mirror of
https://github.com/opencv/opencv.git
synced 2025-01-10 22:28:13 +08:00
5510718381
python: attempts to fix 3d mat parsing problem for dnn #25810 Fixes https://github.com/opencv/opencv/issues/25762 https://github.com/opencv/opencv/issues/23242 Relates https://github.com/opencv/opencv/issues/25763 https://github.com/opencv/opencv/issues/19091 Although `cv.Mat` has already been introduced to workaround this problem, people do not know it and it kind of leads to confusion with `numpy.array`. This patch adds a "switch" to turn off the auto multichannel feature when the API is from cv::dnn::Net (more specifically, `setInput`) and the parameter is of type `Mat`. This patch only leads to changes of three places in `pyopencv_generated_types_content.h`: ```.diff static PyObject* pyopencv_cv_dnn_dnn_Net_setInput(PyObject* self, PyObject* py_args, PyObject* kw) { ... - pyopencv_to_safe(pyobj_blob, blob, ArgInfo("blob", 0)) && + pyopencv_to_safe(pyobj_blob, blob, ArgInfo("blob", 8)) && ... } // I guess we also need to change this as one-channel blob is expected for param static PyObject* pyopencv_cv_dnn_dnn_Net_setParam(PyObject* self, PyObject* py_args, PyObject* kw) { ... - pyopencv_to_safe(pyobj_blob, blob, ArgInfo("blob", 0)) ) + pyopencv_to_safe(pyobj_blob, blob, ArgInfo("blob", 8)) ) ... - pyopencv_to_safe(pyobj_blob, blob, ArgInfo("blob", 0)) ) + pyopencv_to_safe(pyobj_blob, blob, ArgInfo("blob", 8)) ) ... } ``` Others are unchanged, e.g. `dnn_SegmentationModel` and stuff like that. ### Pull Request Readiness Checklist See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request - [x] I agree to contribute to the project under Apache 2 License. - [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV - [x] The PR is proposed to the proper branch - [x] There is a reference to the original bug report and related work - [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable Patch to opencv_extra has the same branch name. - [x] The feature is well documented and sample code can be built with the project CMake
624 lines
20 KiB
C++
624 lines
20 KiB
C++
#ifndef CV2_CONVERT_HPP
|
|
#define CV2_CONVERT_HPP
|
|
|
|
#include "cv2.hpp"
|
|
#include "cv2_util.hpp"
|
|
#include "cv2_numpy.hpp"
|
|
#include <vector>
|
|
#include <string>
|
|
#include <unordered_map>
|
|
#include <map>
|
|
#include <type_traits> // std::enable_if
|
|
|
|
extern PyTypeObject* pyopencv_Mat_TypePtr;
|
|
|
|
#define CV_HAS_CONVERSION_ERROR(x) (((x) == -1) && PyErr_Occurred())
|
|
|
|
inline bool isBool(PyObject* obj) CV_NOEXCEPT
|
|
{
|
|
return PyArray_IsScalar(obj, Bool) || PyBool_Check(obj);
|
|
}
|
|
|
|
//======================================================================================================================
|
|
|
|
|
|
// exception-safe pyopencv_to
|
|
template<typename _Tp> static
|
|
bool pyopencv_to_safe(PyObject* obj, _Tp& value, const ArgInfo& info)
|
|
{
|
|
try
|
|
{
|
|
return pyopencv_to(obj, value, info);
|
|
}
|
|
catch (const std::exception &e)
|
|
{
|
|
PyErr_SetString(opencv_error, cv::format("Conversion error: %s, what: %s", info.name, e.what()).c_str());
|
|
return false;
|
|
}
|
|
catch (...)
