mirror of
https://github.com/opencv/opencv.git
synced 2025-01-04 16:47:59 +08:00
2722 lines
86 KiB
C++
2722 lines
86 KiB
C++
/*
|
|
IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
|
|
By downloading, copying, installing or using the software you agree to this license.
|
|
If you do not agree to this license, do not download, install,
|
|
copy or use the software.
|
|
|
|
|
|
BSD 3-Clause License
|
|
|
|
Copyright (C) 2014, Olexa Bilaniuk, Hamid Bazargani & Robert Laganiere, all rights reserved.
|
|
|
|
Redistribution and use in source and binary forms, with or without modification,
|
|
are permitted provided that the following conditions are met:
|
|
|
|
* Redistribution's of source code must retain the above copyright notice,
|
|
this list of conditions and the following disclaimer.
|
|
|
|
* Redistribution's in binary form must reproduce the above copyright notice,
|
|
this list of conditions and the following disclaimer in the documentation
|
|
and/or other materials provided with the distribution.
|
|
|
|
* The name of the copyright holders may not be used to endorse or promote products
|
|
derived from this software without specific prior written permission.
|
|
|
|
This software is provided by the copyright holders and contributors "as is" and
|
|
any express or implied warranties, including, but not limited to, the implied
|
|
warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
indirect, incidental, special, exemplary, or consequential damages
|
|
(including, but not limited to, procurement of substitute goods or services;
|
|
loss of use, data, or profits; or business interruption) however caused
|
|
and on any theory of liability, whether in contract, strict liability,
|
|
or tort (including negligence or otherwise) arising in any way out of
|
|
the use of this software, even if advised of the possibility of such damage.
|
|
*/
|
|
|
|
/**
|
|
* Bilaniuk, Olexa, Hamid Bazargani, and Robert Laganiere. "Fast Target
|
|
* Recognition on Mobile Devices: Revisiting Gaussian Elimination for the
|
|
* Estimation of Planar Homographies." In Computer Vision and Pattern
|
|
* Recognition Workshops (CVPRW), 2014 IEEE Conference on, pp. 119-125.
|
|
* IEEE, 2014.
|
|
*/
|
|
|
|
/* Includes */
|
|
#include "precomp.hpp"
|
|
#include <opencv2/core.hpp>
|
|
#include <stdlib.h>
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
#include <stddef.h>
|
|
#include <limits.h>
|
|
#include <float.h>
|
|
#include <math.h>
|
|
#include <vector>
|
|
#include "rho.h"
|
|
|
|
|
|
|
|
|
|
|
|
/* For the sake of cv:: namespace ONLY: */
|
|
namespace cv{/* For C support, replace with extern "C" { */
|
|
|
|
|
|
/* Constants */
|
|
const int MEM_ALIGN = 32;
|
|
const size_t HSIZE = (3*3*sizeof(float));
|
|
const double MIN_DELTA_CHNG = 0.1;
|
|
// const double CHI_STAT = 2.706;
|
|
const double CHI_SQ = 1.645;
|
|
// const double RLO = 0.25;
|
|
// const double RHI = 0.75;
|
|
const int MAXLEVMARQITERS = 100;
|
|
const int SMPL_SIZE = 4; /* 4 points required per model */
|
|
const int SPRT_T_M = 25; /* Guessing 25 match evlauations / 1 model generation */
|
|
const int SPRT_M_S = 1; /* 1 model per sample */
|
|
const double SPRT_EPSILON = 0.1; /* No explanation */
|
|
const double SPRT_DELTA = 0.01; /* No explanation */
|
|
const double LM_GAIN_LO = 0.25; /* See sacLMGain(). */
|
|
const double LM_GAIN_HI = 0.75; /* See sacLMGain(). */
|
|
|
|
|
|
/* Data Structures */
|
|
|
|
/**
|
|
* Base Struct for RHO algorithm.
|
|
*
|
|
* A RHO estimator has initialization, finalization, capacity, seeding and
|
|
* homography-estimation APIs that must be implemented.
|
|
*/
|
|
|
|
struct RHO_HEST{
|
|
/* This is a virtual base class; It should have a virtual destructor. */
|
|
virtual ~RHO_HEST(){}
|
|
|
|
/* External Interface Methods */
|
|
|
|
/**
|
|
* Initialization work.
|
|
*
|
|
* @return 0 if initialization is unsuccessful; non-zero otherwise.
|
|
*/
|
|
|
|
virtual inline int initialize(void){return 1;}
|
|
|
|
|
|
/**
|
|
* Finalization work.
|
|
*/
|
|
|
|
virtual inline void finalize(void){}
|
|
|
|
/**
|
|
* Ensure that the estimator context's internal table for the non-randomness
|
|
* criterion is at least of the given size, and uses the given beta. The table
|
|
* should be larger than the maximum number of matches fed into the estimator.
|
|
*
|
|
* A value of N of 0 requests deallocation of the table.
|
|
*
|
|
* @param [in] N If 0, deallocate internal table. If > 0, ensure that the
|
|
* internal table is of at least this size, reallocating if
|
|
* necessary.
|
|
* @param [in] beta The beta-factor to use within the table.
|
|
* @return 0 if unsuccessful; non-zero otherwise.
|
|
*/
|
|
|
|
virtual inline int ensureCapacity(unsigned N, double beta){
|
|
(void)N;
|
|
(void)beta;
|
|
|
|
return 1;
|
|
}
|
|
|
|
|
|
/**
|
|
* Generates a random double uniformly distributed in the range [0, 1).
|
|
*
|
|
* The default implementation uses the xorshift128+ algorithm from
|
|
* Sebastiano Vigna. Further scramblings of Marsaglia's xorshift generators.
|
|
* CoRR, abs/1402.6246, 2014.
|
|
* http://vigna.di.unimi.it/ftp/papers/xorshiftplus.pdf
|
|
*
|
|
* Source roughly as given in
|
|
* http://en.wikipedia.org/wiki/Xorshift#Xorshift.2B
|
|
*/
|
|
|
|
virtual inline double fastRandom(void){
|
|
uint64_t x = prng.s[0];
|
|
uint64_t y = prng.s[1];
|
|
x ^= x << 23; // a
|
|
x ^= x >> 17; // b
|
|
x ^= y ^ (y >> 26); // c
|
|
prng.s[0] = y;
|
|
prng.s[1] = x;
|
|
uint64_t s = x + y;
|
|
|
|
return s * 5.421010862427522e-20;/* 2^-64 */
|
|
}
|
|
|
|
|
|
/**
|
|
* Seeds the context's PRNG.
|
|
*
|
|
* @param [in] seed A 64-bit unsigned integer seed.
|
|
*/
|
|
|
|
virtual inline void fastSeed(uint64_t seed){
|
|
int i;
|
|
|
|
prng.s[0] = seed;
|
|
prng.s[1] = ~seed;/* Guarantees one of the elements will be non-zero. */
|
|
|
|
/**
|
|
* Escape from zero-land (see xorshift128+ paper). Approximately 20
|
|
* iterations required according to the graph.
|
|
*/
|
|
|
|
for(i=0;i<20;i++){
|
|
fastRandom();
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* Estimates the homography using the given context, matches and parameters to
|
|
* PROSAC.
|
|
*
|
|
* @param [in] src The pointer to the source points of the matches.
|
|
* Cannot be NULL.
|
|
* @param [in] dst The pointer to the destination points of the matches.
|
|
* Cannot be NULL.
|
|
* @param [out] inl The pointer to the output mask of inlier matches.
|
|
* May be NULL.
|
|
* @param [in] N The number of matches.
|
|
* @param [in] maxD The maximum distance.
|
|
* @param [in] maxI The maximum number of PROSAC iterations.
|
|
* @param [in] rConvg The RANSAC convergence parameter.
|
|
* @param [in] cfd The required confidence in the solution.
|
|
* @param [in] minInl The minimum required number of inliers.
|
|
* @param [in] beta The beta-parameter for the non-randomness criterion.
|
|
* @param [in] flags A union of flags to control the estimation.
|
|
* @param [in] guessH An extrinsic guess at the solution H, or NULL if
|
|
* none provided.
|
|
* @param [out] finalH The final estimation of H, or the zero matrix if
|
|
* the minimum number of inliers was not met.
|
|
* Cannot be NULL.
|
|
* @return The number of inliers if the minimum number of
|
|
* inliers for acceptance was reached; 0 otherwise.
