mirror of
https://github.com/opencv/opencv.git
synced 2024-12-14 08:59:11 +08:00
505 lines
18 KiB
C++
505 lines
18 KiB
C++
// This file is part of OpenCV project.
|
|
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
|
// of this distribution and at http://opencv.org/license.html.
|
|
|
|
#include "test_precomp.hpp"
|
|
#include <opencv2/ts/cuda_test.hpp> // EXPECT_MAT_NEAR
|
|
#include "opencv2/videoio.hpp"
|
|
|
|
namespace opencv_test { namespace {
|
|
|
|
class fisheyeTest : public ::testing::Test {
|
|
|
|
protected:
|
|
const static cv::Size imageSize;
|
|
const static cv::Matx33d K;
|
|
const static cv::Vec4d D;
|
|
std::string datasets_repository_path;
|
|
|
|
virtual void SetUp() {
|
|
datasets_repository_path = combine(cvtest::TS::ptr()->get_data_path(), "cv/cameracalibration/fisheye");
|
|
}
|
|
|
|
protected:
|
|
std::string combine(const std::string& _item1, const std::string& _item2);
|
|
};
|
|
|
|
const cv::Size fisheyeTest::imageSize(1280, 800);
|
|
|
|
const cv::Matx33d fisheyeTest::K(558.478087865323, 0, 620.458515360843,
|
|
0, 560.506767351568, 381.939424848348,
|
|
0, 0, 1);
|
|
|
|
const cv::Vec4d fisheyeTest::D(-0.0014613319981768, -0.00329861110580401, 0.00605760088590183, -0.00374209380722371);
|
|
|
|
std::string fisheyeTest::combine(const std::string& _item1, const std::string& _item2)
|
|
{
|
|
std::string item1 = _item1, item2 = _item2;
|
|
std::replace(item1.begin(), item1.end(), '\\', '/');
|
|
std::replace(item2.begin(), item2.end(), '\\', '/');
|
|
|
|
if (item1.empty())
|
|
return item2;
|
|
|
|
if (item2.empty())
|
|
return item1;
|
|
|
|
char last = item1[item1.size()-1];
|
|
return item1 + (last != '/' ? "/" : "") + item2;
|
|
}
|
|
|
|
TEST_F(fisheyeTest, projectPoints)
|
|
{
|
|
double cols = this->imageSize.width,
|
|
rows = this->imageSize.height;
|
|
|
|
const int N = 20;
|
|
cv::Mat distorted0(1, N*N, CV_64FC2), undist1, undist2, distorted1, distorted2;
|
|
undist2.create(distorted0.size(), CV_MAKETYPE(distorted0.depth(), 3));
|
|
cv::Vec2d* pts = distorted0.ptr<cv::Vec2d>();
|
|
|
|
cv::Vec2d c(this->K(0, 2), this->K(1, 2));
|
|
for(int y = 0, k = 0; y < N; ++y)
|
|
for(int x = 0; x < N; ++x)
|
|
{
|
|
cv::Vec2d point(x*cols/(N-1.f), y*rows/(N-1.f));
|
|
pts[k++] = (point - c) * 0.85 + c;
|
|
}
|
|
|
|
cv::fisheye::undistortPoints(distorted0, undist1, this->K, this->D);
|
|
|
|
cv::Vec2d* u1 = undist1.ptr<cv::Vec2d>();
|
|
cv::Vec3d* u2 = undist2.ptr<cv::Vec3d>();
|
|
for(int i = 0; i < (int)distorted0.total(); ++i)
|
|
u2[i] = cv::Vec3d(u1[i][0], u1[i][1], 1.0);
|
|
|
|
cv::fisheye::distortPoints(undist1, distorted1, this->K, this->D);
|
|
cv::fisheye::projectPoints(undist2, distorted2, cv::Vec3d::all(0), cv::Vec3d::all(0), this->K, this->D);
|
|
|
|
EXPECT_MAT_NEAR(distorted0, distorted1, 1e-10);
|
|
EXPECT_MAT_NEAR(distorted0, distorted2, 1e-10);
|
|
}
|
|
|
|
