mirror of
https://github.com/opencv/opencv.git
synced 2024-12-16 10:29:11 +08:00
88d05a89d4
Whitespaces removed
592 lines
17 KiB
C++
592 lines
17 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#include "precomp.hpp"
|
|
#include "opencv2/photo.hpp"
|
|
#include <iostream>
|
|
#include <stdlib.h>
|
|
#include <limits>
|
|
#include "math.h"
|
|
|
|
|
|
using namespace std;
|
|
using namespace cv;
|
|
|
|
double myinf = std::numeric_limits<double>::infinity();
|
|
|
|
class Domain_Filter
|
|
{
|
|
public:
|
|
Mat ct_H, ct_V, horiz, vert, O, O_t, lower_idx, upper_idx;
|
|
void init(const Mat &img, int flags, float sigma_s, float sigma_r);
|
|
void getGradientx( const Mat &img, Mat &gx);
|
|
void getGradienty( const Mat &img, Mat &gy);
|
|
void diffx(const Mat &img, Mat &temp);
|
|
void diffy(const Mat &img, Mat &temp);
|
|
void find_magnitude(Mat &img, Mat &mag);
|
|
void compute_boxfilter(Mat &output, Mat &hz, Mat &psketch, float radius);
|
|
void compute_Rfilter(Mat &O, Mat &horiz, float sigma_h);
|
|
void compute_NCfilter(Mat &O, Mat &horiz, Mat &psketch, float radius);
|
|
void filter(const Mat &img, Mat &res, float sigma_s, float sigma_r, int flags);
|
|
void pencil_sketch(const Mat &img, Mat &sketch, Mat &color_res, float sigma_s, float sigma_r, float shade_factor);
|
|
void Depth_of_field(const Mat &img, Mat &img1, float sigma_s, float sigma_r);
|
|
};
|
|
|
|
void Domain_Filter::diffx(const Mat &img, Mat &temp)
|
|
{
|
|
int channel = img.channels();
|
|
|
|
for(int i = 0; i < img.size().height; i++)
|
|
for(int j = 0; j < img.size().width-1; j++)
|
|
{
|
|
for(int c =0; c < channel; c++)
|
|
{
|
|
temp.at<float>(i,j*channel+c) =
|
|
img.at<float>(i,(j+1)*channel+c) - img.at<float>(i,j*channel+c);
|
|
}
|
|
}
|
|
}
|
|
|
|
void Domain_Filter::diffy(const Mat &img, Mat &temp)
|
|
{
|
|
int channel = img.channels();
|
|
|
|
for(int i = 0; i < img.size().height-1; i++)
|
|
for(int j = 0; j < img.size().width; j++)
|
|
{
|
|
for(int c =0; c < channel; c++)
|
|
{
|
|
temp.at<float>(i,j*channel+c) =
|
|
img.at<float>((i+1),j*channel+c) - img.at<float>(i,j*channel+c);
|
|
}
|
|
}
|
|
}
|
|
|
|
void Domain_Filter::getGradientx( const Mat &img, Mat &gx)
|
|
{
|
|
int w = img.cols;
|
|
int h = img.rows;
|
|
int channel = img.channels();
|
|
|
|
for(int i=0;i<h;i++)
|
|
for(int j=0;j<w;j++)
|
|
for(int c=0;c<channel;++c)
|
|
{
|
|
gx.at<float>(i,j*channel+c) =
|
|
img.at<float>(i,(j+1)*channel+c) - img.at<float>(i,j*channel+c);
|
|
}
|
|
}
|
|
|
|
void Domain_Filter::getGradienty( const Mat &img, Mat &gy)
|
|
{
|
|
int w = img.cols;
|
|
int h = img.rows;
|
|
int channel = img.channels();
|
|
|
|
for(int i=0;i<h;i++)
|
|
for(int j=0;j<w;j++)
|
|
for(int c=0;c<channel;++c)