|
|
*/
|
|
|
|
virtual unsigned rhoHest(const float* src, /* Source points */
|
|
const float* dst, /* Destination points */
|
|
char* inl, /* Inlier mask */
|
|
unsigned N, /* = src.length = dst.length = inl.length */
|
|
float maxD, /* Works: 3.0 */
|
|
unsigned maxI, /* Works: 2000 */
|
|
unsigned rConvg, /* Works: 2000 */
|
|
double cfd, /* Works: 0.995 */
|
|
unsigned minInl, /* Minimum: 4 */
|
|
double beta, /* Works: 0.35 */
|
|
unsigned flags, /* Works: 0 */
|
|
const float* guessH, /* Extrinsic guess, NULL if none provided */
|
|
float* finalH) = 0; /* Final result. */
|
|
|
|
|
|
|
|
/* PRNG XORshift128+ */
|
|
struct{
|
|
uint64_t s[2]; /* PRNG state */
|
|
} prng;
|
|
};
|
|
|
|
|
|
|
|
/**
|
|
* Generic C implementation of RHO algorithm.
|
|
*/
|
|
|
|
struct RHO_HEST_REFC : RHO_HEST{
|
|
/**
|
|
* Virtual Arguments.
|
|
*
|
|
* Exactly the same as at function call, except:
|
|
* - minInl is enforced to be >= 4.
|
|
*/
|
|
|
|
struct{
|
|
const float* src;
|
|
const float* dst;
|
|
char* inl;
|
|
unsigned N;
|
|
float maxD;
|
|
unsigned maxI;
|
|
unsigned rConvg;
|
|
double cfd;
|
|
unsigned minInl;
|
|
double beta;
|
|
unsigned flags;
|
|
const float* guessH;
|
|
float* finalH;
|
|
} arg;
|
|
|
|
/* PROSAC Control */
|
|
struct{
|
|
unsigned i; /* Iteration Number */
|
|
unsigned phNum; /* Phase Number */
|
|
unsigned phEndI; /* Phase End Iteration */
|
|
double phEndFpI; /* Phase floating-point End Iteration */
|
|
unsigned phMax; /* Termination phase number */
|
|
unsigned phNumInl; /* Number of inliers for termination phase */
|
|
unsigned numModels; /* Number of models tested */
|
|
unsigned* smpl; /* Sample of match indexes */
|
|
} ctrl;
|
|
|
|
/* Current model being tested */
|
|
struct{
|
|
float* pkdPts; /* Packed points */
|
|
float* H; /* Homography */
|
|
char* inl; /* Mask of inliers */
|
|
unsigned numInl; /* Number of inliers */
|
|
} curr;
|
|
|
|
/* Best model (so far) */
|
|
struct{
|
|
float* H; /* Homography */
|
|
char* inl; /* Mask of inliers */
|
|
unsigned numInl; /* Number of inliers */
|
|
} best;
|
|
|
|
/* Non-randomness criterion */
|
|
struct{
|
|
std::vector<unsigned> tbl; /* Non-Randomness: Table */
|
|
unsigned size; /* Non-Randomness: Size */
|
|
double beta; /* Non-Randomness: Beta */
|
|
} nr;
|
|
|
|
/* SPRT Evaluator */
|
|
struct{
|
|
double t_M; /* t_M */
|
|
double m_S; /* m_S */
|
|
double epsilon; /* Epsilon */
|
|
double delta; /* delta */
|
|
double A; /* SPRT Threshold */
|
|
unsigned Ntested; /* Number of points tested */
|
|
unsigned Ntestedtotal; /* Number of points tested in total */
|
|
int good; /* Good/bad flag */
|
|
double lambdaAccept; /* Accept multiplier */
|
|
double lambdaReject; /* Reject multiplier */
|
|
} eval;
|
|
|
|
/* Levenberg-Marquardt Refinement */
|
|
struct{
|
|
float (* JtJ)[8]; /* JtJ matrix */
|
|
float (* tmp1)[8]; /* Temporary 1 */
|
|
float* Jte; /* Jte vector */
|
|
} lm;
|
|
|
|
/* Memory Management */
|
|
struct{
|
|
cv::Mat perObj;
|
|
cv::Mat perRun;
|
|
} mem;
|
|
|
|
/* Initialized? */
|
|
int initialized;
|
|
|
|
|
|
/* Empty constructors and destructors */
|
|
public:
|
|
RHO_HEST_REFC();
|
|
private: /* Forbid copying. */
|
|
RHO_HEST_REFC(const RHO_HEST_REFC&);
|
|
public:
|
|
~RHO_HEST_REFC();
|
|
|
|
/* Methods to implement external interface */
|
|
inline int initialize(void) CV_OVERRIDE;
|
|
inline void finalize(void) CV_OVERRIDE;
|
|
inline int ensureCapacity(unsigned N, double beta) CV_OVERRIDE;
|
|
unsigned rhoHest(const float* src, /* Source points */
|
|
const float* dst, /* Destination points */
|
|
char* inl, /* Inlier mask */
|
|
unsigned N, /* = src.length = dst.length = inl.length */
|
|
float maxD, /* Works: 3.0 */
|
|
unsigned maxI, /* Works: 2000 */
|
|
unsigned rConvg, /* Works: 2000 */
|
|
double cfd, /* Works: 0.995 */
|
|
unsigned minInl, /* Minimum: 4 */
|
|
double beta, /* Works: 0.35 */
|
|
unsigned flags, /* Works: 0 */
|
|
const float* guessH, /* Extrinsic guess, NULL if none provided */
|
|
float* finalH /* Final result. */
|
|
) CV_OVERRIDE;
|
|
|
|
|
|
|
|
/* Methods to implement internals */
|
|
inline void allocatePerObj(void);
|
|
inline void allocatePerRun(void);
|
|
inline void deallocatePerRun(void);
|
|
inline void deallocatePerObj(void);
|
|
inline int initRun(void);
|
|
inline void finiRun(void);
|
|
inline int haveExtrinsicGuess(void);
|
|
inline int hypothesize(void);
|
|
inline int verify(void);
|
|
inline int isNREnabled(void);
|
|
inline int isRefineEnabled(void);
|
|
inline int isFinalRefineEnabled(void);
|
|
inline int PROSACPhaseEndReached(void);
|
|
inline void PROSACGoToNextPhase(void);
|
|
inline void getPROSACSample(void);
|
|
inline void rndSmpl(unsigned sampleSize,
|
|
unsigned* currentSample,
|
|
unsigned dataSetSize);
|
|
inline int isSampleDegenerate(void);
|
|
inline void generateModel(void);
|
|
inline int isModelDegenerate(void);
|
|
inline void evaluateModelSPRT(void);
|
|
inline void updateSPRT(void);
|
|
inline void designSPRTTest(void);
|
|
inline int isBestModel(void);
|
|
inline int isBestModelGoodEnough(void);
|
|
inline void saveBestModel(void);
|
|
inline void nStarOptimize(void);
|
|
inline void updateBounds(void);
|
|
inline void outputModel(void);
|
|
inline void outputZeroH(void);
|
|
inline int canRefine(void);
|
|
inline void refine(void);
|
|
};
|
|
|
|
|
|
|
|
|
|
/**
|
|
* Prototypes for purely-computational code.
|
|
*/
|
|
|
|
static inline void sacInitNonRand (double beta,
|
|
unsigned start,
|
|
unsigned N,
|
|
unsigned* nonRandMinInl);
|
|
static inline double sacInitPEndFpI (const unsigned ransacConvg,
|
|
const unsigned n,
|
|
const unsigned s);
|
|
static inline unsigned sacCalcIterBound (double confidence,
|
|
double inlierRate,
|
|
unsigned sampleSize,
|
|
unsigned maxIterBound);
|
|
static inline void hFuncRefC (float* packedPoints, float* H);
|
|
static inline void sacCalcJacobianErrors(const float* H,
|
|
const float* src,
|
|
const float* dst,
|
|
const char* inl,
|
|
unsigned N,
|
|
float (* JtJ)[8],
|
|
float* Jte,
|
|
float* Sp);
|
|
static inline float sacLMGain (const float* dH,
|
|
const float* Jte,
|
|
const float S,
|
|
const float newS,
|
|
const float lambda);
|
|
static inline int sacChol8x8Damped (const float (*A)[8],
|
|
float lambda,
|
|
float (*L)[8]);
|
|
static inline void sacTRInv8x8 (const float (*L)[8],
|
|
float (*M)[8]);
|
|
static inline void sacTRISolve8x8 (const float (*L)[8],
|
|
const float* Jte,
|
|
float* dH);
|
|
static inline void sacSub8x1 (float* Hout,
|
|
const float* H,
|
|
const float* dH);
|
|
|
|
|
|
|
|
/* Functions */
|
|
|
|
/**
|
|
* External access to context constructor.