TEST_F(fisheyeTest, distortUndistortPoints)
|
|
{
|
|
int width = imageSize.width;
|
|
int height = imageSize.height;
|
|
|
|
/* Create test points */
|
|
cv::Mat principalPoints = (cv::Mat_<double>(5, 2) << K(0, 2), K(1, 2), // (cx, cy)
|
|
/* Image corners */
|
|
0, 0,
|
|
0, height,
|
|
width, 0,
|
|
width, height
|
|
);
|
|
|
|
/* Random points inside image */
|
|
cv::Mat xy[2] = {};
|
|
xy[0].create(100, 1, CV_64F);
|
|
theRNG().fill(xy[0], cv::RNG::UNIFORM, 0, width); // x
|
|
xy[1].create(100, 1, CV_64F);
|
|
theRNG().fill(xy[1], cv::RNG::UNIFORM, 0, height); // y
|
|
|
|
cv::Mat randomPoints;
|
|
merge(xy, 2, randomPoints);
|
|
|
|
cv::Mat points0;
|
|
cv::vconcat(principalPoints.reshape(2), randomPoints, points0);
|
|
|
|
/* Test with random D set */
|
|
for (size_t i = 0; i < 10; ++i) {
|
|
cv::Mat distortion(1, 4, CV_64F);
|
|
theRNG().fill(distortion, cv::RNG::UNIFORM, -0.00001, 0.00001);
|
|
|
|
/* Distort -> Undistort */
|
|
cv::Mat distortedPoints;
|
|
cv::fisheye::distortPoints(points0, distortedPoints, K, distortion);
|
|
cv::Mat undistortedPoints;
|
|
cv::fisheye::undistortPoints(distortedPoints, undistortedPoints, K, distortion);
|
|
|
|
EXPECT_MAT_NEAR(points0, undistortedPoints, 1e-8);
|
|
|
|
/* Undistort -> Distort */
|
|
cv::fisheye::undistortPoints(points0, undistortedPoints, K, distortion);
|
|
cv::fisheye::distortPoints(undistortedPoints, distortedPoints, K, distortion);
|
|
|
|
EXPECT_MAT_NEAR(points0, distortedPoints, 1e-8);
|
|
}
|
|
}
|
|
|
|
TEST_F(fisheyeTest, distortUndistortPointsNewCameraFixed)
|
|
{
|
|
int width = imageSize.width;
|
|
int height = imageSize.height;
|
|
|
|
/* Random points inside image */
|
|
cv::Mat xy[2] = {};
|
|
xy[0].create(100, 1, CV_64F);
|
|
theRNG().fill(xy[0], cv::RNG::UNIFORM, 0, width); // x
|
|
xy[1].create(100, 1, CV_64F);
|
|
theRNG().fill(xy[1], cv::RNG::UNIFORM, 0, height); // y
|
|
|
|
cv::Mat randomPoints;
|
|
merge(xy, 2, randomPoints);
|
|
|
|
cv::Mat points0 = randomPoints;
|
|
cv::Mat Reye = cv::Mat::eye(3, 3, CV_64FC1);
|
|
|
|
cv::Mat Knew;
|
|
cv::fisheye::estimateNewCameraMatrixForUndistortRectify(K, D, imageSize, Reye, Knew);
|
|
|
|
/* Distort -> Undistort */
|
|
cv::Mat distortedPoints;
|
|
cv::fisheye::distortPoints(points0, distortedPoints, Knew, K, D);
|
|
cv::Mat undistortedPoints;
|
|
cv::fisheye::undistortPoints(distortedPoints, undistortedPoints, K, D, Reye, Knew);
|
|
|
|
EXPECT_MAT_NEAR(points0, undistortedPoints, 1e-8);
|
|
|
|
/* Undistort -> Distort */
|
|
cv::fisheye::undistortPoints(points0, undistortedPoints, K, D, Reye, Knew);
|
|
cv::fisheye::distortPoints(undistortedPoints, distortedPoints, Knew, K, D);
|
|
|
|
EXPECT_MAT_NEAR(points0, distortedPoints, 1e-8);
|
|
}
|
|
|
|
TEST_F(fisheyeTest, distortUndistortPointsNewCameraRandom)
|
|
{
|
|
int width = imageSize.width;
|
|
int height = imageSize.height;
|
|
|
|
