mirror of
https://github.com/opencv/opencv.git
synced 2025-01-07 11:41:48 +08:00
7e56908306
imgproc: refactor EMD to reduce C-API usage #25469 - added more tests for EMD - refactored to remove CvArr - used BufferArea for memory allocations - renamed functions and variables and formatted the code - kept legacy functions intact in separate header
251 lines
7.9 KiB
C++
251 lines
7.9 KiB
C++
// This file is part of OpenCV project.
|
|
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
|
// of this distribution and at http://opencv.org/license.html
|
|
|
|
#include "opencv2/imgproc.hpp"
|
|
#include "test_precomp.hpp"
|
|
|
|
using namespace cv;
|
|
using namespace std;
|
|
|
|
namespace opencv_test { namespace {
|
|
|
|
//==============================================================================
|
|
// Utility
|
|
|
|
template <typename T>
|
|
inline T sqr(T val)
|
|
{
|
|
return val * val;
|
|
}
|
|
|
|
inline static float calcEMD(Mat w1, Mat w2, Mat& flow, int dist, int dims)
|
|
{
|
|
float mass1 = 0.f, mass2 = 0.f, work = 0.f;
|
|
for (int i = 0; i < flow.rows; ++i)
|
|
{
|
|
mass1 += w1.at<float>(i, 0);
|
|
for (int j = 0; j < flow.cols; ++j)
|
|
{
|
|
if (i == 0)
|
|
mass2 += w2.at<float>(j, 0);
|
|
float dist_ = 0.f;
|
|
switch (dist)
|
|
{
|
|
case DIST_L1:
|
|
{
|
|
for (int k = 1; k <= dims; ++k)
|
|
{
|
|
dist_ += abs(w1.at<float>(i, k) - w2.at<float>(j, k));
|
|
}
|
|
break;
|
|
}
|
|
case DIST_L2:
|
|
{
|
|
for (int k = 1; k <= dims; ++k)
|
|
{
|
|
dist_ += sqr(w1.at<float>(i, k) - w2.at<float>(j, k));
|
|
}
|
|
dist_ = sqrt(dist_);
|
|
break;
|
|
}
|
|
case DIST_C:
|
|
{
|
|
for (int k = 1; k <= dims; ++k)
|
|
{
|
|
const float val = abs(w1.at<float>(i, k) - w2.at<float>(j, k));
|
|
if (val > dist_)
|
|
dist_ = val;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
const float weight = flow.at<float>(i, j);
|
|
work += dist_ * weight;
|
|
}
|
|
}
|
|
return work / max(mass1, mass2);
|
|
}
|
|
|
|
//==============================================================================
|
|
|
|
TEST(Imgproc_EMD, regression)
|
|
{
|
|
// input data
|
|
const float M = 10000;
|
|
Matx<float, 4, 1> w1 {50, 60, 50, 50};
|
|
Matx<float, 5, 1> w2 {30, 20, 70, 30, 60};
|
|
Matx<float, 4, 5> cost {16, 16, 13, 22, 17, 14, 14, 13, 19, 15,
|
|
19, 19, 20, 23, M, M, 0, M, 0, 0};
|
|
|
|
// expected results
|
|
const double emd0 = 2460. / 210;
|
|
Matx<float, 4, 5> flow0 {0, 0, 50, 0, 0, 0, 0, 20, 0, 40, 30, 20, 0, 0, 0, 0, 0, 0, 30, 20};
|
|
|
|
// basic call with cost
|
|
{
|
|
float emd = 0.f;
|
|