|
|
*
|
|
* @return A pointer to the context if successful; NULL if an error occurred.
|
|
*/
|
|
|
|
Ptr<RHO_HEST> rhoInit(void){
|
|
/* Select an optimized implementation of RHO here. */
|
|
|
|
#if 1
|
|
/**
|
|
* For now, only the generic C implementation is available. In the future,
|
|
* SSE2/AVX/AVX2/FMA/NEON versions may be added, and they will be selected
|
|
* depending on cv::checkHardwareSupport()'s return values.
|
|
*/
|
|
|
|
Ptr<RHO_HEST> p = Ptr<RHO_HEST>(new RHO_HEST_REFC);
|
|
#endif
|
|
|
|
/* Initialize it. */
|
|
if(p){
|
|
if(!p->initialize()){
|
|
p.release();
|
|
}
|
|
}
|
|
|
|
/* Return it. */
|
|
return p;
|
|
}
|
|
|
|
|
|
/**
|
|
* External access to non-randomness table resize.
|
|
*/
|
|
|
|
int rhoEnsureCapacity(Ptr<RHO_HEST> p, unsigned N, double beta){
|
|
return p->ensureCapacity(N, beta);
|
|
}
|
|
|
|
|
|
/**
|
|
* Seeds the internal PRNG with the given seed.
|
|
*/
|
|
|
|
void rhoSeed(Ptr<RHO_HEST> p, uint64_t seed){
|
|
p->fastSeed(seed);
|
|
}
|
|
|
|
|
|
/**
|
|
* Estimates the homography using the given context, matches and parameters to
|
|
* PROSAC.
|
|
*
|
|
* @param [in/out] p The context to use for homography estimation. Must
|
|
* be already initialized. Cannot be NULL.
|
|
* @param [in] src The pointer to the source points of the matches.
|
|
* Must be aligned to 4 bytes. Cannot be NULL.
|
|
* @param [in] dst The pointer to the destination points of the matches.
|
|
* Must be aligned to 16 bytes. Cannot be NULL.
|
|
* @param [out] inl The pointer to the output mask of inlier matches.
|
|
* Must be aligned to 16 bytes. May be NULL.
|
|
* @param [in] N The number of matches.
|
|
* @param [in] maxD The maximum distance.
|
|
* @param [in] maxI The maximum number of PROSAC iterations.
|
|
* @param [in] rConvg The RANSAC convergence parameter.
|
|
* @param [in] cfd The required confidence in the solution.
|
|
* @param [in] minInl The minimum required number of inliers.
|
|
* @param [in] beta The beta-parameter for the non-randomness criterion.
|
|
* @param [in] flags A union of flags to control the estimation.
|
|
* @param [in] guessH An extrinsic guess at the solution H, or NULL if
|
|
* none provided.
|
|
* @param [out] finalH The final estimation of H, or the zero matrix if
|
|
* the minimum number of inliers was not met.
|
|
* Cannot be NULL.
|
|
* @return The number of inliers if the minimum number of
|
|
* inliers for acceptance was reached; 0 otherwise.
|
|
*/
|
|
|
|
unsigned rhoHest(Ptr<RHO_HEST> p, /* Homography estimation context. */
|
|
const float* src, /* Source points */
|
|
const float* dst, /* Destination points */
|
|
char* inl, /* Inlier mask */
|
|
unsigned N, /* = src.length = dst.length = inl.length */
|
|
float maxD, /* Works: 3.0 */
|
|
unsigned maxI, /* Works: 2000 */
|
|
unsigned rConvg, /* Works: 2000 */
|
|
double cfd, /* Works: 0.995 */
|
|
unsigned minInl, /* Minimum: 4 */
|
|
double beta, /* Works: 0.35 */
|
|
unsigned flags, /* Works: 0 */
|
|
const float* guessH, /* Extrinsic guess, NULL if none provided */
|
|
float* finalH){ /* Final result. */
|
|
return p->rhoHest(src, dst, inl, N, maxD, maxI, rConvg, cfd, minInl, beta,
|
|
flags, guessH, finalH);
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/*********************** RHO_HEST_REFC implementation **********************/
|
|
|
|
/**
|
|
* Constructor for RHO_HEST_REFC.
|
|
*
|
|
* Does nothing. True initialization is done by initialize().
|
|
*/
|
|
|
|
RHO_HEST_REFC::RHO_HEST_REFC() : initialized(0){
|
|
arg.src = 0;
|
|
arg.dst = 0;
|
|
arg.inl = 0;
|
|
arg.N = 0;
|
|
arg.maxD = 0;
|
|
arg.maxI = 0;
|
|
arg.rConvg = 0;
|
|
arg.cfd = 0;
|
|
arg.minInl = 0;
|
|
arg.beta = 0;
|
|
arg.flags = 0;
|
|
arg.guessH = 0;
|
|
arg.finalH = 0;
|
|
|
|
ctrl.i = 0;
|
|
ctrl.phNum = 0;
|
|
ctrl.phEndI = 0;
|
|
ctrl.phEndFpI = 0;
|
|
ctrl.phMax = 0;
|
|
ctrl.phNumInl = 0;
|
|
ctrl.numModels = 0;
|
|
ctrl.smpl = 0;
|
|
|
|
curr.pkdPts = 0;
|
|
curr.H = 0;
|
|
curr.inl = 0;
|
|
curr.numInl = 0;
|
|
|
|
best.H = 0;
|
|
best.inl = 0;
|
|
best.numInl = 0;
|
|
|
|
nr.size = 0;
|
|
nr.beta = 0;
|
|
|
|
eval.t_M = 0;
|
|
eval.m_S = 0;
|
|
eval.epsilon = 0;
|
|
eval.delta = 0;
|
|
eval.A = 0;
|
|
eval.Ntested = 0;
|
|
eval.Ntestedtotal = 0;
|
|
eval.good = 0;
|
|
eval.lambdaAccept = 0;
|
|
eval.lambdaReject = 0;
|
|
|
|
lm.JtJ = 0;
|
|
lm.tmp1 = 0;
|
|
lm.Jte = 0;
|
|
}
|
|
|
|
/**
|
|
* Private copy constructor for RHO_HEST_REFC. Disabled.
|
|
*/
|
|
|
|
RHO_HEST_REFC::RHO_HEST_REFC(const RHO_HEST_REFC&) : initialized(0){
|
|
|
|
}
|
|
|
|
/**
|
|
* Destructor for RHO_HEST_REFC.
|
|
*/
|
|
|
|
RHO_HEST_REFC::~RHO_HEST_REFC(){
|
|
if(initialized){
|
|
finalize();
|
|
}
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
* Initialize the estimator context, by allocating the aligned buffers
|
|
* internally needed.
|
|
*
|
|
* Currently there are 5 per-estimator buffers:
|
|
* - The buffer of m indexes representing a sample
|
|
* - The buffer of 16 floats representing m matches (x,y) -> (X,Y).
|
|
* - The buffer for the current homography
|
|
* - The buffer for the best-so-far homography
|
|
* - Optionally, the non-randomness criterion table
|
|
*
|
|
* Returns 0 if unsuccessful and non-0 otherwise.
|
|
*/
|
|
|
|
inline int RHO_HEST_REFC::initialize(void){
|
|
initialized = 0;
|
|
|
|
|
|
allocatePerObj();
|
|
|
|
curr.inl = NULL;
|
|
curr.numInl = 0;
|
|
|
|
best.inl = NULL;
|
|
best.numInl = 0;
|
|
|
|
nr.size = 0;
|
|
nr.beta = 0.0;
|
|
|
|
|
|
fastSeed((uint64_t)~0);
|
|
|
|
|
|
int areAllAllocsSuccessful = !mem.perObj.empty();
|
|
|
|
if(!areAllAllocsSuccessful){
|
|
finalize();
|
|
}else{
|
|
initialized = 1;
|
|
}
|
|
|
|
return areAllAllocsSuccessful;
|
|
}
|
|
|
|
/**
|
|
* Finalize.
|
|
*
|
|
* Finalize the estimator context, by freeing the aligned buffers used
|
|
* internally.