/* Create test points */
|
|
std::vector<cv::Point2d> points0Vector;
|
|
cv::Mat principalPoints = (cv::Mat_<double>(5, 2) << K(0, 2), K(1, 2), // (cx, cy)
|
|
/* Image corners */
|
|
0, 0,
|
|
0, height,
|
|
width, 0,
|
|
width, height
|
|
);
|
|
|
|
/* Random points inside image */
|
|
cv::Mat xy[2] = {};
|
|
xy[0].create(100, 1, CV_64F);
|
|
theRNG().fill(xy[0], cv::RNG::UNIFORM, 0, width); // x
|
|
xy[1].create(100, 1, CV_64F);
|
|
theRNG().fill(xy[1], cv::RNG::UNIFORM, 0, height); // y
|
|
|
|
cv::Mat randomPoints;
|
|
merge(xy, 2, randomPoints);
|
|
|
|
cv::Mat points0;
|
|
cv::Mat Reye = cv::Mat::eye(3, 3, CV_64FC1);
|
|
cv::vconcat(principalPoints.reshape(2), randomPoints, points0);
|
|
|
|
/* Test with random D set */
|
|
for (size_t i = 0; i < 10; ++i) {
|
|
cv::Mat distortion(1, 4, CV_64F);
|
|
theRNG().fill(distortion, cv::RNG::UNIFORM, -0.001, 0.001);
|
|
|
|
cv::Mat Knew;
|
|
cv::fisheye::estimateNewCameraMatrixForUndistortRectify(K, distortion, imageSize, Reye, Knew);
|
|
|
|
/* Distort -> Undistort */
|
|
cv::Mat distortedPoints;
|
|
cv::fisheye::distortPoints(points0, distortedPoints, Knew, K, distortion);
|
|
cv::Mat undistortedPoints;
|
|
cv::fisheye::undistortPoints(distortedPoints, undistortedPoints, K, distortion, Reye, Knew);
|
|
|
|
EXPECT_MAT_NEAR(points0, undistortedPoints, 1e-8);
|
|
|
|
/* Undistort -> Distort */
|
|
cv::fisheye::undistortPoints(points0, undistortedPoints, K, distortion, Reye, Knew);
|
|
cv::fisheye::distortPoints(undistortedPoints, distortedPoints, Knew, K, distortion);
|
|
|
|
EXPECT_MAT_NEAR(points0, distortedPoints, 1e-8);
|
|
}
|
|
}
|
|
|
|
TEST_F(fisheyeTest, solvePnP)
|
|
{
|
|
const int n = 16;
|
|
|
|
const cv::Matx33d R_mat ( 9.9756700084424932e-01, 6.9698277640183867e-02, 1.4929569991321144e-03,
|
|
-6.9711825162322980e-02, 9.9748249845531767e-01, 1.2997180766418455e-02,
|
|
-5.8331736398316541e-04,-1.3069635393884985e-02, 9.9991441852366736e-01);
|
|
|
|
const cv::Vec3d T(-9.9217369356044638e-02, 3.1741831972356663e-03, 1.8551007952921010e-04);
|
|
|
|
cv::Mat obj_points(1, n, CV_64FC3);
|
|
theRNG().fill(obj_points, cv::RNG::NORMAL, 2, 1);
|
|
obj_points = cv::abs(obj_points) * 10;
|
|
|
|
cv::Mat R;
|
|
cv::Rodrigues(R_mat, R);
|
|
cv::Mat img_points;
|
|
cv::fisheye::projectPoints(obj_points, img_points, R, T, this->K, this->D);
|
|
|
|
cv::Mat rvec_pred;
|
|
cv::Mat tvec_pred;
|
|
bool converged = cv::fisheye::solvePnP(obj_points, img_points, this->K, this->D, rvec_pred, tvec_pred);
|
|
EXPECT_MAT_NEAR(R, rvec_pred, 1e-6);
|
|
EXPECT_MAT_NEAR(T, tvec_pred, 1e-6);
|
|
|
|
ASSERT_TRUE(converged);
|
|
}
|
|
|
|
TEST_F(fisheyeTest, undistortImage)
|
|
{
|
|
// we use it to reduce patch size for images in testdata
|
|
auto throwAwayHalf = [](Mat img)
|
|
{
|
|
int whalf = img.cols / 2, hhalf = img.rows / 2;
|
|
Rect tl(0, 0, whalf, hhalf), br(whalf, hhalf, whalf, hhalf);
