mirror of
https://github.com/opencv/opencv.git
synced 2025-01-13 08:08:10 +08:00
596 lines
25 KiB
C++
596 lines
25 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#include "precomp.hpp"
|
|
#include <utility>
|
|
|
|
using namespace cv;
|
|
using namespace cv::gpu;
|
|
|
|
#if !defined (HAVE_CUDA)
|
|
|
|
void cv::gpu::matchTemplate(const GpuMat&, const GpuMat&, GpuMat&, int) { throw_nogpu(); }
|
|
|
|
#else
|
|
|
|
#include <cufft.h>
|
|
|
|
namespace cv { namespace gpu { namespace imgproc
|
|
{
|
|
void multiplyAndNormalizeSpects(int n, float scale, const cufftComplex* a,
|
|
const cufftComplex* b, cufftComplex* c);
|
|
|
|
void matchTemplateNaive_CCORR_8U(
|
|
const DevMem2D image, const DevMem2D templ, DevMem2Df result, int cn);
|
|
|
|
void matchTemplateNaive_CCORR_32F(
|
|
const DevMem2D image, const DevMem2D templ, DevMem2Df result, int cn);
|
|
|
|
void matchTemplateNaive_SQDIFF_8U(
|
|
const DevMem2D image, const DevMem2D templ, DevMem2Df result, int cn);
|
|
|
|
void matchTemplateNaive_SQDIFF_32F(
|
|
const DevMem2D image, const DevMem2D templ, DevMem2Df result, int cn);
|
|
|
|
void matchTemplatePrepared_SQDIFF_8U(
|
|
int w, int h, const DevMem2D_<unsigned long long> image_sqsum,
|
|
unsigned int templ_sqsum, DevMem2Df result, int cn);
|
|
|
|
void matchTemplatePrepared_SQDIFF_NORMED_8U(
|
|
int w, int h, const DevMem2D_<unsigned long long> image_sqsum,
|
|
unsigned int templ_sqsum, DevMem2Df result, int cn);
|
|
|
|
void matchTemplatePrepared_CCOFF_8U(
|
|
int w, int h, const DevMem2D_<unsigned int> image_sum,
|
|
unsigned int templ_sum, DevMem2Df result);
|
|
|
|
void matchTemplatePrepared_CCOFF_8UC2(
|
|
int w, int h,
|
|
const DevMem2D_<unsigned int> image_sum_r,
|
|
const DevMem2D_<unsigned int> image_sum_g,
|
|
unsigned int templ_sum_r, unsigned int templ_sum_g,
|
|
DevMem2Df result);
|
|
|
|
void matchTemplatePrepared_CCOFF_8UC3(
|
|
int w, int h,
|
|
const DevMem2D_<unsigned int> image_sum_r,
|
|
const DevMem2D_<unsigned int> image_sum_g,
|
|
const DevMem2D_<unsigned int> image_sum_b,
|
|
unsigned int templ_sum_r,
|
|
unsigned int templ_sum_g,
|
|
unsigned int templ_sum_b,
|
|
DevMem2Df result);
|
|
|
|
void matchTemplatePrepared_CCOFF_8UC4(
|
|
int w, int h,
|
|
const DevMem2D_<unsigned int> image_sum_r,
|
|
const DevMem2D_<unsigned int> image_sum_g,
|
|
const DevMem2D_<unsigned int> image_sum_b,
|
|
const DevMem2D_<unsigned int> image_sum_a,
|
|
unsigned int templ_sum_r,
|
|
unsigned int templ_sum_g,
|
|
unsigned int templ_sum_b,
|
|
unsigned int templ_sum_a,
|
|
DevMem2Df result);
|
|
|
|
void matchTemplatePrepared_CCOFF_NORMED_8U(
|
|
int w, int h, const DevMem2D_<unsigned int> image_sum,
|
|
const DevMem2D_<unsigned long long> image_sqsum,
|
|
unsigned int templ_sum, unsigned int templ_sqsum,
|
|
DevMem2Df result);
|
|
|
|
void matchTemplatePrepared_CCOFF_NORMED_8UC2(
|
|
int w, int h,