|
|
*/
|
|
|
|
inline void RHO_HEST_REFC::finalize(void){
|
|
if(initialized){
|
|
deallocatePerObj();
|
|
|
|
initialized = 0;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Ensure that the estimator context's internal table for non-randomness
|
|
* criterion is at least of the given size, and uses the given beta. The table
|
|
* should be larger than the maximum number of matches fed into the estimator.
|
|
*
|
|
* A value of N of 0 requests deallocation of the table.
|
|
*
|
|
* @param [in] N If 0, deallocate internal table. If > 0, ensure that the
|
|
* internal table is of at least this size, reallocating if
|
|
* necessary.
|
|
* @param [in] beta The beta-factor to use within the table.
|
|
* @return 0 if unsuccessful; non-zero otherwise.
|
|
*
|
|
* Reads: nr.*
|
|
* Writes: nr.*
|
|
*/
|
|
|
|
inline int RHO_HEST_REFC::ensureCapacity(unsigned N, double beta){
|
|
if(N == 0){
|
|
/* Clear. */
|
|
nr.tbl.clear();
|
|
nr.size = 0;
|
|
}else if(nr.beta != beta){
|
|
/* Beta changed. Redo all the work. */
|
|
nr.tbl.resize(N);
|
|
nr.beta = beta;
|
|
sacInitNonRand(nr.beta, 0, N, &nr.tbl[0]);
|
|
nr.size = N;
|
|
}else if(N > nr.size){
|
|
/* Work is partially done. Do rest of it. */
|
|
nr.tbl.resize(N);
|
|
sacInitNonRand(nr.beta, nr.size, N, &nr.tbl[nr.size]);
|
|
nr.size = N;
|
|
}else{
|
|
/* Work is already done. Do nothing. */
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
|
|
/**
|
|
* Estimates the homography using the given context, matches and parameters to
|
|
* PROSAC.
|
|
*
|
|
* @param [in] src The pointer to the source points of the matches.
|
|
* Must be aligned to 4 bytes. Cannot be NULL.
|
|
* @param [in] dst The pointer to the destination points of the matches.
|
|
* Must be aligned to 4 bytes. Cannot be NULL.
|
|
* @param [out] inl The pointer to the output mask of inlier matches.
|
|
* Must be aligned to 4 bytes. May be NULL.
|
|
* @param [in] N The number of matches.
|
|
* @param [in] maxD The maximum distance.
|
|
* @param [in] maxI The maximum number of PROSAC iterations.
|
|
* @param [in] rConvg The RANSAC convergence parameter.
|
|
* @param [in] cfd The required confidence in the solution.
|
|
* @param [in] minInl The minimum required number of inliers.
|
|
* @param [in] beta The beta-parameter for the non-randomness criterion.
|
|
* @param [in] flags A union of flags to control the estimation.
|
|
* @param [in] guessH An extrinsic guess at the solution H, or NULL if
|
|
* none provided.
|
|
* @param [out] finalH The final estimation of H, or the zero matrix if
|
|
* the minimum number of inliers was not met.
|
|
* Cannot be NULL.
|
|
* @return The number of inliers if the minimum number of
|
|
* inliers for acceptance was reached; 0 otherwise.
|
|
*/
|
|
|
|
unsigned RHO_HEST_REFC::rhoHest(const float* src, /* Source points */
|
|
const float* dst, /* Destination points */
|
|
char* inl, /* Inlier mask */
|
|
unsigned N, /* = src.length = dst.length = inl.length */
|
|
float maxD, /* Works: 3.0 */
|
|
unsigned maxI, /* Works: 2000 */
|
|
unsigned rConvg, /* Works: 2000 */
|
|
double cfd, /* Works: 0.995 */
|
|
unsigned minInl, /* Minimum: 4 */
|
|
double beta, /* Works: 0.35 */
|
|
unsigned flags, /* Works: 0 */
|
|
const float* guessH, /* Extrinsic guess, NULL if none provided */
|
|
float* finalH){ /* Final result. */
|
|
|
|
/**
|
|
* Setup
|
|
*/
|
|
|
|
arg.src = src;
|
|
arg.dst = dst;
|
|
arg.inl = inl;
|
|
arg.N = N;
|
|
arg.maxD = maxD;
|
|
arg.maxI = maxI;
|
|
arg.rConvg = rConvg;
|
|
arg.cfd = cfd;
|
|
arg.minInl = minInl;
|
|
arg.beta = beta;
|
|
arg.flags = flags;
|
|
arg.guessH = guessH;
|
|
arg.finalH = finalH;
|
|
if(!initRun()){
|
|
outputZeroH();
|
|
finiRun();
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Extrinsic Guess
|
|
*/
|
|
|
|
if(haveExtrinsicGuess()){
|
|
verify();
|
|
}
|
|
|
|
|
|
/**
|
|
* PROSAC Loop
|
|
*/
|
|
|
|
for(ctrl.i=0; ctrl.i < arg.maxI || ctrl.i < 100; ctrl.i++){
|
|
hypothesize() && verify();
|
|
}
|
|
|
|
|
|
/**
|
|
* Teardown
|
|
*/
|
|
|
|
if(isFinalRefineEnabled() && canRefine()){
|
|
refine();
|
|
}
|
|
|
|
outputModel();
|
|
finiRun();
|
|
return isBestModelGoodEnough() ? best.numInl : 0;
|
|
}
|
|
|
|
|
|
/**
|
|
* Allocate per-object dynamic storage.
|
|
*
|
|
* This includes aligned, fixed-size internal buffers, but excludes any buffers
|
|
* whose size cannot be determined ahead-of-time (before the number of matches
|
|
* is known).
|
|
*
|
|
* All buffer memory is allocated in one single shot, and all pointers are
|
|
* initialized.
|
|
*/
|
|
|
|
inline void RHO_HEST_REFC::allocatePerObj(void){
|
|
/* We have known sizes */
|
|
size_t ctrl_smpl_sz = SMPL_SIZE*sizeof(*ctrl.smpl);
|
|
size_t curr_pkdPts_sz = SMPL_SIZE*2*2*sizeof(*curr.pkdPts);
|
|
size_t curr_H_sz = HSIZE;
|
|
size_t best_H_sz = HSIZE;
|
|
size_t lm_JtJ_sz = 8*8*sizeof(float);
|
|
size_t lm_tmp1_sz = 8*8*sizeof(float);
|
|
size_t lm_Jte_sz = 1*8*sizeof(float);
|
|
|
|
/* We compute offsets */
|
|
size_t total = 0;
|
|
#define MK_OFFSET(v) \
|
|
size_t v ## _of = total; \
|
|
total = alignSize(v ## _of + v ## _sz, MEM_ALIGN)
|
|
|
|
MK_OFFSET(ctrl_smpl);
|
|
MK_OFFSET(curr_pkdPts);
|
|
MK_OFFSET(curr_H);
|
|
MK_OFFSET(best_H);
|
|
MK_OFFSET(lm_JtJ);
|
|
MK_OFFSET(lm_tmp1);
|
|
MK_OFFSET(lm_Jte);
|
|
|
|
#undef MK_OFFSET
|
|
|
|
/* Allocate dynamic memory managed by cv::Mat */
|
|
mem.perObj.create(1, (int)(total + MEM_ALIGN), CV_8UC1);
|
|
|
|
/* Extract aligned pointer */
|
|
unsigned char* ptr = alignPtr(mem.perObj.data, MEM_ALIGN);
|
|
|
|
/* Assign pointers */
|
|
ctrl.smpl = (unsigned*) (ptr + ctrl_smpl_of);
|
|
curr.pkdPts = (float*) (ptr + curr_pkdPts_of);
|
|
curr.H = (float*) (ptr + curr_H_of);
|
|
best.H = (float*) (ptr + best_H_of);
|
|
lm.JtJ = (float(*)[8])(ptr + lm_JtJ_of);
|
|
lm.tmp1 = (float(*)[8])(ptr + lm_tmp1_of);
|
|
lm.Jte = (float*) (ptr + lm_Jte_of);
|
|
}
|
|
|
|
|
|
/**
|
|
* Allocate per-run dynamic storage.
|
|
*
|
|
* This includes storage that is proportional to the number of points, such as
|
|
* the inlier mask.