|
|
{
|
|
PyErr_SetString(opencv_error, cv::format("Conversion error: %s", info.name).c_str());
|
|
return false;
|
|
}
|
|
}
|
|
|
|
//======================================================================================================================
|
|
|
|
template<typename T, class TEnable = void> // TEnable is used for SFINAE checks
|
|
struct PyOpenCV_Converter
|
|
{
|
|
//static inline bool to(PyObject* obj, T& p, const ArgInfo& info);
|
|
//static inline PyObject* from(const T& src);
|
|
};
|
|
|
|
// --- Generic
|
|
|
|
template<typename T>
|
|
bool pyopencv_to(PyObject* obj, T& p, const ArgInfo& info) { return PyOpenCV_Converter<T>::to(obj, p, info); }
|
|
|
|
template<typename T>
|
|
PyObject* pyopencv_from(const T& src) { return PyOpenCV_Converter<T>::from(src); }
|
|
|
|
// --- Matx
|
|
|
|
template<typename _Tp, int m, int n>
|
|
bool pyopencv_to(PyObject* o, cv::Matx<_Tp, m, n>& mx, const ArgInfo& info)
|
|
{
|
|
if (!o || o == Py_None) {
|
|
return true;
|
|
}
|
|
|
|
cv::Mat tmp;
|
|
if (!pyopencv_to(o, tmp, info)) {
|
|
return false;
|
|
}
|
|
|
|
tmp.copyTo(mx);
|
|
return true;
|
|
}
|
|
|
|
template<typename _Tp, int m, int n>
|
|
PyObject* pyopencv_from(const cv::Matx<_Tp, m, n>& matx)
|
|
{
|
|
return pyopencv_from(cv::Mat(matx));
|
|
}
|
|
|
|
// --- bool
|
|
template<> bool pyopencv_to(PyObject* obj, bool& value, const ArgInfo& info);
|
|
template<> PyObject* pyopencv_from(const bool& value);
|
|
|
|
// --- Mat
|
|
template<> bool pyopencv_to(PyObject* o, cv::Mat& m, const ArgInfo& info);
|
|
template<> PyObject* pyopencv_from(const cv::Mat& m);
|
|
|
|
// --- Ptr
|
|
template<typename T>
|
|
struct PyOpenCV_Converter< cv::Ptr<T> >
|
|
{
|
|
static PyObject* from(const cv::Ptr<T>& p)
|
|
{
|
|
if (!p)
|
|
Py_RETURN_NONE;
|
|
return pyopencv_from(*p);
|
|
}
|
|
static bool to(PyObject *o, cv::Ptr<T>& p, const ArgInfo& info)
|
|
{
|
|
if (!o || o == Py_None)
|
|
return true;
|
|
p = cv::makePtr<T>();
|
|
return pyopencv_to(o, *p, info);
|
|
}
|
|
};
|
|
|
|
// --- ptr
|
|
template<> bool pyopencv_to(PyObject* obj, void*& ptr, const ArgInfo& info);
|
|
PyObject* pyopencv_from(void*& ptr);
|
|
|
|
// --- Scalar
|
|
template<> bool pyopencv_to(PyObject *o, cv::Scalar& s, const ArgInfo& info);
|
|
template<> PyObject* pyopencv_from(const cv::Scalar& src);
|
|
|
|
// --- size_t
|
|
template<> bool pyopencv_to(PyObject* obj, size_t& value, const ArgInfo& info);
|
|
template<> PyObject* pyopencv_from(const size_t& value);
|
|
|
|
// --- int
|
|
template<> bool pyopencv_to(PyObject* obj, int& value, const ArgInfo& info);
|
|
template<> PyObject* pyopencv_from(const int& value);
|
|
|
|
// --- int64
|
|
template<> bool pyopencv_to(PyObject* obj, int64& value, const ArgInfo& info);
|
|
template<> PyObject* pyopencv_from(const int64& value);
|
|
|
|
// There is conflict between "size_t" and "unsigned int".
|
|
// They are the same type on some 32-bit platforms.
|
|
template<typename T>
|
|
struct PyOpenCV_Converter
|
|
< T, typename std::enable_if< std::is_same<unsigned int, T>::value && !std::is_same<unsigned int, size_t>::value >::type >
|
|
{
|
|
static inline PyObject* from(const unsigned int& value)
|
|
{
|
|
return PyLong_FromUnsignedLong(value);
|
|
}
|
|
|
|
static inline bool to(PyObject* obj, unsigned int& value, const ArgInfo& info)
|
|
{
|
|
CV_UNUSED(info);
|
|
if(!obj || obj == Py_None)
|
|
return true;
|
|
if(PyInt_Check(obj))
|
|
value = (unsigned int)PyInt_AsLong(obj);
|
|
else if(PyLong_Check(obj))
|
|
value = (unsigned int)PyLong_AsLong(obj);
|
|
else
|
|
return false;
|
|
return value != (unsigned int)-1 || !PyErr_Occurred();
|
|
}
|
|
};
|
|
|
|
// There is conflict between "uint64_t" and "size_t".
