mirror of
https://github.com/opencv/opencv.git
synced 2024-12-17 02:48:01 +08:00
395 lines
11 KiB
C++
395 lines
11 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
#include "precomp.hpp"
|
|
|
|
#if !defined HAVE_CUDA || defined(CUDA_DISABLER)
|
|
|
|
void cv::cuda::meanShiftSegmentation(InputArray, OutputArray, int, int, int, TermCriteria, Stream&) { throw_no_cuda(); }
|
|
|
|
#else
|
|
|
|
// Auxiliray stuff
|
|
namespace
|
|
{
|
|
|
|
//
|
|
// Declarations
|
|
//
|
|
|
|
class DjSets
|
|
{
|
|
public:
|
|
DjSets(int n);
|
|
int find(int elem);
|
|
int merge(int set1, int set2);
|
|
|
|
std::vector<int> parent;
|
|
std::vector<int> rank;
|
|
std::vector<int> size;
|
|
private:
|
|
DjSets(const DjSets&);
|
|
void operator =(const DjSets&);
|
|
};
|
|
|
|
|
|
template <typename T>
|
|
struct GraphEdge
|
|
{
|
|
GraphEdge() {}
|
|
GraphEdge(int to_, int next_, const T& val_) : to(to_), next(next_), val(val_) {}
|
|
int to;
|
|
int next;
|
|
T val;
|
|
};
|
|
|
|
|
|
template <typename T>
|
|
class Graph
|
|
{
|
|
public:
|
|
typedef GraphEdge<T> Edge;
|
|
|
|
Graph(int numv, int nume_max);
|
|
|
|
void addEdge(int from, int to, const T& val=T());
|
|
|
|
std::vector<int> start;
|
|
std::vector<Edge> edges;
|
|
|
|
int numv;
|
|
int nume_max;
|
|
int nume;
|
|
private:
|
|
Graph(const Graph&);
|
|
void operator =(const Graph&);
|
|
};
|
|
|
|
|
|
struct SegmLinkVal
|
|
{
|
|
SegmLinkVal() {}
|
|
SegmLinkVal(int dr_, int dsp_) : dr(dr_), dsp(dsp_) {}
|
|
bool operator <(const SegmLinkVal& other) const
|
|
{
|
|
return dr + dsp < other.dr + other.dsp;
|
|
}
|
|
int dr;
|
|
int dsp;
|
|
};
|
|
|
|
|
|
struct SegmLink
|
|
{
|
|
SegmLink() {}
|
|
SegmLink(int from_, int to_, const SegmLinkVal& val_)
|
|
: from(from_), to(to_), val(val_) {}
|
|
bool operator <(const SegmLink& other) const
|
|
{
|
|
return val < other.val;
|
|
}
|
|
int from;
|
|
int to;
|
|
SegmLinkVal val;
|
|
};
|
|
|
|
//
|
|
// Implementation
|
|
//
|
|
|
|
DjSets::DjSets(int n) : parent(n), rank(n, 0), size(n, 1)
|
|
{
|
|
for (int i = 0; i < n; ++i)
|
|
parent[i] = i;
|
|
}
|
|
|
|
|
|
inline int DjSets::find(int elem)
|
|
{
|
|
int set = elem;
|
|
while (set != parent[set])
|
|
set = parent[set];
|
|
while (elem != parent[elem])
|
|
{
|
|
int next = parent[elem];
|
|
parent[elem] = set;
|
|
elem = next;
|
|
}
|
|
return set;
|
|
}
|
|
|
|
|
|
inline int DjSets::merge(int set1, int set2)
|
|
{
|
|
if (rank[set1] < rank[set2])
|
|
{
|
|
parent[set1] = set2;
|
|
size[set2] += size[set1];
|
|
return set2;
|
|
}
|
|
if (rank[set2] < rank[set1])
|
|
{
|
|
parent[set2] = set1;
|
|
size[set1] += size[set2];
|
|
return set1;
|
|
}
|
|
parent[set1] = set2;
|
|
rank[set2]++;
|
|
size[set2] += size[set1];
|
|
return set2;
|
|
}
|
|
|
|
|
|
template <typename T>
|
|
Graph<T>::Graph(int numv_, int nume_max_) : start(numv_, -1), edges(nume_max_)
|
|
{
|
|
this->numv = numv_;
|
|
this->nume_max = nume_max_;
|
|
nume = 0;
|
|
}
