mirror of
https://github.com/opencv/opencv.git
synced 2024-12-16 02:19:12 +08:00
599 lines
20 KiB
C++
599 lines
20 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// Intel License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of Intel Corporation may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#include "test_precomp.hpp"
|
|
|
|
namespace opencv_test { namespace {
|
|
|
|
class CV_ThreshTest : public cvtest::ArrayTest
|
|
{
|
|
public:
|
|
CV_ThreshTest(int test_type = 0);
|
|
|
|
protected:
|
|
void get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types );
|
|
double get_success_error_level( int test_case_idx, int i, int j );
|
|
void run_func();
|
|
void prepare_to_validation( int );
|
|
|
|
int thresh_type;
|
|
double thresh_val;
|
|
double max_val;
|
|
int extra_type;
|
|
};
|
|
|
|
|
|
CV_ThreshTest::CV_ThreshTest(int test_type)
|
|
{
|
|
CV_Assert( (test_type & cv::THRESH_MASK) == 0 );
|
|
test_array[INPUT].push_back(NULL);
|
|
test_array[OUTPUT].push_back(NULL);
|
|
test_array[REF_OUTPUT].push_back(NULL);
|
|
optional_mask = false;
|
|
element_wise_relative_error = true;
|
|
extra_type = test_type;
|
|
// Reduce number of test with automated thresholding
|
|
if (extra_type != 0)
|
|
test_case_count = 250;
|
|
}
|
|
|
|
|
|
void CV_ThreshTest::get_test_array_types_and_sizes( int test_case_idx,
|
|
vector<vector<Size> >& sizes, vector<vector<int> >& types )
|
|
{
|
|
RNG& rng = ts->get_rng();
|
|
int depth = cvtest::randInt(rng) % 5, cn = cvtest::randInt(rng) % 4 + 1;
|
|
cvtest::ArrayTest::get_test_array_types_and_sizes( test_case_idx, sizes, types );
|
|
depth = depth == 0 ? CV_8U : depth == 1 ? CV_16S : depth == 2 ? CV_16U : depth == 3 ? CV_32F : CV_64F;
|
|
|
|
if ( extra_type == cv::THRESH_OTSU )
|
|
{
|
|
depth = cvtest::randInt(rng) % 2 == 0 ? CV_8U : CV_16U;
|
|
cn = 1;
|
|
}
|
|
|
|
types[INPUT][0] = types[OUTPUT][0] = types[REF_OUTPUT][0] = CV_MAKETYPE(depth,cn);
|
|
thresh_type = cvtest::randInt(rng) % 5;
|
|
|
|
if( depth == CV_8U )
|
|
{
|
|
thresh_val = (cvtest::randReal(rng)*350. - 50.);
|
|
max_val = (cvtest::randReal(rng)*350. - 50.);
|
|
if( cvtest::randInt(rng)%4 == 0 )
|
|
max_val = 255.f;
|
|
}
|
|
else if( depth == CV_16S )
|
|
{
|
|
double min_val = SHRT_MIN-100.f;
|
|
max_val = SHRT_MAX+100.f;
|
|
thresh_val = (cvtest::randReal(rng)*(max_val - min_val) + min_val);
|
|
max_val = (cvtest::randReal(rng)*(max_val - min_val) + min_val);
|
|
if( cvtest::randInt(rng)%4 == 0 )
|
|
max_val = (double)SHRT_MAX;
|
|
}
|
|
else if( depth == CV_16U )
|
|
{
|
|
double min_val = -100.f;
|
|
max_val = USHRT_MAX+100.f;
|
|