|
|
// They are the same type on some 32-bit platforms.
|
|
template<typename T>
|
|
struct PyOpenCV_Converter
|
|
< T, typename std::enable_if< std::is_same<uint64_t, T>::value && !std::is_same<uint64_t, size_t>::value >::type >
|
|
{
|
|
static inline PyObject* from(const uint64_t& value)
|
|
{
|
|
return PyLong_FromUnsignedLongLong(value);
|
|
}
|
|
|
|
static inline bool to(PyObject* obj, uint64_t& value, const ArgInfo& info)
|
|
{
|
|
CV_UNUSED(info);
|
|
if(!obj || obj == Py_None)
|
|
return true;
|
|
if(PyInt_Check(obj))
|
|
value = (uint64_t)PyInt_AsUnsignedLongLongMask(obj);
|
|
else if(PyLong_Check(obj))
|
|
value = (uint64_t)PyLong_AsUnsignedLongLong(obj);
|
|
else
|
|
return false;
|
|
return value != (uint64_t)-1 || !PyErr_Occurred();
|
|
}
|
|
};
|
|
|
|
|
|
// --- uchar
|
|
template<> bool pyopencv_to(PyObject* obj, uchar& value, const ArgInfo& info);
|
|
template<> PyObject* pyopencv_from(const uchar& value);
|
|
|
|
// --- char
|
|
template<> bool pyopencv_to(PyObject* obj, char& value, const ArgInfo& info);
|
|
|
|
// --- double
|
|
template<> bool pyopencv_to(PyObject* obj, double& value, const ArgInfo& info);
|
|
template<> PyObject* pyopencv_from(const double& value);
|
|
|
|
// --- float
|
|
template<> bool pyopencv_to(PyObject* obj, float& value, const ArgInfo& info);
|
|
template<> PyObject* pyopencv_from(const float& value);
|
|
|
|
// --- string
|
|
template<> bool pyopencv_to(PyObject* obj, cv::String &value, const ArgInfo& info);
|
|
template<> PyObject* pyopencv_from(const cv::String& value);
|
|
#if CV_VERSION_MAJOR == 3
|
|
template<> PyObject* pyopencv_from(const std::string& value);
|
|
#endif
|
|
|
|
// --- Size
|
|
template<> bool pyopencv_to(PyObject* obj, cv::Size& sz, const ArgInfo& info);
|
|
template<> PyObject* pyopencv_from(const cv::Size& sz);
|
|
template<> bool pyopencv_to(PyObject* obj, cv::Size_<float>& sz, const ArgInfo& info);
|
|
template<> PyObject* pyopencv_from(const cv::Size_<float>& sz);
|
|
|
|
// --- Rect
|
|
template<> bool pyopencv_to(PyObject* obj, cv::Rect& r, const ArgInfo& info);
|
|
template<> PyObject* pyopencv_from(const cv::Rect& r);
|
|
template<> bool pyopencv_to(PyObject* obj, cv::Rect2f& r, const ArgInfo& info);
|
|
template<> PyObject* pyopencv_from(const cv::Rect2f& r);
|
|
template<> bool pyopencv_to(PyObject* obj, cv::Rect2d& r, const ArgInfo& info);
|
|
template<> PyObject* pyopencv_from(const cv::Rect2d& r);
|
|
|
|
// --- RotatedRect
|
|
template<> bool pyopencv_to(PyObject* obj, cv::RotatedRect& dst, const ArgInfo& info);
|
|
template<> PyObject* pyopencv_from(const cv::RotatedRect& src);
|
|
|
|
// --- Range
|
|
template<> bool pyopencv_to(PyObject* obj, cv::Range& r, const ArgInfo& info);
|
|
template<> PyObject* pyopencv_from(const cv::Range& r);
|
|
|
|
// --- Point
|
|
template<> bool pyopencv_to(PyObject* obj, cv::Point& p, const ArgInfo& info);
|
|
template<> PyObject* pyopencv_from(const cv::Point& p);
|
|
template<> bool pyopencv_to(PyObject* obj, cv::Point2f& p, const ArgInfo& info);
|
|
template<> PyObject* pyopencv_from(const cv::Point2f& p);
|
|
template<> bool pyopencv_to(PyObject* obj, cv::Point2d& p, const ArgInfo& info);
|
|