|
|
|
|
|
|
template <typename T>
|
|
inline void Graph<T>::addEdge(int from, int to, const T& val)
|
|
{
|
|
edges[nume] = Edge(to, start[from], val);
|
|
start[from] = nume;
|
|
nume++;
|
|
}
|
|
|
|
|
|
inline int pix(int y, int x, int ncols)
|
|
{
|
|
return y * ncols + x;
|
|
}
|
|
|
|
|
|
inline int sqr(int x)
|
|
{
|
|
return x * x;
|
|
}
|
|
|
|
|
|
inline int dist2(const cv::Vec4b& lhs, const cv::Vec4b& rhs)
|
|
{
|
|
return sqr(lhs[0] - rhs[0]) + sqr(lhs[1] - rhs[1]) + sqr(lhs[2] - rhs[2]);
|
|
}
|
|
|
|
|
|
inline int dist2(const cv::Vec2s& lhs, const cv::Vec2s& rhs)
|
|
{
|
|
return sqr(lhs[0] - rhs[0]) + sqr(lhs[1] - rhs[1]);
|
|
}
|
|
|
|
} // anonymous namespace
|
|
|
|
|
|
void cv::cuda::meanShiftSegmentation(InputArray _src, OutputArray _dst, int sp, int sr, int minsize, TermCriteria criteria, Stream& stream)
|
|
{
|
|
GpuMat src = _src.getGpuMat();
|
|
|
|
CV_Assert( src.type() == CV_8UC4 );
|
|
|
|
const int nrows = src.rows;
|
|
const int ncols = src.cols;
|
|
const int hr = sr;
|
|
const int hsp = sp;
|
|
|
|
// Perform mean shift procedure and obtain region and spatial maps
|
|
GpuMat d_rmap, d_spmap;
|
|
cuda::meanShiftProc(src, d_rmap, d_spmap, sp, sr, criteria, stream);
|
|
|
|
stream.waitForCompletion();
|
|
|
|
Mat rmap(d_rmap);
|
|
Mat spmap(d_spmap);
|
|
|
|
Graph<SegmLinkVal> g(nrows * ncols, 4 * (nrows - 1) * (ncols - 1)
|
|
+ (nrows - 1) + (ncols - 1));
|
|
|
|
// Make region adjacent graph from image
|
|
Vec4b r1;
|
|
Vec4b r2[4];
|
|
Vec2s sp1;
|
|
Vec2s sp2[4];
|
|
int dr[4];
|
|
int dsp[4];
|
|
for (int y = 0; y < nrows - 1; ++y)
|
|
{
|
|
Vec4b* ry = rmap.ptr<Vec4b>(y);
|
|
Vec4b* ryp = rmap.ptr<Vec4b>(y + 1);
|
|
Vec2s* spy = spmap.ptr<Vec2s>(y);
|
|
Vec2s* spyp = spmap.ptr<Vec2s>(y + 1);
|
|
for (int x = 0; x < ncols - 1; ++x)
|
|
{
|
|
r1 = ry[x];
|
|
sp1 = spy[x];
|
|
|
|
r2[0] = ry[x + 1];
|
|
r2[1] = ryp[x];
|
|
r2[2] = ryp[x + 1];
|
|
r2[3] = ryp[x];
|
|
|
|
sp2[0] = spy[x + 1];
|
|
sp2[1] = spyp[x];
|
|
sp2[2] = spyp[x + 1];
|
|
sp2[3] = spyp[x];
|
|
|
|
dr[0] = dist2(r1, r2[0]);
|
|
dr[1] = dist2(r1, r2[1]);
|
|
dr[2] = dist2(r1, r2[2]);
|
|
dsp[0] = dist2(sp1, sp2[0]);
|
|
dsp[1] = dist2(sp1, sp2[1]);
|
|
dsp[2] = dist2(sp1, sp2[2]);
|
|
|
|
r1 = ry[x + 1];
|
|
sp1 = spy[x + 1];
|
|
|
|
dr[3] = dist2(r1, r2[3]);
|
|
dsp[3] = dist2(sp1, sp2[3]);
|
|
|
|
g.addEdge(pix(y, x, ncols), pix(y, x + 1, ncols), SegmLinkVal(dr[0], dsp[0]));
|
|
g.addEdge(pix(y, x, ncols), pix(y + 1, x, ncols), SegmLinkVal(dr[1], dsp[1]));
|
|
g.addEdge(pix(y, x, ncols), pix(y + 1, x + 1, ncols), SegmLinkVal(dr[2], dsp[2]));
|
|
g.addEdge(pix(y, x + 1, ncols), pix(y + 1, x, ncols), SegmLinkVal(dr[3], dsp[3]));
|
|
}
|
|
}
|
|
for (int y = 0; y < nrows - 1; ++y)
|
|
{
|
|
r1 = rmap.at<Vec4b>(y, ncols - 1);
|
|
r2[0] = rmap.at<Vec4b>(y + 1, ncols - 1);
|
|
sp1 = spmap.at<Vec2s>(y, ncols - 1);
|
|
sp2[0] = spmap.at<Vec2s>(y + 1, ncols - 1);
|
|
dr[0] = dist2(r1, r2[0]);