|
|
img(tl) = 0;
|
|
img(br) = 0;
|
|
};
|
|
|
|
cv::Matx33d theK = this->K;
|
|
cv::Mat theD = cv::Mat(this->D);
|
|
std::string file = combine(datasets_repository_path, "stereo_pair_014.png");
|
|
cv::Matx33d newK = theK;
|
|
cv::Mat distorted = cv::imread(file), undistorted;
|
|
{
|
|
newK(0, 0) = 100;
|
|
newK(1, 1) = 100;
|
|
cv::fisheye::undistortImage(distorted, undistorted, theK, theD, newK);
|
|
std::string imageFilename = combine(datasets_repository_path, "new_f_100.png");
|
|
cv::Mat correct = cv::imread(imageFilename);
|
|
ASSERT_FALSE(correct.empty()) << "Correct image " << imageFilename.c_str() << " can not be read" << std::endl;
|
|
|
|
throwAwayHalf(correct);
|
|
throwAwayHalf(undistorted);
|
|
|
|
EXPECT_MAT_NEAR(correct, undistorted, 1e-10);
|
|
}
|
|
{
|
|
double balance = 1.0;
|
|
cv::fisheye::estimateNewCameraMatrixForUndistortRectify(theK, theD, distorted.size(), cv::noArray(), newK, balance);
|
|
cv::fisheye::undistortImage(distorted, undistorted, theK, theD, newK);
|
|
std::string imageFilename = combine(datasets_repository_path, "balance_1.0.png");
|
|
cv::Mat correct = cv::imread(imageFilename);
|
|
ASSERT_FALSE(correct.empty()) << "Correct image " << imageFilename.c_str() << " can not be read" << std::endl;
|
|
|
|
throwAwayHalf(correct);
|
|
throwAwayHalf(undistorted);
|
|
|
|
EXPECT_MAT_NEAR(correct, undistorted, 1e-10);
|
|
}
|
|
|
|
{
|
|
double balance = 0.0;
|
|
cv::fisheye::estimateNewCameraMatrixForUndistortRectify(theK, theD, distorted.size(), cv::noArray(), newK, balance);
|
|
cv::fisheye::undistortImage(distorted, undistorted, theK, theD, newK);
|
|
std::string imageFilename = combine(datasets_repository_path, "balance_0.0.png");
|
|
cv::Mat correct = cv::imread(imageFilename);
|
|
ASSERT_FALSE(correct.empty()) << "Correct image " << imageFilename.c_str() << " can not be read" << std::endl;
|
|
|
|
throwAwayHalf(correct);
|
|
throwAwayHalf(undistorted);
|
|
|
|
EXPECT_MAT_NEAR(correct, undistorted, 1e-10);
|
|
}
|
|
}
|
|
|
|
TEST_F(fisheyeTest, undistortAndDistortImage)
|
|
{
|
|
cv::Matx33d K_src = this->K;
|
|
cv::Mat D_src = cv::Mat(this->D);
|
|
std::string file = combine(datasets_repository_path, "/calib-3_stereo_from_JY/left/stereo_pair_014.jpg");
|
|
cv::Matx33d K_dst = K_src;
|
|
cv::Mat image = cv::imread(file), image_projected;
|
|
cv::Vec4d D_dst_vec (-1.0, 0.0, 0.0, 0.0);
|
|
cv::Mat D_dst = cv::Mat(D_dst_vec);
|
|
|
|
int imageWidth = (int)this->imageSize.width;
|
|
int imageHeight = (int)this->imageSize.height;
|
|
|
|
cv::Mat imagePoints(imageHeight, imageWidth, CV_32FC2), undPoints, distPoints;
|
|
cv::Vec2f* pts = imagePoints.ptr<cv::Vec2f>();
|
|
|
|
for(int y = 0, k = 0; y < imageHeight; ++y)
|
|
{
|
|
for(int x = 0; x < imageWidth; ++x)
|
|
{
|
|
cv::Vec2f point((float)x, (float)y);
|
|
pts[k++] = point;
|
|
}
|
|
}
|
|
|
|