|
|
*/
|
|
|
|
inline void RHO_HEST_REFC::allocatePerRun(void){
|
|
/* We have known sizes */
|
|
size_t best_inl_sz = arg.N;
|
|
size_t curr_inl_sz = arg.N;
|
|
|
|
/* We compute offsets */
|
|
size_t total = 0;
|
|
#define MK_OFFSET(v) \
|
|
size_t v ## _of = total; \
|
|
total = alignSize(v ## _of + v ## _sz, MEM_ALIGN)
|
|
|
|
MK_OFFSET(best_inl);
|
|
MK_OFFSET(curr_inl);
|
|
|
|
#undef MK_OFFSET
|
|
|
|
/* Allocate dynamic memory managed by cv::Mat */
|
|
mem.perRun.create(1, (int)(total + MEM_ALIGN), CV_8UC1);
|
|
|
|
/* Extract aligned pointer */
|
|
unsigned char* ptr = alignPtr(mem.perRun.data, MEM_ALIGN);
|
|
|
|
/* Assign pointers */
|
|
best.inl = (char*)(ptr + best_inl_of);
|
|
curr.inl = (char*)(ptr + curr_inl_of);
|
|
}
|
|
|
|
|
|
/**
|
|
* Deallocate per-run dynamic storage.
|
|
*
|
|
* Undoes the work by allocatePerRun().
|
|
*/
|
|
|
|
inline void RHO_HEST_REFC::deallocatePerRun(void){
|
|
best.inl = NULL;
|
|
curr.inl = NULL;
|
|
|
|
mem.perRun.release();
|
|
}
|
|
|
|
|
|
/**
|
|
* Deallocate per-object dynamic storage.
|
|
*
|
|
* Undoes the work by allocatePerObj().
|
|
*/
|
|
|
|
inline void RHO_HEST_REFC::deallocatePerObj(void){
|
|
ctrl.smpl = NULL;
|
|
curr.pkdPts = NULL;
|
|
curr.H = NULL;
|
|
best.H = NULL;
|
|
lm.JtJ = NULL;
|
|
lm.tmp1 = NULL;
|
|
lm.Jte = NULL;
|
|
|
|
mem.perObj.release();
|
|
}
|
|
|
|
|
|
/**
|
|
* Initialize SAC for a run given its arguments.
|
|
*
|
|
* Performs sanity-checks and memory allocations. Also initializes the state.
|
|
*
|
|
* @returns 0 if per-run initialization failed at any point; non-zero
|
|
* otherwise.
|
|
*
|
|
* Reads: arg.*, nr.*
|
|
* Writes: curr.*, best.*, ctrl.*, eval.*
|
|
*/
|
|
|
|
inline int RHO_HEST_REFC::initRun(void){
|
|
/**
|
|
* Sanitize arguments.
|
|
*
|
|
* Runs zeroth because these are easy-to-check errors and unambiguously
|
|
* mean something or other.
|
|
*/
|
|
|
|
if(!arg.src || !arg.dst){
|
|
/* Arguments src or dst are insane, must be != NULL */
|
|
return 0;
|
|
}
|
|
if(arg.N < (unsigned)SMPL_SIZE){
|
|
/* Argument N is insane, must be >= 4. */
|
|
return 0;
|
|
}
|
|
if(arg.maxD < 0){
|
|
/* Argument maxD is insane, must be >= 0. */
|
|
return 0;
|
|
}
|
|
if(arg.cfd < 0 || arg.cfd > 1){
|
|
/* Argument cfd is insane, must be in [0, 1]. */
|
|
return 0;
|
|
}
|
|
/* Clamp minInl to 4 or higher. */
|
|
arg.minInl = arg.minInl < (unsigned)SMPL_SIZE ? SMPL_SIZE : arg.minInl;
|
|
if(isNREnabled() && (arg.beta <= 0 || arg.beta >= 1)){
|
|
/* Argument beta is insane, must be in (0, 1). */
|
|
return 0;
|
|
}
|
|
if(!arg.finalH){
|
|
/* Argument finalH is insane, must be != NULL */
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Optional NR setup.
|
|
*
|
|
* Runs first because it is decoupled from most other things (*) and if it
|
|
* fails, it is easy to recover from.
|
|
*
|
|
* (*) The only things this code depends on is the flags argument, the nr.*
|
|
* substruct and the sanity-checked N and beta arguments from above.
|
|
*/
|
|
|
|
if(isNREnabled() && !ensureCapacity(arg.N, arg.beta)){
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Inlier mask alloc.
|
|
*
|
|
* Runs second because we want to quit as fast as possible if we can't even
|
|
* allocate the two masks.
|
|
*/
|
|
|
|
allocatePerRun();
|
|
|
|
memset(best.inl, 0, arg.N);
|
|
memset(curr.inl, 0, arg.N);
|
|
|
|
/**
|
|
* Reset scalar per-run state.
|
|
*
|
|
* Runs third because there's no point in resetting/calculating a large
|
|
* number of fields if something in the above junk failed.
|
|
*/
|
|
|
|
ctrl.i = 0;
|
|
ctrl.phNum = SMPL_SIZE;
|
|
ctrl.phEndI = 1;
|
|
ctrl.phEndFpI = sacInitPEndFpI(arg.rConvg, arg.N, SMPL_SIZE);
|
|
ctrl.phMax = arg.N;
|
|
ctrl.phNumInl = 0;
|
|
ctrl.numModels = 0;
|
|
|
|
if(haveExtrinsicGuess()){
|
|
memcpy(curr.H, arg.guessH, HSIZE);
|
|
}else{
|
|
memset(curr.H, 0, HSIZE);
|
|
}
|
|
curr.numInl = 0;
|
|
|
|
memset(best.H, 0, HSIZE);
|
|
best.numInl = 0;
|
|
|
|
eval.Ntested = 0;
|
|
eval.Ntestedtotal = 0;
|
|
eval.good = 1;
|
|
eval.t_M = SPRT_T_M;
|
|
eval.m_S = SPRT_M_S;
|
|
eval.epsilon = SPRT_EPSILON;
|
|
eval.delta = SPRT_DELTA;
|
|
designSPRTTest();
|
|
|
|
return 1;
|
|
}
|
|
|
|
/**
|
|
* Finalize SAC run.
|
|
*
|
|
* Deallocates per-run allocatable resources. Currently this consists only of
|
|
* the best and current inlier masks, which are equal in size to p->arg.N
|
|
* bytes.
|
|
*
|
|
* Reads: arg.bestInl, curr.inl, best.inl
|
|
* Writes: curr.inl, best.inl
|
|
*/
|
|
|
|
inline void RHO_HEST_REFC::finiRun(void){
|
|
deallocatePerRun();
|
|
}
|
|
|
|
/**
|
|
* Hypothesize a model.
|
|
*
|
|
* Selects randomly a sample (within the rules of PROSAC) and generates a
|
|
* new current model, and applies degeneracy tests to it.
|
|
*
|
|
* @returns 0 if hypothesized model could be rejected early as degenerate, and
|
|
* non-zero otherwise.
|
|
*/
|
|
|
|
inline int RHO_HEST_REFC::hypothesize(void){
|
|
if(PROSACPhaseEndReached()){
|
|
PROSACGoToNextPhase();
|
|
}
|
|
|
|
getPROSACSample();
|
|
if(isSampleDegenerate()){
|
|
return 0;
|
|
}
|
|
|
|
generateModel();
|
|
if(isModelDegenerate()){
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/**
|
|
* Verify the hypothesized model.
|
|
*
|
|
* Given the current model, evaluate its quality. If it is better than
|
|
* everything before, save as new best model (and possibly refine it).
|
|
*
|
|
* Returns 1.
|
|
*/
|
|
|
|
inline int RHO_HEST_REFC::verify(void){
|
|
evaluateModelSPRT();
|
|
updateSPRT();
|
|
|
|
if(isBestModel()){
|
|
saveBestModel();
|
|
|
|
if(isRefineEnabled() && canRefine()){
|
|
refine();
|
|
}
|
|
|
|
updateBounds();
|
|
|
|
if(isNREnabled()){
|
|
nStarOptimize();
|
|
}
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/**
|
|
* Check whether extrinsic guess was provided or not.
|
|
*
|
|
* @return Zero if no extrinsic guess was provided; non-zero otherwiseEE.
|
|
*/
|
|
|
|
inline int RHO_HEST_REFC::haveExtrinsicGuess(void){
|
|
return !!arg.guessH;
|
|
}
|
|
|
|
/**
|
|
* Check whether non-randomness criterion is enabled.
|
|
*
|
|
* @return Zero if non-randomness criterion disabled; non-zero if not.
|
|
*/
|
|
|
|
inline int RHO_HEST_REFC::isNREnabled(void){
|
|
return arg.flags & RHO_FLAG_ENABLE_NR;
|
|
}
|
|
|
|
/**
|
|
* Check whether best-model-so-far refinement is enabled.