template<> PyObject* pyopencv_from(const cv::Point2d& p);
|
|
template<> bool pyopencv_to(PyObject* obj, cv::Point3i& p, const ArgInfo& info);
|
|
template<> PyObject* pyopencv_from(const cv::Point3i& p);
|
|
template<> bool pyopencv_to(PyObject* obj, cv::Point3f& p, const ArgInfo& info);
|
|
template<> PyObject* pyopencv_from(const cv::Point3f& p);
|
|
template<> bool pyopencv_to(PyObject* obj, cv::Point3d& p, const ArgInfo& info);
|
|
template<> PyObject* pyopencv_from(const cv::Point3d& p);
|
|
|
|
// --- Vec
|
|
template<typename _Tp, int cn>
|
|
bool pyopencv_to(PyObject* o, cv::Vec<_Tp, cn>& vec, const ArgInfo& info)
|
|
{
|
|
return pyopencv_to(o, (cv::Matx<_Tp, cn, 1>&)vec, info);
|
|
}
|
|
bool pyopencv_to(PyObject* obj, cv::Vec4d& v, ArgInfo& info);
|
|
PyObject* pyopencv_from(const cv::Vec4d& v);
|
|
bool pyopencv_to(PyObject* obj, cv::Vec4f& v, ArgInfo& info);
|
|
PyObject* pyopencv_from(const cv::Vec4f& v);
|
|
bool pyopencv_to(PyObject* obj, cv::Vec4i& v, ArgInfo& info);
|
|
PyObject* pyopencv_from(const cv::Vec4i& v);
|
|
bool pyopencv_to(PyObject* obj, cv::Vec3d& v, ArgInfo& info);
|
|
PyObject* pyopencv_from(const cv::Vec3d& v);
|
|
bool pyopencv_to(PyObject* obj, cv::Vec3f& v, ArgInfo& info);
|
|
PyObject* pyopencv_from(const cv::Vec3f& v);
|
|
bool pyopencv_to(PyObject* obj, cv::Vec3i& v, ArgInfo& info);
|
|
PyObject* pyopencv_from(const cv::Vec3i& v);
|
|
bool pyopencv_to(PyObject* obj, cv::Vec2d& v, ArgInfo& info);
|
|
PyObject* pyopencv_from(const cv::Vec2d& v);
|
|
bool pyopencv_to(PyObject* obj, cv::Vec2f& v, ArgInfo& info);
|
|
PyObject* pyopencv_from(const cv::Vec2f& v);
|
|
bool pyopencv_to(PyObject* obj, cv::Vec2i& v, ArgInfo& info);
|
|
PyObject* pyopencv_from(const cv::Vec2i& v);
|
|
|
|
// --- TermCriteria
|
|
template<> bool pyopencv_to(PyObject* obj, cv::TermCriteria& dst, const ArgInfo& info);
|
|
template<> PyObject* pyopencv_from(const cv::TermCriteria& src);
|
|
|
|
// --- Moments
|
|
template<> PyObject* pyopencv_from(const cv::Moments& m);
|
|
|
|
// --- pair
|
|
template<> PyObject* pyopencv_from(const std::pair<int, double>& src);
|
|
|
|
// --- vector
|
|
template <typename Tp>
|
|
struct pyopencvVecConverter;
|
|
|
|
template <typename Tp>
|
|
bool pyopencv_to(PyObject* obj, std::vector<Tp>& value, const ArgInfo& info)
|
|
{
|
|
if (!obj || obj == Py_None)
|
|
{
|
|
return true;
|
|
}
|
|
return pyopencvVecConverter<Tp>::to(obj, value, info);
|
|
}
|
|
|
|
template <typename Tp>
|
|
PyObject* pyopencv_from(const std::vector<Tp>& value)
|
|
{
|
|
return pyopencvVecConverter<Tp>::from(value);
|
|
}
|
|
|
|
template<typename K, typename V>
|
|
bool pyopencv_to(PyObject *obj, std::map<K,V> &map, const ArgInfo& info)
|
|
{
|
|
if (!obj || obj == Py_None)
|
|
{
|
|
return true;
|
|
}
|
|
|
|
PyObject* py_key = nullptr;
|
|
PyObject* py_value = nullptr;
|
|
Py_ssize_t pos = 0;
|
|
|
|
if (!PyDict_Check(obj)) {
|
|
failmsg("Can't parse '%s'. Input argument isn't dict or"
|
|
" an instance of subtype of the dict type", info.name);
|
|
return false;
|
|
}
|
|
|
|
while(PyDict_Next(obj, &pos, &py_key, &py_value))
|
|
{
|
|
K cpp_key;
|
|
if (!pyopencv_to(py_key, cpp_key, ArgInfo("key", 0))) {