cv::fisheye::undistortPoints(imagePoints, undPoints, K_dst, D_dst);
|
|
cv::fisheye::distortPoints(undPoints, distPoints, K_src, D_src);
|
|
cv::remap(image, image_projected, distPoints, cv::noArray(), cv::INTER_LINEAR);
|
|
|
|
float dx, dy, r_sq;
|
|
float R_MAX = 250;
|
|
float imageCenterX = (float)imageWidth / 2;
|
|
float imageCenterY = (float)imageHeight / 2;
|
|
|
|
cv::Mat undPointsGt(imageHeight, imageWidth, CV_32FC2);
|
|
cv::Mat imageGt(imageHeight, imageWidth, CV_8UC3);
|
|
|
|
for(int y = 0; y < imageHeight; ++y)
|
|
{
|
|
for(int x = 0; x < imageWidth; ++x)
|
|
{
|
|
dx = x - imageCenterX;
|
|
dy = y - imageCenterY;
|
|
r_sq = dy * dy + dx * dx;
|
|
|
|
Vec2f & und_vec = undPoints.at<Vec2f>(y,x);
|
|
Vec3b & pixel = image_projected.at<Vec3b>(y,x);
|
|
|
|
Vec2f & undist_vec_gt = undPointsGt.at<Vec2f>(y,x);
|
|
Vec3b & pixel_gt = imageGt.at<Vec3b>(y,x);
|
|
|
|
if (r_sq > R_MAX * R_MAX)
|
|
{
|
|
|
|
undist_vec_gt[0] = -1e6;
|
|
undist_vec_gt[1] = -1e6;
|
|
|
|
pixel_gt[0] = 0;
|
|
pixel_gt[1] = 0;
|
|
pixel_gt[2] = 0;
|
|
}
|
|
else
|
|
{
|
|
undist_vec_gt[0] = und_vec[0];
|
|
undist_vec_gt[1] = und_vec[1];
|
|
|
|
pixel_gt[0] = pixel[0];
|
|
pixel_gt[1] = pixel[1];
|
|
pixel_gt[2] = pixel[2];
|
|
}
|
|
|
|
}
|
|
}
|
|
|
|
EXPECT_MAT_NEAR(undPoints, undPointsGt, 1e-10);
|
|
EXPECT_MAT_NEAR(image_projected, imageGt, 1e-10);
|
|
|
|
Vec2f dist_point_1 = distPoints.at<Vec2f>(400, 640);
|
|
Vec2f dist_point_1_gt(640.044f, 400.041f);
|
|
|
|
Vec2f dist_point_2 = distPoints.at<Vec2f>(400, 440);
|
|
Vec2f dist_point_2_gt(409.731f, 403.029f);
|
|
|
|
Vec2f dist_point_3 = distPoints.at<Vec2f>(200, 640);
|
|
Vec2f dist_point_3_gt(643.341f, 168.896f);
|
|
|
|
Vec2f dist_point_4 = distPoints.at<Vec2f>(300, 480);
|
|
Vec2f dist_point_4_gt(463.402f, 290.317f);
|
|
|
|
Vec2f dist_point_5 = distPoints.at<Vec2f>(550, 750);
|
|
Vec2f dist_point_5_gt(797.51f, 611.637f);
|
|
|
|
EXPECT_MAT_NEAR(dist_point_1, dist_point_1_gt, 1e-2);
|
|
EXPECT_MAT_NEAR(dist_point_2, dist_point_2_gt, 1e-2);
|
|
EXPECT_MAT_NEAR(dist_point_3, dist_point_3_gt, 1e-2);
|
|
EXPECT_MAT_NEAR(dist_point_4, dist_point_4_gt, 1e-2);
|
|
EXPECT_MAT_NEAR(dist_point_5, dist_point_5_gt, 1e-2);
|
|
|
|
// Add the "--test_debug" to arguments for file output
|
|
if (cvtest::debugLevel > 0)
|
|
cv::imwrite(combine(datasets_repository_path, "new_distortion.png"), image_projected);
|
|
}
|
|
|
|
TEST_F(fisheyeTest, jacobians)
|
|
{
|
|
int n = 10;
|
|
cv::Mat X(1, n, CV_64FC3);
|
|
cv::Mat om(3, 1, CV_64F), theT(3, 1, CV_64F);
|
|
cv::Mat f(2, 1, CV_64F), c(2, 1, CV_64F);
|
|
cv::Mat k(4, 1, CV_64F);
|
|
double alpha;
|
|
|
|
cv::RNG r;
|
|
|
|
r.fill(X, cv::RNG::NORMAL, 2, 1);
|
|
X = cv::abs(X) * 10;
|
|
|
|
r.fill(om, cv::RNG::NORMAL, 0, 1);
|
|
om = cv::abs(om);
|
|
|
|
r.fill(theT, cv::RNG::NORMAL, 0, 1);
|
|
theT = cv::abs(theT); theT.at<double>(2) = 4; theT *= 10;
|