thresh_val = (cvtest::randReal(rng)*(max_val - min_val) + min_val);
|
|
max_val = (cvtest::randReal(rng)*(max_val - min_val) + min_val);
|
|
if( cvtest::randInt(rng)%4 == 0 )
|
|
max_val = (double)USHRT_MAX;
|
|
}
|
|
else
|
|
{
|
|
thresh_val = (cvtest::randReal(rng)*1000. - 500.);
|
|
max_val = (cvtest::randReal(rng)*1000. - 500.);
|
|
}
|
|
}
|
|
|
|
|
|
double CV_ThreshTest::get_success_error_level( int /*test_case_idx*/, int /*i*/, int /*j*/ )
|
|
{
|
|
return FLT_EPSILON*10;
|
|
}
|
|
|
|
|
|
void CV_ThreshTest::run_func()
|
|
{
|
|
cvThreshold( test_array[INPUT][0], test_array[OUTPUT][0],
|
|
thresh_val, max_val, thresh_type | extra_type);
|
|
}
|
|
|
|
|
|
static double compute_otsu_thresh(const Mat& _src)
|
|
{
|
|
int depth = _src.depth();
|
|
int width = _src.cols, height = _src.rows;
|
|
const int N = 65536;
|
|
std::vector<int> h(N, 0);
|
|
int i, j;
|
|
double mu = 0, scale = 1./(width*height);
|
|
for(i = 0; i < height; ++i)
|
|
{
|
|
for(j = 0; j < width; ++j)
|
|
{
|
|
const int val = depth == CV_16UC1 ? (int)_src.at<ushort>(i, j) : (int)_src.at<uchar>(i,j);
|
|
h[val]++;
|
|
}
|
|
}
|
|
for( i = 0; i < N; i++ )
|
|
{
|
|
mu += i*(double)h[i];
|
|
}
|
|
|
|
mu *= scale;
|
|
double mu1 = 0, q1 = 0;
|
|
double max_sigma = 0, max_val = 0;
|
|
|
|
for( i = 0; i < N; i++ )
|
|
{
|
|
double p_i, q2, mu2, sigma;
|
|
|
|
p_i = h[i]*scale;
|
|
mu1 *= q1;
|
|
q1 += p_i;
|
|
q2 = 1. - q1;
|
|
|
|
if( std::min(q1,q2) < FLT_EPSILON || std::max(q1,q2) > 1. - FLT_EPSILON )
|
|
continue;
|
|
|
|
mu1 = (mu1 + i*p_i)/q1;
|
|
mu2 = (mu - q1*mu1)/q2;
|
|
sigma = q1*q2*(mu1 - mu2)*(mu1 - mu2);
|
|
if( sigma > max_sigma )
|
|
{
|
|
max_sigma = sigma;
|
|
max_val = i;
|
|
}
|
|
}
|
|
|
|
return max_val;
|
|
}
|
|
|
|
static void test_threshold( const Mat& _src, Mat& _dst,
|
|
double thresh, double maxval, int thresh_type, int extra_type )
|
|
{
|
|
int i, j;
|
|
int depth = _src.depth(), cn = _src.channels();
|
|
int width_n = _src.cols*cn, height = _src.rows;
|
|
int ithresh = cvFloor(thresh);
|
|
int imaxval, ithresh2;
|
|
if (extra_type == cv::THRESH_OTSU)
|
|
{
|
|
thresh = compute_otsu_thresh(_src);
|
|
ithresh = cvFloor(thresh);
|
|
}
|
|
|
|
if( depth == CV_8U )
|
|
{
|
|
ithresh2 = saturate_cast<uchar>(ithresh);
|
|
imaxval = saturate_cast<uchar>(maxval);
|
|
}
|
|
else if( depth == CV_16S )
|
|
{
|
|
ithresh2 = saturate_cast<short>(ithresh);
|
|
imaxval = saturate_cast<short>(maxval);
|
|
}
|
|
else if( depth == CV_16U )
|
|
{
|
|
ithresh2 = saturate_cast<ushort>(ithresh);
|
|
imaxval = saturate_cast<ushort>(maxval);
|
|
}
|
|
else
|
|
{
|
|
ithresh2 = cvRound(ithresh);
|
|
imaxval = cvRound(maxval);
|
|
}
|