|
|
failmsg("Can't parse dict key. Key on position %lu has a wrong type", pos);
|
|
return false;
|
|
}
|
|
|
|
V cpp_value;
|
|
if (!pyopencv_to(py_value, cpp_value, ArgInfo("value", 0))) {
|
|
failmsg("Can't parse dict value. Value on position %lu has a wrong type", pos);
|
|
return false;
|
|
}
|
|
|
|
map.emplace(cpp_key, cpp_value);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
template <typename Tp>
|
|
static bool pyopencv_to_generic_vec(PyObject* obj, std::vector<Tp>& value, const ArgInfo& info)
|
|
{
|
|
if (!obj || obj == Py_None)
|
|
{
|
|
return true;
|
|
}
|
|
if (info.nd_mat && PyArray_Check(obj))
|
|
{
|
|
/*
|
|
If obj is marked as nd mat and of array type, it is parsed to a single
|
|
mat in the target vector to avoid being split into multiple mats
|
|
*/
|
|
value.resize(1);
|
|
if (!pyopencv_to(obj, value.front(), info))
|
|
{
|
|
failmsg("Can't parse '%s'. Array item has a wrong type", info.name);
|
|
return false;
|
|
}
|
|
}
|
|
else // parse as sequence
|
|
{
|
|
if (!PySequence_Check(obj))
|
|
{
|
|
failmsg("Can't parse '%s'. Input argument doesn't provide sequence protocol", info.name);
|
|
return false;
|
|
}
|
|
const size_t n = static_cast<size_t>(PySequence_Size(obj));
|
|
value.resize(n);
|
|
for (size_t i = 0; i < n; i++)
|
|
{
|
|
SafeSeqItem item_wrap(obj, i);
|
|
if (!pyopencv_to(item_wrap.item, value[i], info))
|
|
{
|
|
failmsg("Can't parse '%s'. Sequence item with index %lu has a wrong type", info.name, i);
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
template<> inline bool pyopencv_to_generic_vec(PyObject* obj, std::vector<bool>& value, const ArgInfo& info)
|
|
{
|
|
if (!obj || obj == Py_None)
|
|
{
|
|
return true;
|
|
}
|
|
if (!PySequence_Check(obj))
|
|
{
|
|
failmsg("Can't parse '%s'. Input argument doesn't provide sequence protocol", info.name);
|
|
return false;
|
|
}
|
|
const size_t n = static_cast<size_t>(PySequence_Size(obj));
|
|
value.resize(n);
|
|
for (size_t i = 0; i < n; i++)
|
|
{
|
|
SafeSeqItem item_wrap(obj, i);
|
|
bool elem{};
|
|
if (!pyopencv_to(item_wrap.item, elem, info))
|
|
{
|
|
failmsg("Can't parse '%s'. Sequence item with index %lu has a wrong type", info.name, i);
|
|
return false;
|
|
}
|
|
value[i] = elem;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
template <typename Tp>
|
|
static PyObject* pyopencv_from_generic_vec(const std::vector<Tp>& value)
|
|
{
|
|
Py_ssize_t n = static_cast<Py_ssize_t>(value.size());
|
|
PySafeObject seq(PyTuple_New(n));
|
|
for (Py_ssize_t i = 0; i < n; i++)
|
|
{
|
|
PyObject* item = pyopencv_from(value[i]);
|
|
// If item can't be assigned - PyTuple_SetItem raises exception and returns -1.
|
|
if (!item || PyTuple_SetItem(seq, i, item) == -1)
|
|
{
|
|
return NULL;
|
|
}
|
|
}
|
|
return seq.release();
|
|
}
|
|
|
|
template<> inline PyObject* pyopencv_from_generic_vec(const std::vector<bool>& value)
|
|
{
|
|
Py_ssize_t n = static_cast<Py_ssize_t>(value.size());
|
|
PySafeObject seq(PyTuple_New(n));
|
|
for (Py_ssize_t i = 0; i < n; i++)
|
|
{
|
|
bool elem = value[i];
|
|
PyObject* item = pyopencv_from(elem);
|
|
// If item can't be assigned - PyTuple_SetItem raises exception and returns -1.