|
|
|
r.fill(f, cv::RNG::NORMAL, 0, 1);
|
|
f = cv::abs(f) * 1000;
|
|
|
|
r.fill(c, cv::RNG::NORMAL, 0, 1);
|
|
c = cv::abs(c) * 1000;
|
|
|
|
r.fill(k, cv::RNG::NORMAL, 0, 1);
|
|
k*= 0.5;
|
|
|
|
alpha = 0.01*r.gaussian(1);
|
|
|
|
cv::Mat x1, x2, xpred;
|
|
cv::Matx33d theK(f.at<double>(0), alpha * f.at<double>(0), c.at<double>(0),
|
|
0, f.at<double>(1), c.at<double>(1),
|
|
0, 0, 1);
|
|
|
|
cv::Mat jacobians;
|
|
cv::fisheye::projectPoints(X, x1, om, theT, theK, k, alpha, jacobians);
|
|
|
|
//test on T:
|
|
cv::Mat dT(3, 1, CV_64FC1);
|
|
r.fill(dT, cv::RNG::NORMAL, 0, 1);
|
|
dT *= 1e-9*cv::norm(theT);
|
|
cv::Mat T2 = theT + dT;
|
|
cv::fisheye::projectPoints(X, x2, om, T2, theK, k, alpha, cv::noArray());
|
|
xpred = x1 + cv::Mat(jacobians.colRange(11,14) * dT).reshape(2, 1);
|
|
CV_Assert (cv::norm(x2 - xpred) < 1e-10);
|
|
|
|
//test on om:
|
|
cv::Mat dom(3, 1, CV_64FC1);
|
|
r.fill(dom, cv::RNG::NORMAL, 0, 1);
|
|
dom *= 1e-9*cv::norm(om);
|
|
cv::Mat om2 = om + dom;
|
|
cv::fisheye::projectPoints(X, x2, om2, theT, theK, k, alpha, cv::noArray());
|
|
xpred = x1 + cv::Mat(jacobians.colRange(8,11) * dom).reshape(2, 1);
|
|
CV_Assert (cv::norm(x2 - xpred) < 1e-10);
|
|
|
|
//test on f:
|
|
cv::Mat df(2, 1, CV_64FC1);
|
|
r.fill(df, cv::RNG::NORMAL, 0, 1);
|
|
df *= 1e-9*cv::norm(f);
|
|
cv::Matx33d K2 = theK + cv::Matx33d(df.at<double>(0), df.at<double>(0) * alpha, 0, 0, df.at<double>(1), 0, 0, 0, 0);
|
|
cv::fisheye::projectPoints(X, x2, om, theT, K2, k, alpha, cv::noArray());
|
|
xpred = x1 + cv::Mat(jacobians.colRange(0,2) * df).reshape(2, 1);
|
|
CV_Assert (cv::norm(x2 - xpred) < 1e-10);
|
|
|
|
//test on c:
|
|
cv::Mat dc(2, 1, CV_64FC1);
|
|
r.fill(dc, cv::RNG::NORMAL, 0, 1);
|
|
dc *= 1e-9*cv::norm(c);
|
|
K2 = theK + cv::Matx33d(0, 0, dc.at<double>(0), 0, 0, dc.at<double>(1), 0, 0, 0);
|
|
cv::fisheye::projectPoints(X, x2, om, theT, K2, k, alpha, cv::noArray());
|
|
xpred = x1 + cv::Mat(jacobians.colRange(2,4) * dc).reshape(2, 1);
|
|
CV_Assert (cv::norm(x2 - xpred) < 1e-10);
|
|
|
|
//test on k:
|
|
cv::Mat dk(4, 1, CV_64FC1);
|
|
r.fill(dk, cv::RNG::NORMAL, 0, 1);
|
|
dk *= 1e-9*cv::norm(k);
|
|
cv::Mat k2 = k + dk;
|
|
cv::fisheye::projectPoints(X, x2, om, theT, theK, k2, alpha, cv::noArray());
|
|
xpred = x1 + cv::Mat(jacobians.colRange(4,8) * dk).reshape(2, 1);
|
|
CV_Assert (cv::norm(x2 - xpred) < 1e-10);
|
|
|
|
//test on alpha:
|
|
cv::Mat dalpha(1, 1, CV_64FC1);
|
|
r.fill(dalpha, cv::RNG::NORMAL, 0, 1);
|
|
dalpha *= 1e-9*cv::norm(f);
|
|
double alpha2 = alpha + dalpha.at<double>(0);
|
|
K2 = theK + cv::Matx33d(0, f.at<double>(0) * dalpha.at<double>(0), 0, 0, 0, 0, 0, 0, 0);
|
|
cv::fisheye::projectPoints(X, x2, om, theT, theK, k, alpha2, cv::noArray());
|
|
xpred = x1 + cv::Mat(jacobians.col(14) * dalpha).reshape(2, 1);
|
|
CV_Assert (cv::norm(x2 - xpred) < 1e-10);
|
|
}
|
|
|
|
}}
|