|
|
const DevMem2D_<unsigned int> image_sum_r, const DevMem2D_<unsigned long long> image_sqsum_r,
|
|
const DevMem2D_<unsigned int> image_sum_g, const DevMem2D_<unsigned long long> image_sqsum_g,
|
|
unsigned int templ_sum_r, unsigned int templ_sqsum_r,
|
|
unsigned int templ_sum_g, unsigned int templ_sqsum_g,
|
|
DevMem2Df result);
|
|
|
|
void matchTemplatePrepared_CCOFF_NORMED_8UC3(
|
|
int w, int h,
|
|
const DevMem2D_<unsigned int> image_sum_r, const DevMem2D_<unsigned long long> image_sqsum_r,
|
|
const DevMem2D_<unsigned int> image_sum_g, const DevMem2D_<unsigned long long> image_sqsum_g,
|
|
const DevMem2D_<unsigned int> image_sum_b, const DevMem2D_<unsigned long long> image_sqsum_b,
|
|
unsigned int templ_sum_r, unsigned int templ_sqsum_r,
|
|
unsigned int templ_sum_g, unsigned int templ_sqsum_g,
|
|
unsigned int templ_sum_b, unsigned int templ_sqsum_b,
|
|
DevMem2Df result);
|
|
|
|
void matchTemplatePrepared_CCOFF_NORMED_8UC4(
|
|
int w, int h,
|
|
const DevMem2D_<unsigned int> image_sum_r, const DevMem2D_<unsigned long long> image_sqsum_r,
|
|
const DevMem2D_<unsigned int> image_sum_g, const DevMem2D_<unsigned long long> image_sqsum_g,
|
|
const DevMem2D_<unsigned int> image_sum_b, const DevMem2D_<unsigned long long> image_sqsum_b,
|
|
const DevMem2D_<unsigned int> image_sum_a, const DevMem2D_<unsigned long long> image_sqsum_a,
|
|
unsigned int templ_sum_r, unsigned int templ_sqsum_r,
|
|
unsigned int templ_sum_g, unsigned int templ_sqsum_g,
|
|
unsigned int templ_sum_b, unsigned int templ_sqsum_b,
|
|
unsigned int templ_sum_a, unsigned int templ_sqsum_a,
|
|
DevMem2Df result);
|
|
|
|
void normalize_8U(int w, int h, const DevMem2D_<unsigned long long> image_sqsum,
|
|
unsigned int templ_sqsum, DevMem2Df result, int cn);
|
|
|
|
void extractFirstChannel_32F(const DevMem2D image, DevMem2Df result, int cn);
|
|
}}}
|
|
|
|
|
|
namespace
|
|
{
|
|
// Computes integral image. Result matrix will have data type 32S,
|
|
// while actuall data type is 32U
|
|
void integral_8U_32U(const GpuMat& src, GpuMat& sum);
|
|
|
|
// Computes squared integral image. Result matrix will have data type 64F,
|
|
// while actual data type is 64U
|
|
void sqrIntegral_8U_64U(const GpuMat& src, GpuMat& sqsum);
|
|
|
|
// Estimates optimal blocks size for FFT method
|
|
void estimateBlockSize(int w, int h, int tw, int th, int& bw, int& bh);
|
|
|
|
// Performs FFT-based cross-correlation
|
|
void crossCorr_32F(const GpuMat& image, const GpuMat& templ, GpuMat& result);
|
|
|
|
// Evaluates optimal template's area threshold. If
|
|
// template's area is less than the threshold, we use naive match
|
|
// template version, otherwise FFT-based (if available)
|
|
int getTemplateThreshold(int method, int depth);
|
|
|
|
void matchTemplate_CCORR_32F(const GpuMat& image, const GpuMat& templ, GpuMat& result);
|
|