|
|
if (!item || PyTuple_SetItem(seq, i, item) == -1)
|
|
{
|
|
return NULL;
|
|
}
|
|
}
|
|
return seq.release();
|
|
}
|
|
|
|
namespace traits {
|
|
|
|
template <bool Value>
|
|
struct BooleanConstant
|
|
{
|
|
static const bool value = Value;
|
|
typedef BooleanConstant<Value> type;
|
|
};
|
|
|
|
typedef BooleanConstant<true> TrueType;
|
|
typedef BooleanConstant<false> FalseType;
|
|
|
|
template <class T>
|
|
struct VoidType {
|
|
typedef void type;
|
|
};
|
|
|
|
template <class T, class DType = void>
|
|
struct IsRepresentableAsMatDataType : FalseType
|
|
{
|
|
};
|
|
|
|
template <class T>
|
|
struct IsRepresentableAsMatDataType<T, typename VoidType<typename cv::DataType<T>::channel_type>::type> : TrueType
|
|
{
|
|
};
|
|
|
|
// https://github.com/opencv/opencv/issues/20930
|
|
template <> struct IsRepresentableAsMatDataType<cv::RotatedRect, void> : FalseType {};
|
|
|
|
} // namespace traits
|
|
|
|
template <typename Tp>
|
|
struct pyopencvVecConverter
|
|
{
|
|
typedef typename std::vector<Tp>::iterator VecIt;
|
|
|
|
static bool to(PyObject* obj, std::vector<Tp>& value, const ArgInfo& info)
|
|
{
|
|
if (!PyArray_Check(obj))
|
|
{
|
|
return pyopencv_to_generic_vec(obj, value, info);
|
|
}
|
|
// If user passed an array it is possible to make faster conversions in several cases
|
|
PyArrayObject* array_obj = reinterpret_cast<PyArrayObject*>(obj);
|
|
const NPY_TYPES target_type = asNumpyType<Tp>();
|
|
const NPY_TYPES source_type = static_cast<NPY_TYPES>(PyArray_TYPE(array_obj));
|
|
if (target_type == NPY_OBJECT)
|
|
{
|
|
// Non-planar arrays representing objects (e.g. array of N Rect is an array of shape Nx4) have NPY_OBJECT
|
|
// as their target type.
|
|
return pyopencv_to_generic_vec(obj, value, info);
|
|
}
|
|
if (PyArray_NDIM(array_obj) > 1)
|
|
{
|
|
failmsg("Can't parse %dD array as '%s' vector argument", PyArray_NDIM(array_obj), info.name);
|
|
return false;
|
|
}
|
|
if (target_type != source_type)
|
|
{
|
|
// Source type requires conversion
|
|
// Allowed conversions for target type is handled in the corresponding pyopencv_to function
|
|
return pyopencv_to_generic_vec(obj, value, info);
|
|
}
|
|
// For all other cases, all array data can be directly copied to std::vector data
|
|
// Simple `memcpy` is not possible because NumPy array can reference a slice of the bigger array:
|
|
// ```
|
|
// arr = np.ones((8, 4, 5), dtype=np.int32)
|
|
// convertible_to_vector_of_int = arr[:, 0, 1]
|
|
// ```
|
|
value.resize(static_cast<size_t>(PyArray_SIZE(array_obj)));
|
|
const npy_intp item_step = PyArray_STRIDE(array_obj, 0) / PyArray_ITEMSIZE(array_obj);
|
|
const Tp* data_ptr = static_cast<Tp*>(PyArray_DATA(array_obj));
|
|
for (VecIt it = value.begin(); it != value.end(); ++it, data_ptr += item_step) {
|
|
*it = *data_ptr;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static PyObject* from(const std::vector<Tp>& value)
|
|
{
|
|
if (value.empty())
|
|
{
|
|
return PyTuple_New(0);
|
|
}
|
|
return from(value, ::traits::IsRepresentableAsMatDataType<Tp>());
|
|
}
|
|
|
|
private:
|
|
static PyObject* from(const std::vector<Tp>& value, ::traits::FalseType)
|
|
{
|
|
// Underlying type is not representable as Mat Data Type
|
|
return pyopencv_from_generic_vec(value);
|
|
}
|
|
|
|
static PyObject* from(const std::vector<Tp>& value, ::traits::TrueType)
|
|
{
|
|
// Underlying type is representable as Mat Data Type, so faster return type is available
|
|
typedef cv::DataType<Tp> DType;
|
|
typedef typename DType::channel_type UnderlyingArrayType;
|
|
|
|
// If Mat is always exposed as NumPy array this code path can be reduced to the following snipped:
|
|
// Mat src(value);
|
|
// PyObject* array = pyopencv_from(src);
|
|
// return PyArray_Squeeze(reinterpret_cast<PyArrayObject*>(array));
|
|
// This puts unnecessary restrictions on Mat object those might be avoided without losing the performance.
