mirror of
https://github.com/opencv/opencv.git
synced 2024-12-05 01:39:13 +08:00
1fcf7ba5bc
[GSoC] OpenCV.js: Accelerate OpenCV.js DNN via WebNN * Add WebNN backend for OpenCV DNN Module Update dnn.cpp Update dnn.cpp Update dnn.cpp Update dnn.cpp Add WebNN head files into OpenCV 3rd partiy files Create webnn.hpp update cmake Complete README and add OpenCVDetectWebNN.cmake file add webnn.cpp Modify webnn.cpp Can successfully compile the codes for creating a MLContext Update webnn.cpp Update README.md Update README.md Update README.md Update README.md Update cmake files and update README.md Update OpenCVDetectWebNN.cmake and README.md Update OpenCVDetectWebNN.cmake Fix OpenCVDetectWebNN.cmake and update README.md Add source webnn_cpp.cpp and libary libwebnn_proc.so Update dnn.cpp Update dnn.cpp Update dnn.cpp Update dnn.cpp update dnn.cpp update op_webnn update op_webnn Update op_webnn.hpp update op_webnn.cpp & hpp Update op_webnn.hpp Update op_webnn update the skeleton Update op_webnn.cpp Update op_webnn Update op_webnn.cpp Update op_webnn.cpp Update op_webnn.hpp update op_webnn update op_webnn Solved the problems of released variables. Fixed the bugs in op_webnn.cpp Implement op_webnn Implement Relu by WebNN API Update dnn.cpp for better test Update elementwise_layers.cpp Implement ReLU6 Update elementwise_layers.cpp Implement SoftMax using WebNN API Implement Reshape by WebNN API Implement PermuteLayer by WebNN API Implement PoolingLayer using WebNN API Update pooling_layer.cpp Update pooling_layer.cpp Update pooling_layer.cpp Update pooling_layer.cpp Update pooling_layer.cpp Update pooling_layer.cpp Implement poolingLayer by WebNN API and add more detailed logs Update dnn.cpp Update dnn.cpp Remove redundant codes and add more logs for poolingLayer Add more logs in the pooling layer implementation Fix the indent issue and resolve the compiling issue Fix the build problems Fix the build issue FIx the build issue Update dnn.cpp Update dnn.cpp * Fix the build issue * Implement BatchNorm Layer by WebNN API * Update convolution_layer.cpp This is a temporary file for Conv2d layer implementation * Integrate some general functions into op_webnn.cpp&hpp * Update const_layer.cpp * Update convolution_layer.cpp Still have some bugs that should be fixed. * Update conv2d layer and fc layer still have some problems to be fixed. * update constLayer, conv layer, fc layer There are still some bugs to be fixed. * Fix the build issue * Update concat_layer.cpp Still have some bugs to be fixed. * Update conv2d layer, fully connected layer and const layer * Update convolution_layer.cpp * Add OpenCV.js DNN module WebNN Backend (both using webnn-polyfill and electron) * Delete bib19450.aux * Add WebNN backend for OpenCV DNN Module Update dnn.cpp Update dnn.cpp Update dnn.cpp Update dnn.cpp Add WebNN head files into OpenCV 3rd partiy files Create webnn.hpp update cmake Complete README and add OpenCVDetectWebNN.cmake file add webnn.cpp Modify webnn.cpp Can successfully compile the codes for creating a MLContext Update webnn.cpp Update README.md Update README.md Update README.md Update README.md Update cmake files and update README.md Update OpenCVDetectWebNN.cmake and README.md Update OpenCVDetectWebNN.cmake Fix OpenCVDetectWebNN.cmake and update README.md Add source webnn_cpp.cpp and libary libwebnn_proc.so Update dnn.cpp Update dnn.cpp Update dnn.cpp Update