void matchTemplate_CCORR_8U(const GpuMat& image, const GpuMat& templ, GpuMat& result);
|
|
void matchTemplate_CCORR_NORMED_8U(const GpuMat& image, const GpuMat& templ, GpuMat& result);
|
|
|
|
void matchTemplate_SQDIFF_32F(const GpuMat& image, const GpuMat& templ, GpuMat& result);
|
|
void matchTemplate_SQDIFF_8U(const GpuMat& image, const GpuMat& templ, GpuMat& result);
|
|
void matchTemplate_SQDIFF_NORMED_8U(const GpuMat& image, const GpuMat& templ, GpuMat& result);
|
|
|
|
void matchTemplate_CCOFF_8U(const GpuMat& image, const GpuMat& templ, GpuMat& result);
|
|
void matchTemplate_CCOFF_NORMED_8U(const GpuMat& image, const GpuMat& templ, GpuMat& result);
|
|
|
|
|
|
void integral_8U_32U(const GpuMat& src, GpuMat& sum)
|
|
{
|
|
CV_Assert(src.type() == CV_8U);
|
|
|
|
NppStSize32u roiSize;
|
|
roiSize.width = src.cols;
|
|
roiSize.height = src.rows;
|
|
|
|
NppSt32u bufSize;
|
|
nppSafeCall(nppiStIntegralGetSize_8u32u(roiSize, &bufSize));
|
|
GpuMat buf(1, bufSize, CV_8U);
|
|
|
|
sum.create(src.rows + 1, src.cols + 1, CV_32S);
|
|
nppSafeCall(nppiStIntegral_8u32u_C1R(
|
|
const_cast<NppSt8u*>(src.ptr<NppSt8u>(0)), src.step,
|
|
sum.ptr<NppSt32u>(0), sum.step, roiSize,
|
|
buf.ptr<NppSt8u>(0), bufSize));
|
|
}
|
|
|
|
|
|
void sqrIntegral_8U_64U(const GpuMat& src, GpuMat& sqsum)
|
|
{
|
|
CV_Assert(src.type() == CV_8U);
|
|
|
|
NppStSize32u roiSize;
|
|
roiSize.width = src.cols;
|
|
roiSize.height = src.rows;
|
|
|
|
NppSt32u bufSize;
|
|
nppSafeCall(nppiStSqrIntegralGetSize_8u64u(roiSize, &bufSize));
|
|
GpuMat buf(1, bufSize, CV_8U);
|
|
|
|
sqsum.create(src.rows + 1, src.cols + 1, CV_64F);
|
|
nppSafeCall(nppiStSqrIntegral_8u64u_C1R(
|
|
const_cast<NppSt8u*>(src.ptr<NppSt8u>(0)), src.step,
|
|
sqsum.ptr<NppSt64u>(0), sqsum.step, roiSize,
|
|
buf.ptr<NppSt8u>(0), bufSize));
|
|
}
|
|
|
|
|
|
void estimateBlockSize(int w, int h, int tw, int th, int& bw, int& bh)
|
|
{
|
|
int major, minor;
|
|
getComputeCapability(getDevice(), major, minor);
|
|
|
|
int scale = 40;
|
|
int bh_min = 1024;
|
|
int bw_min = 1024;
|
|
|
|
if (major >= 2) // Fermi generation or newer
|
|
{
|
|
bh_min = 2048;
|
|
bw_min = 2048;
|
|
}
|
|
|
|
bw = std::max(tw * scale, bw_min);
|
|
bh = std::max(th * scale, bh_min);
|
|
bw = std::min(bw, w);
|
|
bh = std::min(bh, h);
|
|
}
|
|
|
|
|
|
void crossCorr_32F(const GpuMat& image, const GpuMat& templ, GpuMat& result)
|
|
{
|
|
CV_Assert(image.type() == CV_32F);
|
|
CV_Assert(templ.type() == CV_32F);
|
|
|
|
result.create(image.rows - templ.rows + 1, image.cols - templ.cols + 1, CV_32F);
|
|
|
|
Size block_size;
|
|
estimateBlockSize(result.cols, result.rows, templ.cols, templ.rows,
|
|
block_size.width, block_size.height);
|
|
|
|
Size dft_size;
|
|
dft_size.width = getOptimalDFTSize(block_size.width + templ.cols - 1);
|
|
dft_size.height = getOptimalDFTSize(block_size.width + templ.rows - 1);
|
|
|
|