|
|
{
|
|
gy.at<float>(i,j*channel+c) =
|
|
img.at<float>(i+1,j*channel+c) - img.at<float>(i,j*channel+c);
|
|
|
|
}
|
|
}
|
|
|
|
void Domain_Filter::find_magnitude(Mat &img, Mat &mag)
|
|
{
|
|
int h = img.rows;
|
|
int w = img.cols;
|
|
|
|
vector <Mat> planes;
|
|
split(img, planes);
|
|
|
|
Mat magXR = Mat(h, w, CV_32FC1);
|
|
Mat magYR = Mat(h, w, CV_32FC1);
|
|
|
|
Mat magXG = Mat(h, w, CV_32FC1);
|
|
Mat magYG = Mat(h, w, CV_32FC1);
|
|
|
|
Mat magXB = Mat(h, w, CV_32FC1);
|
|
Mat magYB = Mat(h, w, CV_32FC1);
|
|
|
|
Sobel(planes[0], magXR, CV_32FC1, 1, 0, 3);
|
|
Sobel(planes[0], magYR, CV_32FC1, 0, 1, 3);
|
|
|
|
Sobel(planes[1], magXG, CV_32FC1, 1, 0, 3);
|
|
Sobel(planes[1], magYG, CV_32FC1, 0, 1, 3);
|
|
|
|
Sobel(planes[2], magXB, CV_32FC1, 1, 0, 3);
|
|
Sobel(planes[2], magYB, CV_32FC1, 0, 1, 3);
|
|
|
|
Mat mag1 = Mat(h,w,CV_32FC1);
|
|
Mat mag2 = Mat(h,w,CV_32FC1);
|
|
Mat mag3 = Mat(h,w,CV_32FC1);
|
|
|
|
magnitude(magXR,magYR,mag1);
|
|
magnitude(magXG,magYG,mag2);
|
|
magnitude(magXB,magYB,mag3);
|
|
|
|
mag = mag1 + mag2 + mag3;
|
|
mag = 1.0f - mag;
|
|
}
|
|
|
|
void Domain_Filter::compute_Rfilter(Mat &output, Mat &hz, float sigma_h)
|
|
{
|
|
int h = output.rows;
|
|
int w = output.cols;
|
|
int channel = output.channels();
|
|
|
|
float a = (float) exp((-1.0 * sqrt(2.0)) / sigma_h);
|
|
|
|
Mat temp = Mat(h,w,CV_32FC3);
|
|
|
|
output.copyTo(temp);
|
|
Mat V = Mat(h,w,CV_32FC1);
|
|
|
|
for(int i=0;i<h;i++)
|
|
for(int j=0;j<w;j++)
|
|
V.at<float>(i,j) = pow(a,hz.at<float>(i,j));
|
|
|
|
for(int i=0; i<h; i++)
|
|
{
|
|
for(int j =1; j < w; j++)
|
|
{
|
|
for(int c = 0; c<channel; c++)
|
|
{
|
|
temp.at<float>(i,j*channel+c) = temp.at<float>(i,j*channel+c) +
|
|
(temp.at<float>(i,(j-1)*channel+c) - temp.at<float>(i,j*channel+c)) * V.at<float>(i,j);
|
|
}
|
|
}
|
|
}
|
|
|
|
for(int i=0; i<h; i++)
|
|
{
|
|
for(int j =w-2; j >= 0; j--)
|
|
{
|
|
for(int c = 0; c<channel; c++)
|
|
{
|
|
temp.at<float>(i,j*channel+c) = temp.at<float>(i,j*channel+c) +
|
|
(temp.at<float>(i,(j+1)*channel+c) - temp.at<float>(i,j*channel+c))*V.at<float>(i,j+1);
|
|
}
|
|
}
|
|
}
|
|
|
|
temp.copyTo(output);
|
|
}
|
|
|
|
void Domain_Filter::compute_boxfilter(Mat &output, Mat &hz, Mat &psketch, float radius)
|
|
{
|
|
int h = output.rows;
|
|
int w = output.cols;
|
|
Mat lower_pos = Mat(h,w,CV_32FC1);
|
|
Mat upper_pos = Mat(h,w,CV_32FC1);
|
|
|
|
lower_pos = hz - radius;
|
|
upper_pos = hz + radius;
|
|
|
|
lower_idx = Mat::zeros(h,w,CV_32FC1);
|
|
upper_idx = Mat::zeros(h,w,CV_32FC1);
|
|
|
|
Mat domain_row = Mat::zeros(1,w+1,CV_32FC1);
|
|
|
|
for(int i=0;i<h;i++)
|
|
{
|
|
for(int j=0;j<w;j++)
|
|
domain_row.at<float>(0,j) = hz.at<float>(i,j);
|
|