|
|
|
CV_Assert( depth == CV_8U || depth == CV_16S || depth == CV_16U || depth == CV_32F || depth == CV_64F );
|
|
|
|
switch( thresh_type )
|
|
{
|
|
case cv::THRESH_BINARY:
|
|
for( i = 0; i < height; i++ )
|
|
{
|
|
if( depth == CV_8U )
|
|
{
|
|
const uchar* src = _src.ptr<uchar>(i);
|
|
uchar* dst = _dst.ptr<uchar>(i);
|
|
for( j = 0; j < width_n; j++ )
|
|
dst[j] = (uchar)(src[j] > ithresh ? imaxval : 0);
|
|
}
|
|
else if( depth == CV_16S )
|
|
{
|
|
const short* src = _src.ptr<short>(i);
|
|
short* dst = _dst.ptr<short>(i);
|
|
for( j = 0; j < width_n; j++ )
|
|
dst[j] = (short)(src[j] > ithresh ? imaxval : 0);
|
|
}
|
|
else if( depth == CV_16U )
|
|
{
|
|
const ushort* src = _src.ptr<ushort>(i);
|
|
ushort* dst = _dst.ptr<ushort>(i);
|
|
for( j = 0; j < width_n; j++ )
|
|
dst[j] = (ushort)(src[j] > ithresh ? imaxval : 0);
|
|
}
|
|
else if( depth == CV_32F )
|
|
{
|
|
const float* src = _src.ptr<float>(i);
|
|
float* dst = _dst.ptr<float>(i);
|
|
for( j = 0; j < width_n; j++ )
|
|
dst[j] = (float)(src[j] > thresh ? maxval : 0.f);
|
|
}
|
|
else
|
|
{
|
|
const double* src = _src.ptr<double>(i);
|
|
double* dst = _dst.ptr<double>(i);
|
|
for( j = 0; j < width_n; j++ )
|
|
dst[j] = src[j] > thresh ? maxval : 0.0;
|
|
}
|
|
}
|
|
break;
|
|
case cv::THRESH_BINARY_INV:
|
|
for( i = 0; i < height; i++ )
|
|
{
|
|
if( depth == CV_8U )
|
|
{
|
|
const uchar* src = _src.ptr<uchar>(i);
|
|
uchar* dst = _dst.ptr<uchar>(i);
|
|
for( j = 0; j < width_n; j++ )
|
|
dst[j] = (uchar)(src[j] > ithresh ? 0 : imaxval);
|
|
}
|
|
else if( depth == CV_16S )
|
|
{
|
|
const short* src = _src.ptr<short>(i);
|
|
short* dst = _dst.ptr<short>(i);
|
|
for( j = 0; j < width_n; j++ )
|
|
dst[j] = (short)(src[j] > ithresh ? 0 : imaxval);
|
|
}
|
|
else if( depth == CV_16U )
|
|
{
|
|
const ushort* src = _src.ptr<ushort>(i);
|
|
ushort* dst = _dst.ptr<ushort>(i);
|
|
for( j = 0; j < width_n; j++ )
|
|
dst[j] = (ushort)(src[j] > ithresh ? 0 : imaxval);
|
|
}
|
|
else if( depth == CV_32F )
|
|
{
|
|
const float* src = _src.ptr<float>(i);
|
|
float* dst = _dst.ptr<float>(i);
|
|
for( j = 0; j < width_n; j++ )
|
|
dst[j] = (float)(src[j] > thresh ? 0.f : maxval);
|
|
}
|
|
else
|
|
{
|
|
const double* src = _src.ptr<double>(i);
|
|
double* dst = _dst.ptr<double>(i);
|
|
for( j = 0; j < width_n; j++ )
|
|
dst[j] = src[j] > thresh ? 0.0 : maxval;
|
|
}
|
|
}
|
|
break;
|
|
case cv::THRESH_TRUNC:
|
|
for( i = 0; i < height; i++ )
|
|
{
|
|
if( depth == CV_8U )
|
|
{
|
|
const uchar* src = _src.ptr<uchar>(i);
|
|
uchar* dst = _dst.ptr<uchar>(i);
|
|
for( j = 0; j < width_n; j++ )
|
|
{
|
|
int s = src[j];
|
|
