mirror of
https://github.com/opencv/opencv.git
synced 2025-01-22 09:36:59 +08:00
74 lines
2.5 KiB
Python
74 lines
2.5 KiB
Python
#!/usr/bin/env python
|
|
|
|
'''
|
|
CUDA-accelerated Computer Vision functions
|
|
'''
|
|
|
|
# Python 2/3 compatibility
|
|
from __future__ import print_function
|
|
|
|
import numpy as np
|
|
import cv2 as cv
|
|
import os
|
|
|
|
from tests_common import NewOpenCVTests, unittest
|
|
|
|
class cuda_test(NewOpenCVTests):
|
|
def setUp(self):
|
|
super(cuda_test, self).setUp()
|
|
if not cv.cuda.getCudaEnabledDeviceCount():
|
|
self.skipTest("No CUDA-capable device is detected")
|
|
|
|
def test_cuda_upload_download(self):
|
|
npMat = (np.random.random((128, 128, 3)) * 255).astype(np.uint8)
|
|
cuMat = cv.cuda_GpuMat()
|
|
cuMat.upload(npMat)
|
|
|
|
self.assertTrue(np.allclose(cuMat.download(), npMat))
|
|
|
|
def test_cuda_upload_download_stream(self):
|
|
stream = cv.cuda_Stream()
|
|
npMat = (np.random.random((128, 128, 3)) * 255).astype(np.uint8)
|
|
cuMat = cv.cuda_GpuMat(128,128, cv.CV_8UC3)
|
|
cuMat.upload(npMat, stream)
|
|
npMat2 = cuMat.download(stream=stream)
|
|
stream.waitForCompletion()
|
|
self.assertTrue(np.allclose(npMat2, npMat))
|
|
|
|
def test_cuda_interop(self):
|
|
npMat = (np.random.random((128, 128, 3)) * 255).astype(np.uint8)
|
|
cuMat = cv.cuda_GpuMat()
|
|
cuMat.upload(npMat)
|
|
self.assertTrue(cuMat.cudaPtr() != 0)
|
|
stream = cv.cuda_Stream()
|
|
self.assertTrue(stream.cudaPtr() != 0)
|
|
asyncstream = cv.cuda_Stream(1) # cudaStreamNonBlocking
|
|
self.assertTrue(asyncstream.cudaPtr() != 0)
|
|
|
|
def test_cuda_buffer_pool(self):
|
|
cv.cuda.setBufferPoolUsage(True)
|
|
cv.cuda.setBufferPoolConfig(cv.cuda.getDevice(), 1024 * 1024 * 64, 2)
|
|
stream_a = cv.cuda.Stream()
|
|
pool_a = cv.cuda.BufferPool(stream_a)
|
|
cuMat = pool_a.getBuffer(1024, 1024, cv.CV_8UC3)
|
|
cv.cuda.setBufferPoolUsage(False)
|
|
self.assertEqual(cuMat.size(), (1024, 1024))
|
|
self.assertEqual(cuMat.type(), cv.CV_8UC3)
|
|
|
|
def test_cuda_release(self):
|
|
npMat = (np.random.random((128, 128, 3)) * 255).astype(np.uint8)
|
|
cuMat = cv.cuda_GpuMat()
|
|
cuMat.upload(npMat)
|
|
cuMat.release()
|
|
self.assertTrue(cuMat.cudaPtr() == 0)
|
|
self.assertTrue(cuMat.step == 0)
|
|
self.assertTrue(cuMat.size() == (0, 0))
|
|
|
|
def test_cuda_denoising(self):
|
|
self.assertEqual(True, hasattr(cv.cuda, 'fastNlMeansDenoising'))
|
|
self.assertEqual(True, hasattr(cv.cuda, 'fastNlMeansDenoisingColored'))
|
|
self.assertEqual(True, hasattr(cv.cuda, 'nonLocalMeans'))
|
|
|
|
if __name__ == '__main__':
|
|
NewOpenCVTests.bootstrap()
|