block_size.width = std::min(dft_size.width - templ.cols + 1, result.cols);
|
|
block_size.height = std::min(dft_size.height - templ.rows + 1, result.rows);
|
|
|
|
cufftReal* image_data;
|
|
cufftReal* templ_data;
|
|
cufftReal* result_data;
|
|
cudaMalloc((void**)&image_data, sizeof(cufftReal) * dft_size.area());
|
|
cudaMalloc((void**)&templ_data, sizeof(cufftReal) * dft_size.area());
|
|
cudaMalloc((void**)&result_data, sizeof(cufftReal) * dft_size.area());
|
|
|
|
int spect_len = dft_size.height * (dft_size.width / 2 + 1);
|
|
cufftComplex* image_spect;
|
|
cufftComplex* templ_spect;
|
|
cufftComplex* result_spect;
|
|
cudaMalloc((void**)&image_spect, sizeof(cufftComplex) * spect_len);
|
|
cudaMalloc((void**)&templ_spect, sizeof(cufftComplex) * spect_len);
|
|
cudaMalloc((void**)&result_spect, sizeof(cufftComplex) * spect_len);
|
|
|
|
cufftHandle planR2C, planC2R;
|
|
CV_Assert(cufftPlan2d(&planC2R, dft_size.height, dft_size.width, CUFFT_C2R) == CUFFT_SUCCESS);
|
|
CV_Assert(cufftPlan2d(&planR2C, dft_size.height, dft_size.width, CUFFT_R2C) == CUFFT_SUCCESS);
|
|
|
|
GpuMat templ_roi(templ.size(), CV_32S, templ.data, templ.step);
|
|
GpuMat templ_block(dft_size, CV_32S, templ_data, dft_size.width * sizeof(cufftReal));
|
|
copyMakeBorder(templ_roi, templ_block, 0, templ_block.rows - templ_roi.rows, 0,
|
|
templ_block.cols - templ_roi.cols, 0);
|
|
CV_Assert(cufftExecR2C(planR2C, templ_data, templ_spect) == CUFFT_SUCCESS);
|
|
|
|
GpuMat image_block(dft_size, CV_32S, image_data, dft_size.width * sizeof(cufftReal));
|
|
|
|
for (int y = 0; y < result.rows; y += block_size.height)
|
|
{
|
|
for (int x = 0; x < result.cols; x += block_size.width)
|
|
{
|
|
Size image_roi_size;
|
|
image_roi_size.width = min(x + dft_size.width, image.cols) - x;
|
|
image_roi_size.height = min(y + dft_size.height, image.rows) - y;
|
|
GpuMat image_roi(image_roi_size, CV_32S, (void*)(image.ptr<float>(y) + x), image.step);
|
|
copyMakeBorder(image_roi, image_block, 0, image_block.rows - image_roi.rows, 0,
|
|
image_block.cols - image_roi.cols, 0);
|
|
|
|
CV_Assert(cufftExecR2C(planR2C, image_data, image_spect) == CUFFT_SUCCESS);
|
|
imgproc::multiplyAndNormalizeSpects(spect_len, 1.f / dft_size.area(),
|
|
image_spect, templ_spect, result_spect);
|
|
CV_Assert(cufftExecC2R(planC2R, result_spect, result_data) == CUFFT_SUCCESS);
|
|
|
|
Size result_roi_size;
|
|
result_roi_size.width = min(x + block_size.width, result.cols) - x;
|
|
result_roi_size.height = min(y + block_size.height, result.rows) - y;
|
|
GpuMat result_roi(result_roi_size, CV_32F, (void*)(result.ptr<float>(y) + x), result.step);
|
|
GpuMat result_block(result_roi_size, CV_32F, result_data, dft_size.width * sizeof(cufftReal));
|
|
result_block.copyTo(result_roi);
|
|
}
|
|
}
|
|
|
|
cufftDestroy(planR2C);
|
|
cufftDestroy(planC2R);
|
|
|
|
cudaFree(image_spect);
|
|
cudaFree(templ_spect);