dnn.cpp update dnn.cpp update op_webnn update op_webnn Update op_webnn.hpp update op_webnn.cpp & hpp Update op_webnn.hpp Update op_webnn update the skeleton Update op_webnn.cpp Update op_webnn Update op_webnn.cpp Update op_webnn.cpp Update op_webnn.hpp update op_webnn update op_webnn Solved the problems of released variables. Fixed the bugs in op_webnn.cpp Implement op_webnn Implement Relu by WebNN API Update dnn.cpp for better test Update elementwise_layers.cpp Implement ReLU6 Update elementwise_layers.cpp Implement SoftMax using WebNN API Implement Reshape by WebNN API Implement PermuteLayer by WebNN API Implement PoolingLayer using WebNN API Update pooling_layer.cpp Update pooling_layer.cpp Update pooling_layer.cpp Update pooling_layer.cpp Update pooling_layer.cpp Update pooling_layer.cpp Implement poolingLayer by WebNN API and add more detailed logs Update dnn.cpp Update dnn.cpp Remove redundant codes and add more logs for poolingLayer Add more logs in the pooling layer implementation Fix the indent issue and resolve the compiling issue Fix the build problems Fix the build issue FIx the build issue Update dnn.cpp Update dnn.cpp * Fix the build issue * Implement BatchNorm Layer by WebNN API * Update convolution_layer.cpp This is a temporary file for Conv2d layer implementation * Integrate some general functions into op_webnn.cpp&hpp * Update const_layer.cpp * Update convolution_layer.cpp Still have some bugs that should be fixed. * Update conv2d layer and fc layer still have some problems to be fixed. * update constLayer, conv layer, fc layer There are still some bugs to be fixed. * Update conv2d layer, fully connected layer and const layer * Update convolution_layer.cpp * Add OpenCV.js DNN module WebNN Backend (both using webnn-polyfill and electron) * Update dnn.cpp * Fix Error in dnn.cpp * Resolve duplication in conditions in convolution_layer.cpp * Fixed the issues in the comments * Fix building issue * Update tutorial * Fixed comments * Address the comments * Update CMakeLists.txt * Offer more accurate perf test on native * Add better perf tests for both native and web * Modify per tests for better results * Use more latest version of Electron * Support latest WebNN Clamp op * Add definition of HAVE_WEBNN macro * Support group convolution * Implement Scale_layer using WebNN * Add Softmax option for native classification example * Fix comments * Fix comments
211 lines
7.7 KiB
C++
211 lines
7.7 KiB
C++
#include <fstream>
|
|
#include <sstream>
|
|
#include <iostream>
|
|
|
|
#include <opencv2/dnn.hpp>
|
|
#include <opencv2/imgproc.hpp>
|
|
#include <opencv2/highgui.hpp>
|
|
|
|
#include "common.hpp"
|
|
|
|
std::string keys =
|
|
"{ help h | | Print help message. }"
|
|
"{ @alias | | An alias name of model to extract preprocessing parameters from models.yml file. }"
|
|
"{ zoo | models.yml | An optional path to file with preprocessing parameters }"
|
|
"{ input i | | Path to input image or video file. Skip this argument to capture frames from a camera.}"
|
|
"{ initial_width | 0 | Preprocess input image by initial resizing to a specific width.}"
|
|
"{ initial_height | 0 | Preprocess input image by initial resizing to a specific height.}"
|
|
"{ std | 0.0 0.0 0.0 | Preprocess input image by dividing on a standard deviation.}"
|
|
"{ crop | false | Preprocess input image by center cropping.}"
|
|