domain_row.at<float>(0,w) = (float) myinf;
|
|
|
|
Mat lower_pos_row = Mat::zeros(1,w,CV_32FC1);
|
|
Mat upper_pos_row = Mat::zeros(1,w,CV_32FC1);
|
|
|
|
for(int j=0;j<w;j++)
|
|
{
|
|
lower_pos_row.at<float>(0,j) = lower_pos.at<float>(i,j);
|
|
upper_pos_row.at<float>(0,j) = upper_pos.at<float>(i,j);
|
|
}
|
|
|
|
Mat temp_lower_idx = Mat::zeros(1,w,CV_32FC1);
|
|
Mat temp_upper_idx = Mat::zeros(1,w,CV_32FC1);
|
|
|
|
for(int j=0;j<w;j++)
|
|
{
|
|
if(domain_row.at<float>(0,j) > lower_pos_row.at<float>(0,0))
|
|
{
|
|
temp_lower_idx.at<float>(0,0) = (float) j;
|
|
break;
|
|
}
|
|
}
|
|
for(int j=0;j<w;j++)
|
|
{
|
|
if(domain_row.at<float>(0,j) > upper_pos_row.at<float>(0,0))
|
|
{
|
|
temp_upper_idx.at<float>(0,0) = (float) j;
|
|
break;
|
|
}
|
|
}
|
|
|
|
int temp = 0;
|
|
for(int j=1;j<w;j++)
|
|
{
|
|
int count=0;
|
|
for(int k=(int) temp_lower_idx.at<float>(0,j-1);k<w+1;k++)
|
|
{
|
|
if(domain_row.at<float>(0,k) > lower_pos_row.at<float>(0,j))
|
|
{
|
|
temp = count;
|
|
break;
|
|
}
|
|
count++;
|
|
}
|
|
|
|
temp_lower_idx.at<float>(0,j) = temp_lower_idx.at<float>(0,j-1) + temp;
|
|
|
|
count = 0;
|
|
for(int k=(int) temp_upper_idx.at<float>(0,j-1);k<w+1;k++)
|
|
{
|
|
|
|
|
|
if(domain_row.at<float>(0,k) > upper_pos_row.at<float>(0,j))
|
|
{
|
|
temp = count;
|
|
break;
|
|
}
|
|
count++;
|
|
}
|
|
|
|
temp_upper_idx.at<float>(0,j) = temp_upper_idx.at<float>(0,j-1) + temp;
|
|
}
|
|
|
|
for(int j=0;j<w;j++)
|
|
{
|
|
lower_idx.at<float>(i,j) = temp_lower_idx.at<float>(0,j) + 1;
|
|
upper_idx.at<float>(i,j) = temp_upper_idx.at<float>(0,j) + 1;
|
|
}
|
|
|
|
}
|
|
psketch = upper_idx - lower_idx;
|
|
}
|
|
void Domain_Filter::compute_NCfilter(Mat &output, Mat &hz, Mat &psketch, float radius)
|
|
{
|
|
int h = output.rows;
|
|
int w = output.cols;
|
|
int channel = output.channels();
|
|
|
|
compute_boxfilter(output,hz,psketch,radius);
|
|
|
|
Mat box_filter = Mat::zeros(h,w+1,CV_32FC3);
|
|
|
|
for(int i = 0; i < h; i++)
|
|
{
|
|
box_filter.at<float>(i,1*channel+0) = output.at<float>(i,0*channel+0);
|
|
box_filter.at<float>(i,1*channel+1) = output.at<float>(i,0*channel+1);
|
|
box_filter.at<float>(i,1*channel+2) = output.at<float>(i,0*channel+2);
|
|
for(int j = 2; j < w+1; j++)
|
|
{
|
|
for(int c=0;c<channel;c++)
|
|
box_filter.at<float>(i,j*channel+c) = output.at<float>(i,(j-1)*channel+c) + box_filter.at<float>(i,(j-1)*channel+c);
|
|
}
|
|
}
|
|
|
|
Mat indices = Mat::zeros(h,w,CV_32FC1);
|
|
Mat final = Mat::zeros(h,w,CV_32FC3);
|
|
|
|
for(int i=0;i<h;i++)
|
|
for(int j=0;j<w;j++)
|
|
indices.at<float>(i,j) = (float) i+1;
|
|
|
|
Mat a = Mat::zeros(h,w,CV_32FC1);
|
|
Mat b = Mat::zeros(h,w,CV_32FC1);
|
|
|
|
// Compute the box filter using a summed area table.