|
|
dsp[0] = dist2(sp1, sp2[0]);
|
|
g.addEdge(pix(y, ncols - 1, ncols), pix(y + 1, ncols - 1, ncols), SegmLinkVal(dr[0], dsp[0]));
|
|
}
|
|
for (int x = 0; x < ncols - 1; ++x)
|
|
{
|
|
r1 = rmap.at<Vec4b>(nrows - 1, x);
|
|
r2[0] = rmap.at<Vec4b>(nrows - 1, x + 1);
|
|
sp1 = spmap.at<Vec2s>(nrows - 1, x);
|
|
sp2[0] = spmap.at<Vec2s>(nrows - 1, x + 1);
|
|
dr[0] = dist2(r1, r2[0]);
|
|
dsp[0] = dist2(sp1, sp2[0]);
|
|
g.addEdge(pix(nrows - 1, x, ncols), pix(nrows - 1, x + 1, ncols), SegmLinkVal(dr[0], dsp[0]));
|
|
}
|
|
|
|
DjSets comps(g.numv);
|
|
|
|
// Find adjacent components
|
|
for (int v = 0; v < g.numv; ++v)
|
|
{
|
|
for (int e_it = g.start[v]; e_it != -1; e_it = g.edges[e_it].next)
|
|
{
|
|
int c1 = comps.find(v);
|
|
int c2 = comps.find(g.edges[e_it].to);
|
|
if (c1 != c2 && g.edges[e_it].val.dr < hr && g.edges[e_it].val.dsp < hsp)
|
|
comps.merge(c1, c2);
|
|
}
|
|
}
|
|
|
|
std::vector<SegmLink> edges;
|
|
edges.reserve(g.numv);
|
|
|
|
// Prepare edges connecting differnet components
|
|
for (int v = 0; v < g.numv; ++v)
|
|
{
|
|
int c1 = comps.find(v);
|
|
for (int e_it = g.start[v]; e_it != -1; e_it = g.edges[e_it].next)
|
|
{
|
|
int c2 = comps.find(g.edges[e_it].to);
|
|
if (c1 != c2)
|
|
edges.push_back(SegmLink(c1, c2, g.edges[e_it].val));
|
|
}
|
|
}
|
|
|
|
// Sort all graph's edges connecting differnet components (in asceding order)
|
|
std::sort(edges.begin(), edges.end());
|
|
|
|
// Exclude small components (starting from the nearest couple)
|
|
for (size_t i = 0; i < edges.size(); ++i)
|
|
{
|
|
int c1 = comps.find(edges[i].from);
|
|
int c2 = comps.find(edges[i].to);
|
|
if (c1 != c2 && (comps.size[c1] < minsize || comps.size[c2] < minsize))
|
|
comps.merge(c1, c2);
|
|
}
|
|
|
|
// Compute sum of the pixel's colors which are in the same segment
|
|
Mat h_src(src);
|
|
std::vector<Vec4i> sumcols(nrows * ncols, Vec4i(0, 0, 0, 0));
|
|
for (int y = 0; y < nrows; ++y)
|
|
{
|
|
Vec4b* h_srcy = h_src.ptr<Vec4b>(y);
|
|
for (int x = 0; x < ncols; ++x)
|
|
{
|
|
int parent = comps.find(pix(y, x, ncols));
|
|
Vec4b col = h_srcy[x];
|
|
Vec4i& sumcol = sumcols[parent];
|
|
sumcol[0] += col[0];
|
|
sumcol[1] += col[1];
|
|
sumcol[2] += col[2];
|
|
}
|
|
}
|
|
|
|
// Create final image, color of each segment is the average color of its pixels
|
|
_dst.create(src.size(), src.type());
|
|
Mat dst = _dst.getMat();
|
|
|
|
for (int y = 0; y < nrows; ++y)
|
|
{
|
|
Vec4b* dsty = dst.ptr<Vec4b>(y);
|
|
for (int x = 0; x < ncols; ++x)
|
|
{
|
|
int parent = comps.find(pix(y, x, ncols));
|
|
const Vec4i& sumcol = sumcols[parent];
|
|
Vec4b& dstcol = dsty[x];
|
|
dstcol[0] = static_cast<uchar>(sumcol[0] / comps.size[parent]);
|
|
dstcol[1] = static_cast<uchar>(sumcol[1] / comps.size[parent]);
|
|
dstcol[2] = static_cast<uchar>(sumcol[2] / comps.size[parent]);
|
|
dstcol[3] = 255;
|
|
}
|
|
}
|
|
}
|
|
|
|
#endif // #if !defined (HAVE_CUDA) || defined (CUDA_DISABLER)
|