"{ framework f | | Optional name of an origin framework of the model. Detect it automatically if it does not set. }"
|
|
"{ needSoftmax | false | Use Softmax to post-process the output of the net.}"
|
|
"{ classes | | Optional path to a text file with names of classes. }"
|
|
"{ backend | 0 | Choose one of computation backends: "
|
|
"0: automatically (by default), "
|
|
"1: Halide language (http://halide-lang.org/), "
|
|
"2: Intel's Deep Learning Inference Engine (https://software.intel.com/openvino-toolkit), "
|
|
"3: OpenCV implementation, "
|
|
"4: VKCOM, "
|
|
"5: CUDA, "
|
|
"6: WebNN }"
|
|
"{ target | 0 | Choose one of target computation devices: "
|
|
"0: CPU target (by default), "
|
|
"1: OpenCL, "
|
|
"2: OpenCL fp16 (half-float precision), "
|
|
"3: VPU, "
|
|
"4: Vulkan, "
|
|
"6: CUDA, "
|
|
"7: CUDA fp16 (half-float preprocess) }";
|
|
|
|
using namespace cv;
|
|
using namespace dnn;
|
|
|
|
std::vector<std::string> classes;
|
|
|
|
int main(int argc, char** argv)
|
|
{
|
|
CommandLineParser parser(argc, argv, keys);
|
|
|
|
const std::string modelName = parser.get<String>("@alias");
|
|
const std::string zooFile = parser.get<String>("zoo");
|
|
|
|
keys += genPreprocArguments(modelName, zooFile);
|
|
|
|
parser = CommandLineParser(argc, argv, keys);
|
|
parser.about("Use this script to run classification deep learning networks using OpenCV.");
|
|
if (argc == 1 || parser.has("help"))
|
|
{
|
|
parser.printMessage();
|
|
return 0;
|
|
}
|
|
|
|
int rszWidth = parser.get<int>("initial_width");
|
|
int rszHeight = parser.get<int>("initial_height");
|
|
float scale = parser.get<float>("scale");
|
|
Scalar mean = parser.get<Scalar>("mean");
|
|
Scalar std = parser.get<Scalar>("std");
|
|
bool swapRB = parser.get<bool>("rgb");
|
|
bool crop = parser.get<bool>("crop");
|
|
int inpWidth = parser.get<int>("width");
|
|
int inpHeight = parser.get<int>("height");
|
|
String model = findFile(parser.get<String>("model"));
|
|
String config = findFile(parser.get<String>("config"));
|
|
String framework = parser.get<String>("framework");
|
|
int backendId = parser.get<int>("backend");
|
|
int targetId = parser.get<int>("target");
|
|
bool needSoftmax = parser.get<bool>("needSoftmax");
|
|
std::cout<<"mean: "<<mean<<std::endl;
|
|
std::cout<<"std: "<<std<<std::endl;
|
|
|
|
// Open file with classes names.
|
|
if (parser.has("classes"))
|
|
{
|
|
std::string file = parser.get<String>("classes");
|
|
std::ifstream ifs(file.c_str());
|
|
if (!ifs.is_open())
|
|
CV_Error(Error::StsError, "File " + file + " not found");
|
|
std::string line;
|
|
while (std::getline(ifs, line))
|
|
{
|
|
classes.push_back(line);
|
|
}
|
|
}
|
|
|
|
if (!parser.check())
|
|
{
|
|
parser.printErrors();
|
|
return 1;
|
|
}
|
|
CV_Assert(!model.empty());
|
|
|
|
//! [Read and initialize network]
|
|
Net net = readNet(model, config, framework);
|
|
net.setPreferableBackend(backendId);
|
|
net.setPreferableTarget(targetId);
|
|
//! [Read and initialize network]
|
|
|
|
// Create a window
|
|
static const std::string kWinName = "Deep learning image classification in OpenCV";
|
|
namedWindow(kWinName, WINDOW_NORMAL);
|
|
|
|
//! [Open a video file or an image file or a camera stream]
|
|
VideoCapture cap;
|
|
if (parser.has("input"))
|
|
cap.open(parser.get<String>("input"));
|
|
else
|
|
cap.open(0);
|
|
//! [Open a video file or an image file or a camera stream]
|
|
|
|
// Process frames.