|
|
cudaFree(result_spect);
|
|
cudaFree(image_data);
|
|
cudaFree(templ_data);
|
|
cudaFree(result_data);
|
|
}
|
|
|
|
|
|
int getTemplateThreshold(int method, int depth)
|
|
{
|
|
switch (method)
|
|
{
|
|
case CV_TM_CCORR:
|
|
if (depth == CV_32F) return 250;
|
|
if (depth == CV_8U) return 300;
|
|
break;
|
|
case CV_TM_SQDIFF:
|
|
if (depth == CV_8U) return 500;
|
|
break;
|
|
}
|
|
CV_Error(CV_StsBadArg, "getTemplateThreshold: unsupported match template mode");
|
|
return 0;
|
|
}
|
|
|
|
|
|
void matchTemplate_CCORR_32F(const GpuMat& image, const GpuMat& templ, GpuMat& result)
|
|
{
|
|
result.create(image.rows - templ.rows + 1, image.cols - templ.cols + 1, CV_32F);
|
|
if (templ.size().area() < getTemplateThreshold(CV_TM_CCORR, CV_32F))
|
|
{
|
|
imgproc::matchTemplateNaive_CCORR_32F(image, templ, result, image.channels());
|
|
return;
|
|
}
|
|
|
|
GpuMat result_;
|
|
crossCorr_32F(image.reshape(1), templ.reshape(1), result_);
|
|
imgproc::extractFirstChannel_32F(result_, result, image.channels());
|
|
}
|
|
|
|
|
|
void matchTemplate_CCORR_8U(const GpuMat& image, const GpuMat& templ, GpuMat& result)
|
|
{
|
|
if (templ.size().area() < getTemplateThreshold(CV_TM_CCORR, CV_8U))
|
|
{
|
|
result.create(image.rows - templ.rows + 1, image.cols - templ.cols + 1, CV_32F);
|
|
imgproc::matchTemplateNaive_CCORR_8U(image, templ, result, image.channels());
|
|
return;
|
|
}
|
|
|
|
GpuMat imagef, templf;
|
|
image.convertTo(imagef, CV_32F);
|
|
templ.convertTo(templf, CV_32F);
|
|
matchTemplate_CCORR_32F(imagef, templf, result);
|
|
}
|
|
|
|
|
|
void matchTemplate_CCORR_NORMED_8U(const GpuMat& image, const GpuMat& templ,
|
|
GpuMat& result)
|
|
{
|
|
matchTemplate_CCORR_8U(image, templ, result);
|
|
|
|
GpuMat img_sqsum;
|
|
sqrIntegral_8U_64U(image.reshape(1), img_sqsum);
|
|
|
|
unsigned int templ_sqsum = (unsigned int)sqrSum(templ.reshape(1))[0];
|
|
imgproc::normalize_8U(templ.cols, templ.rows, img_sqsum, templ_sqsum,
|
|
result, image.channels());
|
|
}
|
|
|
|
|
|
void matchTemplate_SQDIFF_32F(const GpuMat& image, const GpuMat& templ, GpuMat& result)
|
|
{
|
|
result.create(image.rows - templ.rows + 1, image.cols - templ.cols + 1, CV_32F);
|
|
imgproc::matchTemplateNaive_SQDIFF_32F(image, templ, result, image.channels());
|
|
}
|
|
|
|
|
|
void matchTemplate_SQDIFF_8U(const GpuMat& image, const GpuMat& templ, GpuMat& result)
|
|
{
|
|
if (templ.size().area() < getTemplateThreshold(CV_TM_SQDIFF, CV_8U))
|
|
{
|
|
result.create(image.rows - templ.rows + 1, image.cols - templ.cols + 1, CV_32F);
|
|
imgproc::matchTemplateNaive_SQDIFF_8U(image, templ, result, image.channels());
|
|
return;
|
|
}
|
|
|
|
GpuMat img_sqsum;
|
|
sqrIntegral_8U_64U(image.reshape(1), img_sqsum);
|
|
|
|
unsigned int templ_sqsum = (unsigned int)sqrSum(templ.reshape(1))[0];
|
|
|
|
matchTemplate_CCORR_8U(image, templ, result);
|