ASSERT_NO_THROW(emd = EMD(w1, w2, DIST_USER, cost));
|
|
EXPECT_NEAR(emd, emd0, 1e-6 * emd0);
|
|
}
|
|
|
|
// basic call with cost and flow output
|
|
{
|
|
Mat flow;
|
|
float emd = 0.f;
|
|
ASSERT_NO_THROW(emd = EMD(w1, w2, DIST_USER, cost, nullptr, flow));
|
|
EXPECT_NEAR(emd, emd0, 1e-6 * emd0);
|
|
EXPECT_MAT_NEAR(Mat(flow0), flow, 1e-6);
|
|
}
|
|
// no cost and DIST_USER - error
|
|
{
|
|
Mat flow;
|
|
EXPECT_THROW(EMD(w1, w2, DIST_USER, noArray(), nullptr, flow), cv::Exception);
|
|
EXPECT_THROW(EMD(w1, w2, DIST_USER), cv::Exception);
|
|
}
|
|
}
|
|
|
|
TEST(Imgproc_EMD, distance_types)
|
|
{
|
|
// 1D (sum = 210)
|
|
Matx<float, 4, 2> w1 {50, 1, 60, 2, 50, 3, 50, 4};
|
|
Matx<float, 5, 2> w2 {30, 1, 20, 2, 70, 3, 30, 4, 60, 5};
|
|
|
|
// 2D (sum = 210)
|
|
Matx<float, 4, 3> w3 {50, 0, 0, 60, 0, 1, 50, 1, 0, 50, 1, 1};
|
|
Matx<float, 5, 3> w4 {20, 0, 1, 70, 1, 0, 30, 1, 1, 60, 2, 2, 30, 3, 3};
|
|
|
|
// basic call with all distance types
|
|
{
|
|
const vector<DistanceTypes> good_types {DIST_L1, DIST_L2, DIST_C};
|
|
for (const auto& dt : good_types)
|
|
{
|
|
SCOPED_TRACE(cv::format("dt=%d", dt));
|
|
float emd = 0.f;
|
|
Mat flow;
|
|
// 1D
|
|
{
|
|
ASSERT_NO_THROW(emd = EMD(w1, w2, dt, noArray(), nullptr, flow));
|
|
const float emd0 = calcEMD(Mat(w1), Mat(w2), flow, dt, 1);
|
|
EXPECT_NEAR(emd0, emd, 1e-6);
|
|
}
|
|
// 2D
|
|
{
|
|
ASSERT_NO_THROW(emd = EMD(w3, w4, dt, noArray(), nullptr, flow));
|
|
const float emd0 = calcEMD(Mat(w3), Mat(w4), flow, dt, 2);
|
|
EXPECT_NEAR(emd0, emd, 1e-6);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
typedef testing::TestWithParam<int> Imgproc_EMD_dist;
|
|
|
|
TEST_P(Imgproc_EMD_dist, random_flow_verify)
|
|
{
|
|
const int dist = GetParam();
|
|
for (size_t iter = 0; iter < 100; ++iter)
|
|
{
|
|
SCOPED_TRACE(cv::format("iter=%zu", iter));
|
|
RNG& rng = TS::ptr()->get_rng();
|
|
const int dims = rng.uniform(1, 10);
|
|
Mat w1(rng.uniform(1, 10), dims + 1, CV_32FC1);
|
|
Mat w2(rng.uniform(1, 10), dims + 1, CV_32FC1);
|
|
|
|
// weights > 0
|
|
{
|
|
Mat w1_weights = w1.col(0);
|
|
Mat w2_weights = w2.col(0);
|
|
cvtest::randUni(rng, w1_weights, 0, 100);
|
|
cvtest::randUni(rng, w2_weights, 0, 100);
|
|
}
|
|
|
|
// coord
|
|
{
|
|
Mat w1_coord = w1.colRange(1, dims + 1);
|
|
Mat w2_coord = w2.colRange(1, dims + 1);
|
|
cvtest::randUni(rng, w1_coord, -10, +10);
|
|
cvtest::randUni(rng, w2_coord, -10, +10);
|
|
}
|
|
|
|
float emd1 = 0.f, emd2 = 0.f;
|
|
const float eps = 1e-5f;
|
|
Mat flow;
|
|
{
|
|
ASSERT_NO_THROW(emd1 = EMD(w1, w2, dist, noArray(), nullptr, flow));
