSize2i, iters);
if (level > 0)
idx = idx2;
}
uPyr_[idx].copyTo(u);
vPyr_[idx].copyTo(v);
}