mirror of
https://github.com/opencv/opencv.git
synced 2025-01-16 04:50:53 +08:00
269 lines
7.5 KiB
C++
269 lines
7.5 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2010-2012, Institute Of Software Chinese Academy Of Science, all rights reserved.
|
|
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
|
|
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// @Authors
|
|
// Jia Haipeng, jiahaipeng95@gmail.com
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other oclMaterials provided with the distribution.
|
|
//
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#include "test_precomp.hpp"
|
|
|
|
#ifdef HAVE_OPENCL
|
|
|
|
using namespace cvtest;
|
|
using namespace testing;
|
|
using namespace std;
|
|
|
|
#define MAX_CHANNELS 4
|
|
|
|
PARAM_TEST_CASE(MergeTestBase, MatType, int, bool)
|
|
{
|
|
int type;
|
|
int channels;
|
|
bool use_roi;
|
|
|
|
//src mat
|
|
cv::Mat mat[MAX_CHANNELS];
|
|
//dst mat
|
|
cv::Mat dst;
|
|
|
|
// set up roi
|
|
int roicols, roirows;
|
|
int srcx[MAX_CHANNELS];
|
|
int srcy[MAX_CHANNELS];
|
|
int dstx, dsty;
|
|
|
|
//src mat with roi
|
|
cv::Mat mat_roi[MAX_CHANNELS];
|
|
|
|
//dst mat with roi
|
|
cv::Mat dst_roi;
|
|
|
|
//ocl dst mat for testing
|
|
cv::ocl::oclMat gdst_whole;
|
|
|
|
//ocl mat with roi
|
|
cv::ocl::oclMat gmat[MAX_CHANNELS];
|
|
cv::ocl::oclMat gdst;
|
|
|
|
virtual void SetUp()
|
|
{
|
|
type = GET_PARAM(0);
|
|
channels = GET_PARAM(1);
|
|
use_roi = GET_PARAM(2);
|
|
|
|
cv::RNG &rng = TS::ptr()->get_rng();
|
|
cv::Size size(MWIDTH, MHEIGHT);
|
|
|
|
for (int i = 0; i < channels; ++i)
|
|
mat[i] = randomMat(rng, size, CV_MAKETYPE(type, 1), 5, 16, false);
|
|
dst = randomMat(rng, size, CV_MAKETYPE(type, channels), 5, 16, false);
|
|
}
|
|
|
|
void random_roi()
|
|
{
|
|
if (use_roi)
|
|
{
|
|
//randomize ROI
|
|
cv::RNG &rng = TS::ptr()->get_rng();
|
|
roicols = rng.uniform(1, mat[0].cols);
|
|
roirows = rng.uniform(1, mat[0].rows);
|
|
|
|
for (int i = 0; i < channels; ++i)
|
|
{
|
|
srcx[i] = rng.uniform(0, mat[i].cols - roicols);
|
|
srcy[i] = rng.uniform(0, mat[i].rows - roirows);
|
|
}
|
|
|
|
dstx = rng.uniform(0, dst.cols - roicols);
|
|
dsty = rng.uniform(0, dst.rows - roirows);
|
|
}
|
|
else
|
|
{
|
|
roicols = mat[0].cols;
|
|
roirows = mat[0].rows;
|
|
for (int i = 0; i < channels; ++i)
|
|
srcx[i] = srcy[i] = 0;
|
|
|
|
dstx = dsty = 0;
|
|
}
|
|
|
|
for (int i = 0; i < channels; ++i)
|
|
mat_roi[i] = mat[i](Rect(srcx[i], srcy[i], roicols, roirows));
|
|
|
|
dst_roi = dst(Rect(dstx, dsty, roicols, roirows));
|
|
|
|
gdst_whole = dst;
|
|
gdst = gdst_whole(Rect(dstx, dsty, roicols, roirows));
|
|
|
|
for (int i = 0; i < channels; ++i)
|
|
gmat[i] = mat_roi[i];
|
|
}
|
|
};
|
|
|
|
struct Merge : MergeTestBase {};
|
|
|
|
TEST_P(Merge, Accuracy)
|
|
{
|
|
for(int j = 0; j < LOOP_TIMES; j++)