|
|
// Moreover, this version is a bit faster, because it doesn't create temporary objects with reference counting.
|
|
|
|
const NPY_TYPES target_type = asNumpyType<UnderlyingArrayType>();
|
|
const int cols = DType::channels;
|
|
PyObject* array = NULL;
|
|
if (cols == 1)
|
|
{
|
|
npy_intp dims = static_cast<npy_intp>(value.size());
|
|
array = PyArray_SimpleNew(1, &dims, target_type);
|
|
}
|
|
else
|
|
{
|
|
npy_intp dims[2] = {static_cast<npy_intp>(value.size()), cols};
|
|
array = PyArray_SimpleNew(2, dims, target_type);
|
|
}
|
|
if(!array)
|
|
{
|
|
// NumPy arrays with shape (N, 1) and (N) are not equal, so correct error message should distinguish
|
|
// them too.
|
|
cv::String shape;
|
|
if (cols > 1)
|
|
{
|
|
shape = cv::format("(%d x %d)", static_cast<int>(value.size()), cols);
|
|
}
|
|
else
|
|
{
|
|
shape = cv::format("(%d)", static_cast<int>(value.size()));
|
|
}
|
|
const cv::String error_message = cv::format("Can't allocate NumPy array for vector with dtype=%d and shape=%s",
|
|
static_cast<int>(target_type), shape.c_str());
|
|
emit_failmsg(PyExc_MemoryError, error_message.c_str());
|
|
return array;
|
|
}
|
|
// Fill the array
|
|
PyArrayObject* array_obj = reinterpret_cast<PyArrayObject*>(array);
|
|
UnderlyingArrayType* array_data = static_cast<UnderlyingArrayType*>(PyArray_DATA(array_obj));
|
|
// if Tp is representable as Mat DataType, so the following cast is pretty safe...
|
|
const UnderlyingArrayType* value_data = reinterpret_cast<const UnderlyingArrayType*>(value.data());
|
|
memcpy(array_data, value_data, sizeof(UnderlyingArrayType) * value.size() * static_cast<size_t>(cols));
|
|
return array;
|
|
}
|
|
};
|
|
|
|
// --- tuple
|
|
template<std::size_t I = 0, typename... Tp>
|
|
inline typename std::enable_if<I == sizeof...(Tp), void>::type
|
|
convert_to_python_tuple(const std::tuple<Tp...>&, PyObject*) { }
|
|
|
|
template<std::size_t I = 0, typename... Tp>
|
|
inline typename std::enable_if<I < sizeof...(Tp), void>::type
|
|
convert_to_python_tuple(const std::tuple<Tp...>& cpp_tuple, PyObject* py_tuple)
|
|
{
|
|
PyObject* item = pyopencv_from(std::get<I>(cpp_tuple));
|
|
|
|
if (!item)
|
|
return;
|
|
|
|
PyTuple_SetItem(py_tuple, I, item);
|
|
convert_to_python_tuple<I + 1, Tp...>(cpp_tuple, py_tuple);
|
|
}
|
|
|
|
template<typename... Ts>
|
|
PyObject* pyopencv_from(const std::tuple<Ts...>& cpp_tuple)
|
|
{
|
|
size_t size = sizeof...(Ts);
|
|
PyObject* py_tuple = PyTuple_New(size);
|
|
convert_to_python_tuple(cpp_tuple, py_tuple);
|
|
size_t actual_size = PyTuple_Size(py_tuple);
|
|
|
|
if (actual_size < size)
|
|
{
|
|
Py_DECREF(py_tuple);
|
|
return NULL;
|
|
}
|
|
|
|
return py_tuple;
|
|
}
|
|
|
|
#endif // CV2_CONVERT_HPP
|