|
|
Mat frame, blob;
|
|
while (waitKey(1) < 0)
|
|
{
|
|
cap >> frame;
|
|
if (frame.empty())
|
|
{
|
|
waitKey();
|
|
break;
|
|
}
|
|
|
|
if (rszWidth != 0 && rszHeight != 0)
|
|
{
|
|
resize(frame, frame, Size(rszWidth, rszHeight));
|
|
}
|
|
|
|
//! [Create a 4D blob from a frame]
|
|
blobFromImage(frame, blob, scale, Size(inpWidth, inpHeight), mean, swapRB, crop);
|
|
|
|
// Check std values.
|
|
if (std.val[0] != 0.0 && std.val[1] != 0.0 && std.val[2] != 0.0)
|
|
{
|
|
// Divide blob by std.
|
|
divide(blob, std, blob);
|
|
}
|
|
//! [Create a 4D blob from a frame]
|
|
|
|
//! [Set input blob]
|
|
net.setInput(blob);
|
|
//! [Set input blob]
|
|
//! [Make forward pass]
|
|
// double t_sum = 0.0;
|
|
// double t;
|
|
int classId;
|
|
double confidence;
|
|
cv::TickMeter timeRecorder;
|
|
timeRecorder.reset();
|
|
Mat prob = net.forward();
|
|
double t1;
|
|
timeRecorder.start();
|
|
prob = net.forward();
|
|
timeRecorder.stop();
|
|
t1 = timeRecorder.getTimeMilli();
|
|
|
|
timeRecorder.reset();
|
|
for(int i = 0; i < 200; i++) {
|
|
//! [Make forward pass]
|
|
timeRecorder.start();
|
|
prob = net.forward();
|
|
timeRecorder.stop();
|
|
|
|
//! [Get a class with a highest score]
|
|
Point classIdPoint;
|
|
minMaxLoc(prob.reshape(1, 1), 0, &confidence, 0, &classIdPoint);
|
|
classId = classIdPoint.x;
|
|
//! [Get a class with a highest score]
|
|
|
|
// Put efficiency information.
|
|
// std::vector<double> layersTimes;
|
|
// double freq = getTickFrequency() / 1000;
|
|
// t = net.getPerfProfile(layersTimes) / freq;
|
|
// t_sum += t;
|
|
}
|
|
if (needSoftmax == true)
|
|
{
|
|
float maxProb = 0.0;
|
|
float sum = 0.0;
|
|
Mat softmaxProb;
|
|
|
|
maxProb = *std::max_element(prob.begin<float>(), prob.end<float>());
|
|
cv::exp(prob-maxProb, softmaxProb);
|
|
sum = (float)cv::sum(softmaxProb)[0];
|
|
softmaxProb /= sum;
|
|
Point classIdPoint;
|
|
minMaxLoc(softmaxProb.reshape(1, 1), 0, &confidence, 0, &classIdPoint);
|
|
classId = classIdPoint.x;
|
|
}
|
|
std::string label = format("Inference time of 1 round: %.2f ms", t1);
|
|
std::string label2 = format("Average time of 200 rounds: %.2f ms", timeRecorder.getTimeMilli()/200);
|
|
putText(frame, label, Point(0, 15), FONT_HERSHEY_SIMPLEX, 0.5, Scalar(0, 255, 0));
|
|
putText(frame, label2, Point(0, 35), FONT_HERSHEY_SIMPLEX, 0.5, Scalar(0, 255, 0));
|
|
|
|
// Print predicted class.
|
|
label = format("%s: %.4f", (classes.empty() ? format("Class #%d", classId).c_str() :
|
|
classes[classId].c_str()),
|
|
confidence);
|
|
putText(frame, label, Point(0, 55), FONT_HERSHEY_SIMPLEX, 0.5, Scalar(0, 255, 0));
|
|
|
|
imshow(kWinName, frame);
|
|
}
|
|
return 0;
|
|
}
|