|
|
*
|
|
* @return Zero if best-model-so-far refinement disabled; non-zero if not.
|
|
*/
|
|
|
|
inline int RHO_HEST_REFC::isRefineEnabled(void){
|
|
return arg.flags & RHO_FLAG_ENABLE_REFINEMENT;
|
|
}
|
|
|
|
/**
|
|
* Check whether final-model refinement is enabled.
|
|
*
|
|
* @return Zero if final-model refinement disabled; non-zero if not.
|
|
*/
|
|
|
|
inline int RHO_HEST_REFC::isFinalRefineEnabled(void){
|
|
return arg.flags & RHO_FLAG_ENABLE_FINAL_REFINEMENT;
|
|
}
|
|
|
|
/**
|
|
* Computes whether the end of the current PROSAC phase has been reached. At
|
|
* PROSAC phase phNum, only matches [0, phNum) are sampled from.
|
|
*
|
|
* Reads (direct): ctrl.i, ctrl.phEndI, ctrl.phNum, ctrl.phMax
|
|
* Reads (callees): None.
|
|
* Writes (direct): None.
|
|
* Writes (callees): None.
|
|
*/
|
|
|
|
inline int RHO_HEST_REFC::PROSACPhaseEndReached(void){
|
|
return ctrl.i >= ctrl.phEndI && ctrl.phNum < ctrl.phMax;
|
|
}
|
|
|
|
/**
|
|
* Updates unconditionally the necessary fields to move to the next PROSAC
|
|
* stage.
|
|
*
|
|
* Not idempotent.
|
|
*
|
|
* Reads (direct): ctrl.phNum, ctrl.phEndFpI, ctrl.phEndI
|
|
* Reads (callees): None.
|
|
* Writes (direct): ctrl.phNum, ctrl.phEndFpI, ctrl.phEndI
|
|
* Writes (callees): None.
|
|
*/
|
|
|
|
inline void RHO_HEST_REFC::PROSACGoToNextPhase(void){
|
|
double next;
|
|
|
|
ctrl.phNum++;
|
|
next = (ctrl.phEndFpI * ctrl.phNum)/(ctrl.phNum - SMPL_SIZE);
|
|
ctrl.phEndI += (unsigned)ceil(next - ctrl.phEndFpI);
|
|
ctrl.phEndFpI = next;
|
|
}
|
|
|
|
/**
|
|
* Get a sample according to PROSAC rules. Namely:
|
|
* - If we're past the phase end interaction, select randomly 4 out of the first
|
|
* phNum matches.
|
|
* - Otherwise, select match phNum-1 and select randomly the 3 others out of
|
|
* the first phNum-1 matches.
|
|
*
|
|
* Reads (direct): ctrl.i, ctrl.phEndI, ctrl.phNum
|
|
* Reads (callees): prng.s
|
|
* Writes (direct): ctrl.smpl
|
|
* Writes (callees): prng.s
|
|
*/
|
|
|
|
inline void RHO_HEST_REFC::getPROSACSample(void){
|
|
if(ctrl.i > ctrl.phEndI){
|
|
/* FIXME: Dubious. Review. */
|
|
rndSmpl(4, ctrl.smpl, ctrl.phNum);/* Used to be phMax */
|
|
}else{
|
|
rndSmpl(3, ctrl.smpl, ctrl.phNum-1);
|
|
ctrl.smpl[3] = ctrl.phNum-1;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Choose, without repetition, sampleSize integers in the range [0, numDataPoints).
|
|
*
|
|
* Reads (direct): None.
|
|
* Reads (callees): prng.s
|
|
* Writes (direct): None.
|
|
* Writes (callees): prng.s
|
|
*/
|
|
|
|
inline void RHO_HEST_REFC::rndSmpl(unsigned sampleSize,
|
|
unsigned* currentSample,
|
|
unsigned dataSetSize){
|
|
/**
|
|
* If sampleSize is very close to dataSetSize, we use selection sampling.
|
|
* Otherwise we use the naive sampling technique wherein we select random
|
|
* indexes until sampleSize of them are distinct.
|
|
*/
|
|
|
|
if(sampleSize*2>dataSetSize){
|
|
/**
|
|
* Selection Sampling:
|
|
*
|
|
* Algorithm S (Selection sampling technique). To select n records at random from a set of N, where 0 < n <= N.
|
|
* S1. [Initialize.] Set t = 0, m = 0. (During this algorithm, m represents the number of records selected so far,
|
|
* and t is the total number of input records that we have dealt with.)
|
|
* S2. [Generate U.] Generate a random number U, uniformly distributed between zero and one.
|
|
* S3. [Test.] If (N - t)U >= n - m, go to step S5.
|
|
* S4. [Select.] Select the next record for the sample, and increase m and t by 1. If m < n, go to step S2;
|
|
* otherwise the sample is complete and the algorithm terminates.
|
|
* S5. [Skip.] Skip the next record (do not include it in the sample), increase t by 1, and go back to step S2.
|
|
*
|
|
* Replaced m with i and t with j in the below code.
|
|
*/
|
|
|
|
unsigned i=0,j=0;
|
|
|
|
for(i=0;i<sampleSize;j++){
|
|
double U=fastRandom();
|
|
if((dataSetSize-j)*U < (sampleSize-i)){
|
|
currentSample[i++]=j;
|
|
}
|
|
}
|
|
}else{
|
|
/**
|
|
* Naive sampling technique. Generate indexes until sampleSize of them are distinct.
|
|
*/
|
|
|
|
unsigned i, j;
|
|
for(i=0;i<sampleSize;i++){
|
|
int inList;
|
|
|
|
do{
|
|
currentSample[i] = (unsigned)(dataSetSize*fastRandom());
|
|
|
|
inList=0;
|
|
for(j=0;j<i;j++){
|
|
if(currentSample[i] == currentSample[j]){
|
|
inList=1;
|
|
break;
|
|
}
|
|
}
|
|
}while(inList);
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Checks whether the *sample* is degenerate prior to model generation.
|
|
* - First, the extremely cheap numerical degeneracy test is run, which weeds
|
|
* out bad samples to the optimized GE implementation.
|
|
* - Second, the geometrical degeneracy test is run, which weeds out most other
|
|
* bad samples.
|
|
*
|
|
* Reads (direct): ctrl.smpl, arg.src, arg.dst
|
|
* Reads (callees): None.
|
|
* Writes (direct): curr.pkdPts
|
|
* Writes (callees): None.
|
|
*/
|
|
|
|
inline int RHO_HEST_REFC::isSampleDegenerate(void){
|
|
unsigned i0 = ctrl.smpl[0], i1 = ctrl.smpl[1], i2 = ctrl.smpl[2], i3 = ctrl.smpl[3];
|
|
typedef struct{float x,y;} MyPt2f;
|
|
MyPt2f* pkdPts = (MyPt2f*)curr.pkdPts, *src = (MyPt2f*)arg.src, *dst = (MyPt2f*)arg.dst;
|
|
|
|
/**
|
|
* Pack the matches selected by the SAC algorithm.
|
|
* Must be packed points[0:7] = {srcx0, srcy0, srcx1, srcy1, srcx2, srcy2, srcx3, srcy3}
|
|
* points[8:15] = {dstx0, dsty0, dstx1, dsty1, dstx2, dsty2, dstx3, dsty3}
|
|
* Gather 4 points into the vector
|
|
*/
|
|
|
|
pkdPts[0] = src[i0];
|
|
pkdPts[1] = src[i1];
|
|
pkdPts[2] = src[i2];
|
|
pkdPts[3] = src[i3];
|
|
pkdPts[4] = dst[i0];
|
|
pkdPts[5] = dst[i1];
|
|
pkdPts[6] = dst[i2];
|
|
pkdPts[7] = dst[i3];
|
|
|
|
/**
|
|
* If the matches' source points have common x and y coordinates, abort.