|
|
const float emd0 = calcEMD(w1, w2, flow, dist, dims);
|
|
EXPECT_NEAR(emd0, emd1, eps);
|
|
}
|
|
{
|
|
ASSERT_NO_THROW(emd2 = EMD(w2, w1, dist, noArray(), nullptr, flow));
|
|
const float emd0 = calcEMD(w2, w1, flow, dist, dims);
|
|
EXPECT_NEAR(emd0, emd2, eps);
|
|
}
|
|
EXPECT_NEAR(emd1, emd2, eps);
|
|
}
|
|
}
|
|
|
|
INSTANTIATE_TEST_CASE_P(, Imgproc_EMD_dist, testing::Values(DIST_L1, DIST_L2, DIST_C));
|
|
|
|
|
|
TEST(Imgproc_EMD, invalid)
|
|
{
|
|
Matx<float, 4, 2> w1 {50, 1, 60, 2, 50, 3, 50, 4};
|
|
Matx<float, 5, 2> w2 {30, 1, 20, 2, 70, 3, 30, 4, 60, 5};
|
|
|
|
// empty signature
|
|
{
|
|
Mat empty;
|
|
EXPECT_THROW(EMD(empty, w2, DIST_USER), cv::Exception);
|
|
EXPECT_THROW(EMD(w1, empty, DIST_USER), cv::Exception);
|
|
}
|
|
|
|
// zero total weight, negative weight
|
|
{
|
|
Matx<float, 3, 1> wz {0, 0, 0};
|
|
Matx<float, 3, 2> wz1 {0, 1, 0, 2, 0, 3};
|
|
Matx<float, 3, 1> wn {0, 3, -2};
|
|
Matx<float, 3, 2> wn1 {0, 1, 3, 2, -2, 3};
|
|
EXPECT_THROW(EMD(wz, w2, DIST_USER), cv::Exception);
|
|
EXPECT_THROW(EMD(wz1, w2, DIST_USER), cv::Exception);
|
|
EXPECT_THROW(EMD(wn, w2, DIST_USER), cv::Exception);
|
|
EXPECT_THROW(EMD(wn1, w2, DIST_USER), cv::Exception);
|
|
}
|
|
|
|
// user distance type, but no cost matrix provided or is wrong
|
|
{
|
|
Mat cost(3, 3, CV_32FC1, Scalar::all(0)), cost8u(4, 5, CV_8UC1, Scalar::all(0)), empty;
|
|
EXPECT_THROW(EMD(w1, w2, DIST_USER, noArray()), cv::Exception);
|
|
EXPECT_THROW(EMD(w1, w2, DIST_USER, empty), cv::Exception);
|
|
EXPECT_THROW(EMD(w1, w2, DIST_USER, cost8u), cv::Exception);
|
|
EXPECT_THROW(EMD(w1, w2, DIST_USER, cost), cv::Exception);
|
|
}
|
|
|
|
// lower_bound is set together with cost
|
|
{
|
|
Mat cost(4, 5, CV_32FC1, Scalar::all(0));
|
|
float bound = 0.f;
|
|
EXPECT_THROW(EMD(w1, w2, DIST_USER, cost, &bound), cv::Exception);
|
|
}
|
|
|
|
// zero dimensions with non-user distance type
|
|
const vector<DistanceTypes> good_types {DIST_L1, DIST_L2, DIST_C};
|
|
for (const auto& dt : good_types)
|
|
{
|
|
SCOPED_TRACE(cv::format("dt=%d", dt));
|
|
Matx<float, 4, 1> w01 {20, 30, 40, 50};
|
|
Matx<float, 5, 1> w02 {20, 30, 40, 50, 10};
|
|
EXPECT_THROW(EMD(w01, w02, dt), cv::Exception);
|
|
}
|
|
|
|
// wrong distance type
|
|
const vector<DistanceTypes> bad_types {DIST_L12, DIST_FAIR, DIST_WELSCH, DIST_HUBER};
|
|
for (const auto& dt : bad_types)
|
|
{
|
|
SCOPED_TRACE(cv::format("dt=%d", dt));
|
|
EXPECT_THROW(EMD(w1, w2, dt), cv::Exception);
|
|
}
|
|
}
|
|
|
|
}} // namespace opencv_test
|