|
imgproc::matchTemplatePrepared_SQDIFF_8U(
|
|
templ.cols, templ.rows, img_sqsum, templ_sqsum, result, image.channels());
|
|
}
|
|
|
|
|
|
void matchTemplate_SQDIFF_NORMED_8U(const GpuMat& image, const GpuMat& templ, GpuMat& result)
|
|
{
|
|
GpuMat img_sqsum;
|
|
sqrIntegral_8U_64U(image.reshape(1), img_sqsum);
|
|
|
|
unsigned int templ_sqsum = (unsigned int)sqrSum(templ.reshape(1))[0];
|
|
|
|
matchTemplate_CCORR_8U(image, templ, result);
|
|
imgproc::matchTemplatePrepared_SQDIFF_NORMED_8U(
|
|
templ.cols, templ.rows, img_sqsum, templ_sqsum, result, image.channels());
|
|
}
|
|
|
|
|
|
void matchTemplate_CCOFF_8U(const GpuMat& image, const GpuMat& templ, GpuMat& result)
|
|
{
|
|
matchTemplate_CCORR_8U(image, templ, result);
|
|
|
|
if (image.channels() == 1)
|
|
{
|
|
GpuMat image_sum;
|
|
integral_8U_32U(image, image_sum);
|
|
|
|
unsigned int templ_sum = (unsigned int)sum(templ)[0];
|
|
imgproc::matchTemplatePrepared_CCOFF_8U(templ.cols, templ.rows,
|
|
image_sum, templ_sum, result);
|
|
}
|
|
else
|
|
{
|
|
std::vector<GpuMat> images;
|
|
std::vector<GpuMat> image_sums(image.channels());
|
|
|
|
split(image, images);
|
|
for (int i = 0; i < image.channels(); ++i)
|
|
integral_8U_32U(images[i], image_sums[i]);
|
|
|
|
Scalar templ_sum = sum(templ);
|
|
|
|
switch (image.channels())
|
|
{
|
|
case 2:
|
|
imgproc::matchTemplatePrepared_CCOFF_8UC2(
|
|
templ.cols, templ.rows, image_sums[0], image_sums[1],
|
|
(unsigned int)templ_sum[0], (unsigned int)templ_sum[1],
|
|
result);
|
|
break;
|
|
case 3:
|
|
imgproc::matchTemplatePrepared_CCOFF_8UC3(
|
|
templ.cols, templ.rows, image_sums[0], image_sums[1], image_sums[2],
|
|
(unsigned int)templ_sum[0], (unsigned int)templ_sum[1], (unsigned int)templ_sum[2],
|
|
result);
|
|
break;
|
|
case 4:
|
|
imgproc::matchTemplatePrepared_CCOFF_8UC4(
|
|
templ.cols, templ.rows, image_sums[0], image_sums[1], image_sums[2], image_sums[3],
|
|
(unsigned int)templ_sum[0], (unsigned int)templ_sum[1], (unsigned int)templ_sum[2],
|
|
(unsigned int)templ_sum[3], result);
|
|
break;
|
|
default:
|
|
CV_Error(CV_StsBadArg, "matchTemplate: unsupported number of channels");
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void matchTemplate_CCOFF_NORMED_8U(const GpuMat& image, const GpuMat& templ, GpuMat& result)
|
|
{
|
|
GpuMat imagef, templf;
|
|
image.convertTo(imagef, CV_32F);
|
|
templ.convertTo(templf, CV_32F);
|
|
matchTemplate_CCORR_32F(imagef, templf, result);
|
|
|
|
if (image.channels() == 1)
|
|
{
|
|
GpuMat image_sum, image_sqsum;
|
|
integral_8U_32U(image, image_sum);
|
|
sqrIntegral_8U_64U(image, image_sqsum);
|
|
|
|
unsigned int templ_sum = (unsigned int)sum(templ)[0];
|
|
unsigned int templ_sqsum = (unsigned int)sqrSum(templ)[0];
|
|
|
|
imgproc::matchTemplatePrepared_CCOFF_NORMED_8U(
|
|
templ.cols, templ.rows, image_sum, image_sqsum,
|
|
templ_sum, templ_sqsum, result);