|
|
*/
|
|
|
|
if(pkdPts[0].x == pkdPts[1].x || pkdPts[1].x == pkdPts[2].x ||
|
|
pkdPts[2].x == pkdPts[3].x || pkdPts[0].x == pkdPts[2].x ||
|
|
pkdPts[1].x == pkdPts[3].x || pkdPts[0].x == pkdPts[3].x ||
|
|
pkdPts[0].y == pkdPts[1].y || pkdPts[1].y == pkdPts[2].y ||
|
|
pkdPts[2].y == pkdPts[3].y || pkdPts[0].y == pkdPts[2].y ||
|
|
pkdPts[1].y == pkdPts[3].y || pkdPts[0].y == pkdPts[3].y){
|
|
return 1;
|
|
}
|
|
|
|
/* If the matches do not satisfy the strong geometric constraint, abort. */
|
|
/* (0 x 1) * 2 */
|
|
float cross0s0 = pkdPts[0].y-pkdPts[1].y;
|
|
float cross0s1 = pkdPts[1].x-pkdPts[0].x;
|
|
float cross0s2 = pkdPts[0].x*pkdPts[1].y-pkdPts[0].y*pkdPts[1].x;
|
|
float dots0 = cross0s0*pkdPts[2].x + cross0s1*pkdPts[2].y + cross0s2;
|
|
float cross0d0 = pkdPts[4].y-pkdPts[5].y;
|
|
float cross0d1 = pkdPts[5].x-pkdPts[4].x;
|
|
float cross0d2 = pkdPts[4].x*pkdPts[5].y-pkdPts[4].y*pkdPts[5].x;
|
|
float dotd0 = cross0d0*pkdPts[6].x + cross0d1*pkdPts[6].y + cross0d2;
|
|
if(((int)dots0^(int)dotd0) < 0){
|
|
return 1;
|
|
}
|
|
/* (0 x 1) * 3 */
|
|
float cross1s0 = cross0s0;
|
|
float cross1s1 = cross0s1;
|
|
float cross1s2 = cross0s2;
|
|
float dots1 = cross1s0*pkdPts[3].x + cross1s1*pkdPts[3].y + cross1s2;
|
|
float cross1d0 = cross0d0;
|
|
float cross1d1 = cross0d1;
|
|
float cross1d2 = cross0d2;
|
|
float dotd1 = cross1d0*pkdPts[7].x + cross1d1*pkdPts[7].y + cross1d2;
|
|
if(((int)dots1^(int)dotd1) < 0){
|
|
return 1;
|
|
}
|
|
/* (2 x 3) * 0 */
|
|
float cross2s0 = pkdPts[2].y-pkdPts[3].y;
|
|
float cross2s1 = pkdPts[3].x-pkdPts[2].x;
|
|
float cross2s2 = pkdPts[2].x*pkdPts[3].y-pkdPts[2].y*pkdPts[3].x;
|
|
float dots2 = cross2s0*pkdPts[0].x + cross2s1*pkdPts[0].y + cross2s2;
|
|
float cross2d0 = pkdPts[6].y-pkdPts[7].y;
|
|
float cross2d1 = pkdPts[7].x-pkdPts[6].x;
|
|
float cross2d2 = pkdPts[6].x*pkdPts[7].y-pkdPts[6].y*pkdPts[7].x;
|
|
float dotd2 = cross2d0*pkdPts[4].x + cross2d1*pkdPts[4].y + cross2d2;
|
|
if(((int)dots2^(int)dotd2) < 0){
|
|
return 1;
|
|
}
|
|
/* (2 x 3) * 1 */
|
|
float cross3s0 = cross2s0;
|
|
float cross3s1 = cross2s1;
|
|
float cross3s2 = cross2s2;
|
|
float dots3 = cross3s0*pkdPts[1].x + cross3s1*pkdPts[1].y + cross3s2;
|
|
float cross3d0 = cross2d0;
|
|
float cross3d1 = cross2d1;
|
|
float cross3d2 = cross2d2;
|
|
float dotd3 = cross3d0*pkdPts[5].x + cross3d1*pkdPts[5].y + cross3d2;
|
|
if(((int)dots3^(int)dotd3) < 0){
|
|
return 1;
|
|
}
|
|
|
|
/* Otherwise, accept */
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Compute homography of matches in gathered, packed sample and output the
|
|
* current homography.
|
|
*
|
|
* Reads (direct): None.
|
|
* Reads (callees): curr.pkdPts
|
|
* Writes (direct): None.
|
|
* Writes (callees): curr.H
|
|
*/
|
|
|
|
inline void RHO_HEST_REFC::generateModel(void){
|
|
hFuncRefC(curr.pkdPts, curr.H);
|
|
}
|
|
|
|
/**
|
|
* Checks whether the model is itself degenerate.
|
|
* - One test: All elements of the homography are added, and if the result is
|
|
* NaN the homography is rejected.
|
|
*
|
|
* Reads (direct): curr.H
|
|
* Reads (callees): None.
|
|
* Writes (direct): None.
|
|
* Writes (callees): None.
|
|
*/
|
|
|
|
inline int RHO_HEST_REFC::isModelDegenerate(void){
|
|
int degenerate;
|
|
float* H = curr.H;
|
|
float f=H[0]+H[1]+H[2]+H[3]+H[4]+H[5]+H[6]+H[7];
|
|
|
|
/* degenerate = isnan(f); */
|
|
/* degenerate = f!=f;// Only NaN is not equal to itself. */
|
|
degenerate = cvIsNaN(f);
|
|
/* degenerate = 0; */
|
|
|
|
|
|
return degenerate;
|
|
}
|
|
|
|
/**
|
|
* Evaluates the current model using SPRT for early exiting.
|
|
*
|
|
* Reads (direct): arg.maxD, arg.src, arg.dst, arg.N, curr.inl, curr.H,
|
|
* ctrl.numModels, eval.Ntestedtotal, eval.lambdaAccept,
|
|
* eval.lambdaReject, eval.A
|
|
* Reads (callees): None.
|
|
* Writes (direct): ctrl.numModels, curr.numInl, eval.Ntested, eval.good,
|
|
* eval.Ntestedtotal
|
|
* Writes (callees): None.
|
|
*/
|
|
|
|
inline void RHO_HEST_REFC::evaluateModelSPRT(void){
|
|
unsigned i;
|
|
unsigned isInlier;
|
|
double lambda = 1.0;
|
|
float distSq = arg.maxD*arg.maxD;
|
|
const float* src = arg.src;
|
|
const float* dst = arg.dst;
|
|
char* inl = curr.inl;
|
|
const float* H = curr.H;
|
|
|
|
|
|
ctrl.numModels++;
|
|
|
|
curr.numInl = 0;
|
|
eval.Ntested = 0;
|
|
eval.good = 1;
|
|
|
|
|
|
/* SCALAR */
|
|
for(i=0;i<arg.N && eval.good;i++){
|
|
/* Backproject */
|
|
float x=src[i*2],y=src[i*2+1];
|
|
float X=dst[i*2],Y=dst[i*2+1];
|
|
|
|
float reprojX=H[0]*x+H[1]*y+H[2]; /* ( X_1 ) ( H_11 H_12 H_13 ) (x_1) */
|
|
float reprojY=H[3]*x+H[4]*y+H[5]; /* ( X_2 ) = ( H_21 H_22 H_23 ) (x_2) */
|
|
float reprojZ=H[6]*x+H[7]*y+1.0f; /* ( X_3 ) ( H_31 H_32 H_33=1.0 ) (x_3 = 1.0) */
|
|
|
|
/* reproj is in homogeneous coordinates. To bring back to "regular" coordinates, divide by Z. */
|
|
reprojX/=reprojZ;
|
|
reprojY/=reprojZ;
|
|
|
|
/* Compute distance */
|
|
reprojX-=X;
|
|
reprojY-=Y;
|
|
reprojX*=reprojX;
|
|
reprojY*=reprojY;
|
|
float reprojDist = reprojX+reprojY;
|
|
|
|
/* ... */
|
|
isInlier = reprojDist <= distSq;
|
|
curr.numInl += isInlier;
|
|
*inl++ = (char)isInlier;
|
|
|
|
|
|
/* SPRT */
|
|
lambda *= isInlier ? eval.lambdaAccept : eval.lambdaReject;
|
|
eval.good = lambda <= eval.A;
|
|
/* If !good, the threshold A was exceeded, so we're rejecting */
|
|
}
|
|
|
|
|
|
eval.Ntested = i;
|
|
eval.Ntestedtotal += i;
|
|
}
|
|
|
|
/**
|
|
* Update either the delta or epsilon SPRT parameters, depending on the events
|
|
* that transpired in the previous evaluation.