|
|
for(int c=0;c<channel;c++)
|
|
{
|
|
Mat flag = Mat::ones(h,w,CV_32FC1);
|
|
multiply(flag,c+1,flag);
|
|
|
|
Mat temp1, temp2;
|
|
multiply(flag - 1,h*(w+1),temp1);
|
|
multiply(lower_idx - 1,h,temp2);
|
|
a = temp1 + temp2 + indices;
|
|
|
|
multiply(flag - 1,h*(w+1),temp1);
|
|
multiply(upper_idx - 1,h,temp2);
|
|
b = temp1 + temp2 + indices;
|
|
|
|
int p,q,r,rem;
|
|
int p1,q1,r1,rem1;
|
|
|
|
// Calculating indices
|
|
for(int i=0;i<h;i++)
|
|
{
|
|
for(int j=0;j<w;j++)
|
|
{
|
|
|
|
r = (int) b.at<float>(i,j)/(h*(w+1));
|
|
rem = (int) b.at<float>(i,j) - r*h*(w+1);
|
|
q = rem/h;
|
|
p = rem - q*h;
|
|
if(q==0)
|
|
{
|
|
p=h;
|
|
q=w;
|
|
r=r-1;
|
|
}
|
|
if(p==0)
|
|
{
|
|
p=h;
|
|
q=q-1;
|
|
}
|
|
|
|
r1 = (int) a.at<float>(i,j)/(h*(w+1));
|
|
rem1 = (int) a.at<float>(i,j) - r1*h*(w+1);
|
|
q1 = rem1/h;
|
|
p1 = rem1 - q1*h;
|
|
if(p1==0)
|
|
{
|
|
p1=h;
|
|
q1=q1-1;
|
|
}
|
|
|
|
final.at<float>(i,j*channel+2-c) = (box_filter.at<float>(p-1,q*channel+(2-r)) - box_filter.at<float>(p1-1,q1*channel+(2-r1)))
|
|
/(upper_idx.at<float>(i,j) - lower_idx.at<float>(i,j));
|
|
}
|
|
}
|
|
}
|
|
|
|
final.copyTo(output);
|
|
}
|
|
void Domain_Filter::init(const Mat &img, int flags, float sigma_s, float sigma_r)
|
|
{
|
|
int h = img.size().height;
|
|
int w = img.size().width;
|
|
int channel = img.channels();
|
|
|
|
//////////////////////////////////// horizontal and vertical partial derivatives /////////////////////////////////
|
|
|
|
Mat derivx = Mat::zeros(h,w-1,CV_32FC3);
|
|
Mat derivy = Mat::zeros(h-1,w,CV_32FC3);
|
|
|
|
diffx(img,derivx);
|
|
diffy(img,derivy);
|
|
|
|
Mat distx = Mat::zeros(h,w,CV_32FC1);
|
|
Mat disty = Mat::zeros(h,w,CV_32FC1);
|
|
|
|
//////////////////////// Compute the l1-norm distance of neighbor pixels ////////////////////////////////////////////////
|
|
|
|
for(int i = 0; i < h; i++)
|
|
for(int j = 0,k=1; j < w-1; j++,k++)
|
|
for(int c = 0; c < channel; c++)
|
|
{
|
|
distx.at<float>(i,k) =
|
|
distx.at<float>(i,k) + abs(derivx.at<float>(i,j*channel+c));
|
|
}
|
|
|
|
for(int i = 0,k=1; i < h-1; i++,k++)
|
|
for(int j = 0; j < w; j++)
|
|
for(int c = 0; c < channel; c++)
|
|
{
|
|
disty.at<float>(k,j) =
|
|
disty.at<float>(k,j) + abs(derivy.at<float>(i,j*channel+c));
|
|
}
|
|
|
|
////////////////////// Compute the derivatives of the horizontal and vertical domain transforms. /////////////////////////////
|
|
|
|
horiz = Mat(h,w,CV_32FC1);
|
|
vert = Mat(h,w,CV_32FC1);
|
|
|
|
Mat final = Mat(h,w,CV_32FC3);
|
|
|
|
Mat tempx,tempy;
|
|
multiply(distx,sigma_s/sigma_r,tempx);
|
|
multiply(disty,sigma_s/sigma_r,tempy);
|
|
|
|
horiz = 1.0f + tempx;
|
|
vert = 1.0f + tempy;
|
|
|
|
O = Mat(h,w,CV_32FC3);
|
|
img.copyTo(O);
|
|
|
|
O_t = Mat(w,h,CV_32FC3);
|
|
|
|
if(flags == 2)
|
|
{
|
|
|
|
ct_H = Mat(h,w,CV_32FC1);
|
|
ct_V = Mat(h,w,CV_32FC1);
|
|
|
|
for(int i = 0; i < h; i++)
|
|
{
|
|
ct_H.at<float>(i,0) = horiz.at<float>(i,0);
|
|
for(int j = 1; j < w; j++)
|
|
{
|
|