|
|
}
|
|
else
|
|
{
|
|
std::vector<GpuMat> images;
|
|
std::vector<GpuMat> image_sums(image.channels());
|
|
std::vector<GpuMat> image_sqsums(image.channels());
|
|
|
|
split(image, images);
|
|
for (int i = 0; i < image.channels(); ++i)
|
|
{
|
|
integral_8U_32U(images[i], image_sums[i]);
|
|
sqrIntegral_8U_64U(images[i], image_sqsums[i]);
|
|
}
|
|
|
|
Scalar templ_sum = sum(templ);
|
|
Scalar templ_sqsum = sqrSum(templ);
|
|
|
|
switch (image.channels())
|
|
{
|
|
case 2:
|
|
imgproc::matchTemplatePrepared_CCOFF_NORMED_8UC2(
|
|
templ.cols, templ.rows,
|
|
image_sums[0], image_sqsums[0],
|
|
image_sums[1], image_sqsums[1],
|
|
(unsigned int)templ_sum[0], (unsigned int)templ_sqsum[0],
|
|
(unsigned int)templ_sum[1], (unsigned int)templ_sqsum[1],
|
|
result);
|
|
break;
|
|
case 3:
|
|
imgproc::matchTemplatePrepared_CCOFF_NORMED_8UC3(
|
|
templ.cols, templ.rows,
|
|
image_sums[0], image_sqsums[0],
|
|
image_sums[1], image_sqsums[1],
|
|
image_sums[2], image_sqsums[2],
|
|
(unsigned int)templ_sum[0], (unsigned int)templ_sqsum[0],
|
|
(unsigned int)templ_sum[1], (unsigned int)templ_sqsum[1],
|
|
(unsigned int)templ_sum[2], (unsigned int)templ_sqsum[2],
|
|
result);
|
|
break;
|
|
case 4:
|
|
imgproc::matchTemplatePrepared_CCOFF_NORMED_8UC4(
|
|
templ.cols, templ.rows,
|
|
image_sums[0], image_sqsums[0],
|
|
image_sums[1], image_sqsums[1],
|
|
image_sums[2], image_sqsums[2],
|
|
image_sums[3], image_sqsums[3],
|
|
(unsigned int)templ_sum[0], (unsigned int)templ_sqsum[0],
|
|
(unsigned int)templ_sum[1], (unsigned int)templ_sqsum[1],
|
|
(unsigned int)templ_sum[2], (unsigned int)templ_sqsum[2],
|
|
(unsigned int)templ_sum[3], (unsigned int)templ_sqsum[3],
|
|
result);
|
|
break;
|
|
default:
|
|
CV_Error(CV_StsBadArg, "matchTemplate: unsupported number of channels");
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void cv::gpu::matchTemplate(const GpuMat& image, const GpuMat& templ, GpuMat& result, int method)
|
|
{
|
|
CV_Assert(image.type() == templ.type());
|
|
CV_Assert(image.cols >= templ.cols && image.rows >= templ.rows);
|
|
|
|
typedef void (*Caller)(const GpuMat&, const GpuMat&, GpuMat&);
|
|
|
|
static const Caller callers8U[] = { ::matchTemplate_SQDIFF_8U, ::matchTemplate_SQDIFF_NORMED_8U,
|
|
::matchTemplate_CCORR_8U, ::matchTemplate_CCORR_NORMED_8U,
|
|
::matchTemplate_CCOFF_8U, ::matchTemplate_CCOFF_NORMED_8U };
|
|
static const Caller callers32F[] = { ::matchTemplate_SQDIFF_32F, 0,
|
|
::matchTemplate_CCORR_32F, 0, 0, 0 };
|
|
|
|
const Caller* callers = 0;
|
|
switch (image.depth())
|
|
{
|
|
case CV_8U: callers = callers8U; break;
|
|
case CV_32F: callers = callers32F; break;
|
|
default: CV_Error(CV_StsBadArg, "matchTemplate: unsupported data type");
|
|
}
|
|
|
|
Caller caller = callers[method];
|
|
CV_Assert(caller);
|
|
caller(image, templ, result);
|
|
}
|
|
|
|
#endif
|
|
|
|
|