dst[j] = (uchar)(s > ithresh ? ithresh2 : s);
|
|
}
|
|
}
|
|
else if( depth == CV_16S )
|
|
{
|
|
const short* src = _src.ptr<short>(i);
|
|
short* dst = _dst.ptr<short>(i);
|
|
for( j = 0; j < width_n; j++ )
|
|
{
|
|
int s = src[j];
|
|
dst[j] = (short)(s > ithresh ? ithresh2 : s);
|
|
}
|
|
}
|
|
else if( depth == CV_16U )
|
|
{
|
|
const ushort* src = _src.ptr<ushort>(i);
|
|
ushort* dst = _dst.ptr<ushort>(i);
|
|
for( j = 0; j < width_n; j++ )
|
|
{
|
|
int s = src[j];
|
|
dst[j] = (ushort)(s > ithresh ? ithresh2 : s);
|
|
}
|
|
}
|
|
else if( depth == CV_32F )
|
|
{
|
|
const float* src = _src.ptr<float>(i);
|
|
float* dst = _dst.ptr<float>(i);
|
|
for( j = 0; j < width_n; j++ )
|
|
{
|
|
float s = src[j];
|
|
dst[j] = (float)(s > thresh ? thresh : s);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
const double* src = _src.ptr<double>(i);
|
|
double* dst = _dst.ptr<double>(i);
|
|
for( j = 0; j < width_n; j++ )
|
|
{
|
|
double s = src[j];
|
|
dst[j] = s > thresh ? thresh : s;
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
case cv::THRESH_TOZERO:
|
|
for( i = 0; i < height; i++ )
|
|
{
|
|
if( depth == CV_8U )
|
|
{
|
|
const uchar* src = _src.ptr<uchar>(i);
|
|
uchar* dst = _dst.ptr<uchar>(i);
|
|
for( j = 0; j < width_n; j++ )
|
|
{
|
|
int s = src[j];
|
|
dst[j] = (uchar)(s > ithresh ? s : 0);
|
|
}
|
|
}
|
|
else if( depth == CV_16S )
|
|
{
|
|
const short* src = _src.ptr<short>(i);
|
|
short* dst = _dst.ptr<short>(i);
|
|
for( j = 0; j < width_n; j++ )
|
|
{
|
|
int s = src[j];
|
|
dst[j] = (short)(s > ithresh ? s : 0);
|
|
}
|
|
}
|
|
else if( depth == CV_16U )
|
|
{
|
|
const ushort* src = _src.ptr<ushort>(i);
|
|
ushort* dst = _dst.ptr<ushort>(i);
|
|
for( j = 0; j < width_n; j++ )
|
|
{
|
|
int s = src[j];
|
|
dst[j] = (ushort)(s > ithresh ? s : 0);
|
|
}
|
|
}
|
|
else if( depth == CV_32F )
|
|
{
|
|
const float* src = _src.ptr<float>(i);
|
|
float* dst = _dst.ptr<float>(i);
|
|
for( j = 0; j < width_n; j++ )
|
|
{
|
|
float s = src[j];
|
|
dst[j] = s > thresh ? s : 0.f;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
const double* src = _src.ptr<double>(i);
|
|
double* dst = _dst.ptr<double>(i);
|
|
for( j = 0; j < width_n; j++ )
|
|
{
|
|
double s = src[j];
|
|
dst[j] = s > thresh ? s : 0.0;
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
case cv::THRESH_TOZERO_INV:
|
|
for( i = 0; i < height; i++ )
|
|
{
|
|
if( depth == CV_8U )
|
|
{
|
|
const uchar* src = _src.ptr<uchar>(i);
|
|
uchar* dst = _dst.ptr<uchar>(i);
|
|
for( j = 0; j < width_n; j++ )
|
|
{
|
|
int s = src[j];
|
|
dst[j] = (uchar)(s > ithresh ? 0 : s);
|
|
}
|
|
}
|
|
else if( depth == CV_16S )