ct_H.at<float>(i,j) = horiz.at<float>(i,j) + ct_H.at<float>(i,j-1);
|
|
}
|
|
}
|
|
|
|
for(int j = 0; j < w; j++)
|
|
{
|
|
ct_V.at<float>(0,j) = vert.at<float>(0,j);
|
|
for(int i = 1; i < h; i++)
|
|
{
|
|
ct_V.at<float>(i,j) = vert.at<float>(i,j) + ct_V.at<float>(i-1,j);
|
|
}
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
void Domain_Filter::filter(const Mat &img, Mat &res, float sigma_s = 60, float sigma_r = 0.4, int flags = 1)
|
|
{
|
|
int no_of_iter = 3;
|
|
int h = img.size().height;
|
|
int w = img.size().width;
|
|
float sigma_h = sigma_s;
|
|
|
|
init(img,flags,sigma_s,sigma_r);
|
|
|
|
if(flags == 1)
|
|
{
|
|
Mat vert_t = vert.t();
|
|
|
|
for(int i=0;i<no_of_iter;i++)
|
|
{
|
|
sigma_h = (float) (sigma_s * sqrt(3.0) * pow(2.0,(no_of_iter - (i+1))) / sqrt(pow(4.0,no_of_iter) -1));
|
|
|
|
compute_Rfilter(O, horiz, sigma_h);
|
|
|
|
O_t = O.t();
|
|
|
|
compute_Rfilter(O_t, vert_t, sigma_h);
|
|
|
|
O = O_t.t();
|
|
|
|
}
|
|
}
|
|
else if(flags == 2)
|
|
{
|
|
|
|
Mat vert_t = ct_V.t();
|
|
Mat temp = Mat(h,w,CV_32FC1);
|
|
Mat temp1 = Mat(w,h,CV_32FC1);
|
|
|
|
float radius;
|
|
|
|
for(int i=0;i<no_of_iter;i++)
|
|
{
|
|
sigma_h = (float) (sigma_s * sqrt(3.0) * pow(2.0,(no_of_iter - (i+1))) / sqrt(pow(4.0,no_of_iter) -1));
|
|
|
|
radius = (float) sqrt(3.0) * sigma_h;
|
|
|
|
compute_NCfilter(O, ct_H, temp,radius);
|
|
|
|
O_t = O.t();
|
|
|
|
compute_NCfilter(O_t, vert_t, temp1, radius);
|
|
|
|
O = O_t.t();
|
|
}
|
|
}
|
|
|
|
res = O.clone();
|
|
}
|
|
|
|
void Domain_Filter::pencil_sketch(const Mat &img, Mat &sketch, Mat &color_res, float sigma_s, float sigma_r, float shade_factor)
|
|
{
|
|
|
|
int no_of_iter = 3;
|
|
init(img,2,sigma_s,sigma_r);
|
|
int h = img.size().height;
|
|
int w = img.size().width;
|
|
|
|
/////////////////////// convert to YCBCR model for color pencil drawing //////////////////////////////////////////////////////
|
|
|
|
Mat color_sketch = Mat(h,w,CV_32FC3);
|
|
|
|
cvtColor(img,color_sketch,COLOR_BGR2YCrCb);
|
|
|
|
vector <Mat> YUV_channel;
|
|
Mat vert_t = ct_V.t();
|
|
|
|
float sigma_h = sigma_s;
|
|
|
|
Mat penx = Mat(h,w,CV_32FC1);
|
|
|
|
Mat pen_res = Mat::zeros(h,w,CV_32FC1);
|
|
Mat peny = Mat(w,h,CV_32FC1);
|
|
|
|
Mat peny_t;
|
|
|
|
float radius;
|
|
|
|
for(int i=0;i<no_of_iter;i++)
|
|
{
|
|
sigma_h = (float) (sigma_s * sqrt(3.0) * pow(2.0,(no_of_iter - (i+1))) / sqrt(pow(4.0,no_of_iter) -1));
|
|
|
|
radius = (float) sqrt(3.0) * sigma_h;
|
|
|
|
compute_boxfilter(O, ct_H, penx, radius);
|
|
|
|
O_t = O.t();
|
|
|
|
compute_boxfilter(O_t, vert_t, peny, radius);
|
|
|
|
O = O_t.t();
|
|
|
|
peny_t = peny.t();
|
|
|
|
for(int k=0;k<h;k++)
|
|
for(int j=0;j<w;j++)
|
|
pen_res.at<float>(k,j) = (shade_factor * (penx.at<float>(k,j) + peny_t.at<float>(k,j)));
|
|
|
|
if(i==0)
|
|
{
|
|
sketch = pen_res.clone();
|
|
split(color_sketch,YUV_channel);
|
|
pen_res.copyTo(YUV_channel[0]);
|
|
merge(YUV_channel,color_sketch);
|
|
cvtColor(color_sketch,color_res,COLOR_YCrCb2BGR);
|
|
}
|
|
|
|
}
|
|
}
|