|
|
{
|
|
random_roi();
|
|
|
|
cv::merge(mat_roi, channels, dst_roi);
|
|
cv::ocl::merge(gmat, channels, gdst);
|
|
|
|
EXPECT_MAT_NEAR(dst, Mat(gdst_whole), 0.0);
|
|
}
|
|
}
|
|
|
|
PARAM_TEST_CASE(SplitTestBase, MatType, int, bool)
|
|
{
|
|
int type;
|
|
int channels;
|
|
bool use_roi;
|
|
|
|
//src mat
|
|
cv::Mat mat;
|
|
|
|
//dstmat
|
|
cv::Mat dst[MAX_CHANNELS];
|
|
|
|
// set up roi
|
|
int roicols, roirows;
|
|
int srcx, srcy;
|
|
int dstx[MAX_CHANNELS];
|
|
int dsty[MAX_CHANNELS];
|
|
|
|
//src mat with roi
|
|
cv::Mat mat_roi;
|
|
|
|
//dst mat with roi
|
|
cv::Mat dst_roi[MAX_CHANNELS];
|
|
|
|
//ocl dst mat for testing
|
|
cv::ocl::oclMat gdst_whole[MAX_CHANNELS];
|
|
|
|
//ocl mat with roi
|
|
cv::ocl::oclMat gmat;
|
|
cv::ocl::oclMat gdst[MAX_CHANNELS];
|
|
|
|
virtual void SetUp()
|
|
{
|
|
type = GET_PARAM(0);
|
|
channels = GET_PARAM(1);
|
|
use_roi = GET_PARAM(2);
|
|
|
|
cv::RNG &rng = TS::ptr()->get_rng();
|
|
cv::Size size(MWIDTH, MHEIGHT);
|
|
|
|
mat = randomMat(rng, size, CV_MAKETYPE(type, channels), 5, 16, false);
|
|
for (int i = 0; i < channels; ++i)
|
|
dst[i] = randomMat(rng, size, CV_MAKETYPE(type, 1), 5, 16, false); }
|
|
|
|
void random_roi()
|
|
{
|
|
if (use_roi)
|
|
{
|
|
//randomize ROI
|
|
cv::RNG &rng = TS::ptr()->get_rng();
|
|
roicols = rng.uniform(1, mat.cols);
|
|
roirows = rng.uniform(1, mat.rows);
|
|
srcx = rng.uniform(0, mat.cols - roicols);
|
|
srcy = rng.uniform(0, mat.rows - roirows);
|
|
|
|
for (int i = 0; i < channels; ++i)
|
|
{
|
|
dstx[i] = rng.uniform(0, dst[i].cols - roicols);
|
|
dsty[i] = rng.uniform(0, dst[i].rows - roirows);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
roicols = mat.cols;
|
|
roirows = mat.rows;
|
|
srcx = srcy = 0;
|
|
|
|
for (int i = 0; i < channels; ++i)
|
|
dstx[i] = dsty[i] = 0;
|
|
}
|
|
|
|
mat_roi = mat(Rect(srcx, srcy, roicols, roirows));
|
|
|
|
for (int i = 0; i < channels; ++i)
|
|
dst_roi[i] = dst[i](Rect(dstx[i], dsty[i], roicols, roirows));
|
|
|
|
for (int i = 0; i < channels; ++i)
|
|
{
|
|
gdst_whole[i] = dst[i];
|
|
gdst[i] = gdst_whole[i](Rect(dstx[i], dsty[i], roicols, roirows));
|
|
}
|
|
|
|
gmat = mat_roi;
|
|
}
|
|
};
|
|
|
|
struct Split : SplitTestBase {};
|
|
|
|
TEST_P(Split, Accuracy)
|
|
{
|
|
for(int j = 0; j < LOOP_TIMES; j++)
|
|
{
|
|
random_roi();
|
|
|
|
cv::split(mat_roi, dst_roi);
|
|
cv::ocl::split(gmat, gdst);
|
|
|
|
for (int i = 0; i < channels; ++i)
|
|
EXPECT_MAT_NEAR(dst[i], Mat(gdst_whole[i]), 0.0);
|
|
}
|
|
}
|
|
|
|
|
|
INSTANTIATE_TEST_CASE_P(SplitMerge, Merge, Combine(
|
|
Values(CV_8U, CV_8S, CV_16U, CV_16S, CV_32S, CV_32F), Range(1, 5), Bool()));
|
|
|
|
|
|
INSTANTIATE_TEST_CASE_P(SplitMerge, Split , Combine(
|
|
Values(CV_8U, CV_8S, CV_16U, CV_16S, CV_32S, CV_32F), Range(1, 5), Bool()));
|
|
|
|
|
|
#endif // HAVE_OPENCL
|