|
|
{
|
|
const short* src = _src.ptr<short>(i);
|
|
short* dst = _dst.ptr<short>(i);
|
|
for( j = 0; j < width_n; j++ )
|
|
{
|
|
int s = src[j];
|
|
dst[j] = (short)(s > ithresh ? 0 : s);
|
|
}
|
|
}
|
|
else if( depth == CV_16U )
|
|
{
|
|
const ushort* src = _src.ptr<ushort>(i);
|
|
ushort* dst = _dst.ptr<ushort>(i);
|
|
for( j = 0; j < width_n; j++ )
|
|
{
|
|
int s = src[j];
|
|
dst[j] = (ushort)(s > ithresh ? 0 : s);
|
|
}
|
|
}
|
|
else if (depth == CV_32F)
|
|
{
|
|
const float* src = _src.ptr<float>(i);
|
|
float* dst = _dst.ptr<float>(i);
|
|
for( j = 0; j < width_n; j++ )
|
|
{
|
|
float s = src[j];
|
|
dst[j] = s > thresh ? 0.f : s;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
const double* src = _src.ptr<double>(i);
|
|
double* dst = _dst.ptr<double>(i);
|
|
for( j = 0; j < width_n; j++ )
|
|
{
|
|
double s = src[j];
|
|
dst[j] = s > thresh ? 0.0 : s;
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
default:
|
|
CV_Assert(0);
|
|
}
|
|
}
|
|
|
|
|
|
void CV_ThreshTest::prepare_to_validation( int /*test_case_idx*/ )
|
|
{
|
|
test_threshold( test_mat[INPUT][0], test_mat[REF_OUTPUT][0],
|
|
thresh_val, max_val, thresh_type, extra_type );
|
|
}
|
|
|
|
TEST(Imgproc_Threshold, accuracy) { CV_ThreshTest test; test.safe_run(); }
|
|
TEST(Imgproc_Threshold, accuracyOtsu) { CV_ThreshTest test(cv::THRESH_OTSU); test.safe_run(); }
|
|
|
|
BIGDATA_TEST(Imgproc_Threshold, huge)
|
|
{
|
|
Mat m(65000, 40000, CV_8U);
|
|
ASSERT_FALSE(m.isContinuous());
|
|
|
|
uint64 i, n = (uint64)m.rows*m.cols;
|
|
for( i = 0; i < n; i++ )
|
|
m.data[i] = (uchar)(i & 255);
|
|
|
|
cv::threshold(m, m, 127, 255, cv::THRESH_BINARY);
|
|
int nz = cv::countNonZero(m); // FIXIT 'int' is not enough here (overflow is possible with other inputs)
|
|
ASSERT_EQ((uint64)nz, n / 2);
|
|
}
|
|
|
|
TEST(Imgproc_Threshold, regression_THRESH_TOZERO_IPP_16085)
|
|
{
|
|
Size sz(16, 16);
|
|
Mat input(sz, CV_32F, Scalar::all(2));
|
|
Mat result;
|
|
cv::threshold(input, result, 2.0, 0.0, THRESH_TOZERO);
|
|
EXPECT_EQ(0, cv::norm(result, NORM_INF));
|
|
}
|
|
|
|
TEST(Imgproc_Threshold, regression_THRESH_TOZERO_IPP_21258)
|
|
{
|
|
Size sz(16, 16);
|
|
float val = nextafterf(16.0f, 0.0f); // 0x417fffff, all bits in mantissa are 1
|
|
Mat input(sz, CV_32F, Scalar::all(val));
|
|
Mat result;
|
|
cv::threshold(input, result, val, 0.0, THRESH_TOZERO);
|
|
EXPECT_EQ(0, cv::norm(result, NORM_INF));
|
|
}
|
|
|
|
TEST(Imgproc_Threshold, regression_THRESH_TOZERO_IPP_21258_Min)
|
|
{
|
|
Size sz(16, 16);
|
|
float min_val = -std::numeric_limits<float>::max();
|
|
Mat input(sz, CV_32F, Scalar::all(min_val));
|
|
Mat result;
|
|
cv::threshold(input, result, min_val, 0.0, THRESH_TOZERO);
|
|
EXPECT_EQ(0, cv::norm(result, NORM_INF));
|
|
}
|
|
|
|
TEST(Imgproc_Threshold, regression_THRESH_TOZERO_IPP_21258_Max)
|
|
{
|
|
Size sz(16, 16);
|
|
float max_val = std::numeric_limits<float>::max();
|
|
Mat input(sz, CV_32F, Scalar::all(max_val));
|
|
Mat result;
|
|
cv::threshold(input, result, max_val, 0.0, THRESH_TOZERO);
|
|
EXPECT_EQ(0, cv::norm(result, NORM_INF));
|
|
}
|
|
|
|
TEST(Imgproc_AdaptiveThreshold, mean)
|
|
{
|
|
const string input_path = cvtest::findDataFile("../cv/shared/baboon.png");
|
|
Mat input = imread(input_path, IMREAD_GRAYSCALE);
|
|
Mat result;
|
|
|
|
cv::adaptiveThreshold(input, result, 255, ADAPTIVE_THRESH_MEAN_C, THRESH_BINARY, 15, 8);
|
|
|
|
const string gt_path = cvtest::findDataFile("../cv/imgproc/adaptive_threshold1.png");
|
|
Mat gt = imread(gt_path, IMREAD_GRAYSCALE);
|
|
EXPECT_EQ(0, cv::norm(result, gt, NORM_INF));
|
|
}
|
|
|
|
TEST(Imgproc_AdaptiveThreshold, mean_inv)
|
|
{
|
|
const string input_path = cvtest::findDataFile("../cv/shared/baboon.png");
|
|
Mat input = imread(input_path, IMREAD_GRAYSCALE);
|
|
Mat result;
|
|
|
|
cv::adaptiveThreshold(input, result, 255, ADAPTIVE_THRESH_MEAN_C, THRESH_BINARY_INV, 15, 8);
|
|
|
|
const string gt_path = cvtest::findDataFile("../cv/imgproc/adaptive_threshold1.png");
|
|
Mat gt = imread(gt_path, IMREAD_GRAYSCALE);
|
|
gt = Mat(gt.rows, gt.cols, CV_8UC1, cv::Scalar(255)) - gt;
|
|
EXPECT_EQ(0, cv::norm(result, gt, NORM_INF));
|
|
}
|
|
|
|
TEST(Imgproc_AdaptiveThreshold, gauss)
|
|
{
|
|
const string input_path = cvtest::findDataFile("../cv/shared/baboon.png");
|
|
Mat input = imread(input_path, IMREAD_GRAYSCALE);
|
|
Mat result;
|
|
|
|
cv::adaptiveThreshold(input, result, 200, ADAPTIVE_THRESH_GAUSSIAN_C, THRESH_BINARY, 21, -5);
|
|
|
|
const string gt_path = cvtest::findDataFile("../cv/imgproc/adaptive_threshold2.png");
|
|
Mat gt = imread(gt_path, IMREAD_GRAYSCALE);
|
|
EXPECT_EQ(0, cv::norm(result, gt, NORM_INF));
|
|
}
|
|
|
|
TEST(Imgproc_AdaptiveThreshold, gauss_inv)
|
|
{
|
|
const string input_path = cvtest::findDataFile("../cv/shared/baboon.png");
|
|
Mat input = imread(input_path, IMREAD_GRAYSCALE);
|
|
Mat result;
|
|
|
|
cv::adaptiveThreshold(input, result, 200, ADAPTIVE_THRESH_GAUSSIAN_C, THRESH_BINARY_INV, 21, -5);
|
|
|
|
const string gt_path = cvtest::findDataFile("../cv/imgproc/adaptive_threshold2.png");
|
|
Mat gt = imread(gt_path, IMREAD_GRAYSCALE);
|
|
gt = Mat(gt.rows, gt.cols, CV_8UC1, cv::Scalar(200)) - gt;
|
|
EXPECT_EQ(0, cv::norm(result, gt, NORM_INF));
|
|
}
|
|
|
|
}} // namespace
|