|
|
*
|
|
* Reads (direct): eval.good, curr.numInl, arg.N, eval.Ntested, eval.delta
|
|
* Reads (callees): eval.delta, eval.epsilon, eval.t_M, eval.m_S
|
|
* Writes (direct): eval.epsilon, eval.delta
|
|
* Writes (callees): eval.A, eval.lambdaReject, eval.lambdaAccept
|
|
*/
|
|
|
|
inline void RHO_HEST_REFC::updateSPRT(void){
|
|
if(eval.good){
|
|
if(isBestModel()){
|
|
eval.epsilon = (double)curr.numInl/arg.N;
|
|
designSPRTTest();
|
|
}
|
|
}else{
|
|
double newDelta = (double)curr.numInl/eval.Ntested;
|
|
|
|
if(newDelta > 0){
|
|
double relChange = fabs(eval.delta - newDelta)/ eval.delta;
|
|
if(relChange > MIN_DELTA_CHNG){
|
|
eval.delta = newDelta;
|
|
designSPRTTest();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Numerically compute threshold A from the estimated delta, epsilon, t_M and
|
|
* m_S values.
|
|
*
|
|
* Epsilon: Denotes the probability that a randomly chosen data point is
|
|
* consistent with a good model.
|
|
* Delta: Denotes the probability that a randomly chosen data point is
|
|
* consistent with a bad model.
|
|
* t_M: Time needed to instantiate a model hypotheses given a sample.
|
|
* (Computing model parameters from a sample takes the same time
|
|
* as verification of t_M data points)
|
|
* m_S: The number of models that are verified per sample.
|
|
*/
|
|
|
|
static inline double sacDesignSPRTTest(double delta, double epsilon, double t_M, double m_S){
|
|
double An, C, K, prevAn;
|
|
unsigned i;
|
|
|
|
/**
|
|
* Randomized RANSAC with Sequential Probability Ratio Test, ICCV 2005
|
|
* Eq (2)
|
|
*/
|
|
|
|
C = (1-delta) * log((1-delta)/(1-epsilon)) +
|
|
delta * log( delta / epsilon );
|
|
|
|
/**
|
|
* Randomized RANSAC with Sequential Probability Ratio Test, ICCV 2005
|
|
* Eq (6)
|
|
* K = K_1/K_2 + 1 = (t_M*C)/m_S + 1
|
|
*/
|
|
|
|
K = t_M*C/m_S + 1;
|
|
|
|
/**
|
|
* Randomized RANSAC with Sequential Probability Ratio Test, ICCV 2005
|
|
* Paragraph below Eq (6)
|
|
*
|
|
* A* = lim_{n -> infty} A_n, where
|
|
* A_0 = K1/K2 + 1 and
|
|
* A_{n+1} = K1/K2 + 1 + log(A_n)
|
|
* The series converges fast, typically within four iterations.
|
|
*/
|
|
|
|
An = K;
|
|
i = 0;
|
|
|
|
do{
|
|
prevAn = An;
|
|
An = K + log(An);
|
|
}while((An-prevAn > 1.5e-8) && (++i < 10));
|
|
|
|
/**
|
|
* Return A = An_stopping, with n_stopping < 10
|
|
*/
|
|
|
|
return An;
|
|
}
|
|
|
|
/**
|
|
* Design the SPRT test. Shorthand for
|
|
* A = sprt(delta, epsilon, t_M, m_S);
|
|
*
|
|
* Idempotent.
|
|
*
|
|
* Reads (direct): eval.delta, eval.epsilon, eval.t_M, eval.m_S
|
|
* Reads (callees): None.
|
|
* Writes (direct): eval.A, eval.lambdaReject, eval.lambdaAccept.
|
|
* Writes (callees): None.
|
|
*/
|
|
|
|
inline void RHO_HEST_REFC::designSPRTTest(void){
|
|
eval.A = sacDesignSPRTTest(eval.delta, eval.epsilon, eval.t_M, eval.m_S);
|
|
eval.lambdaReject = ((1.0 - eval.delta) / (1.0 - eval.epsilon));
|
|
eval.lambdaAccept = (( eval.delta ) / ( eval.epsilon ));
|
|
}
|
|
|
|
/**
|
|
* Return whether the current model is the best model so far.
|
|
*
|
|
* @return Non-zero if this is the model with the most inliers seen so far;
|
|
* 0 otherwise.
|
|
*
|
|
* Reads (direct): curr.numInl, best.numInl
|
|
* Reads (callees): None.
|
|
* Writes (direct): None.
|
|
* Writes (callees): None.
|
|
*/
|
|
|
|
inline int RHO_HEST_REFC::isBestModel(void){
|
|
return curr.numInl > best.numInl;
|
|
}
|
|
|
|
/**
|
|
* Returns whether the current-best model is good enough to be an
|
|
* acceptable best model, by checking whether it meets the minimum
|
|
* number of inliers.
|
|
*
|
|
* @return Non-zero if the current model is "good enough" to save;
|
|
* 0 otherwise.
|
|
*
|
|
* Reads (direct): best.numInl, arg.minInl
|
|
* Reads (callees): None.
|
|
* Writes (direct): None.
|
|
* Writes (callees): None.
|
|
*/
|
|
|
|
inline int RHO_HEST_REFC::isBestModelGoodEnough(void){
|
|
return best.numInl >= arg.minInl;
|
|
}
|
|
|
|
/**
|
|
* Make current model new best model by swapping the homography, inlier mask
|
|
* and count of inliers between the current and best models.
|
|
*
|
|
* Reads (direct): curr.H, curr.inl, curr.numInl,
|
|
* best.H, best.inl, best.numInl
|
|
* Reads (callees): None.
|
|
* Writes (direct): curr.H, curr.inl, curr.numInl,
|
|
* best.H, best.inl, best.numInl
|
|
* Writes (callees): None.
|
|
*/
|
|
|
|
inline void RHO_HEST_REFC::saveBestModel(void){
|
|
float* H = curr.H;
|
|
char* inl = curr.inl;
|
|
unsigned numInl = curr.numInl;
|
|
|
|
curr.H = best.H;
|
|
curr.inl = best.inl;
|
|
curr.numInl = best.numInl;
|
|
|
|
best.H = H;
|
|
best.inl = inl;
|
|
best.numInl = numInl;
|
|
}
|
|
|
|
/**
|
|
* Compute NR table entries [start, N) for given beta.
|
|
*/
|
|
|
|
static inline void sacInitNonRand(double beta,
|
|
unsigned start,
|
|
unsigned N,
|
|
unsigned* nonRandMinInl){
|
|
unsigned n = SMPL_SIZE+1 > start ? SMPL_SIZE+1 : start;
|
|
double beta_beta1_sq_chi = sqrt(beta*(1.0-beta)) * CHI_SQ;
|
|
|
|
for(; n < N; n++){
|
|
double mu = n * beta;
|
|
double sigma = sqrt((double)n)* beta_beta1_sq_chi;
|
|
unsigned i_min = (unsigned)ceil(SMPL_SIZE + mu + sigma);
|
|
|
|
nonRandMinInl[n] = i_min;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Optimize the stopping criterion to account for the non-randomness criterion
|
|
* of PROSAC.
|
|
*
|
|
* Reads (direct): arg.N, best.numInl, nr.tbl, arg.inl, ctrl.phMax,
|
|
* ctrl.phNumInl, arg.cfd, arg.maxI
|
|
* Reads (callees): None.
|
|
* Writes (direct): arg.maxI, ctrl.phMax, ctrl.phNumInl
|
|
* Writes (callees): None.
|
|
*/
|
|
|
|
inline void RHO_HEST_REFC::nStarOptimize(void){
|
|
unsigned min_sample_length = 10*2; /*(N * INLIERS_RATIO) */
|
|
unsigned best_n = arg.N;
|
|
unsigned test_n = best_n;
|
|
unsigned bestNumInl = best.numInl;
|
|
unsigned testNumInl = bestNumInl;
|
|
|
|
for(;test_n > min_sample_length && testNumInl;test_n--){
|
|
if(testNumInl*best_n > bestNumInl*test_n){
|
|
if(testNumInl < nr.tbl[test_n]){
|
|
break;
|
|
}
|
|
best_n = test_n;
|
|
bestNumInl = testNumInl;
|
|
}
|
|
testNumInl -= !!best.inl[test_n-1];
|
|
}
|
|
|
|
if(bestNumInl*ctrl.phMax > ctrl.phNumInl*best_n){
|
|
ctrl.phMax = best_n;
|
|
ctrl.phNumInl = bestNumInl;
|
|
arg.maxI = sacCalcIterBound(arg.cfd,
|
|
(double)ctrl.phNumInl/ctrl.phMax,
|
|
SMPL_SIZE,
|
|
arg.maxI);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Classic RANSAC iteration bound based on largest # of inliers.
|
|
*
|
|
* Reads (direct): arg.maxI, arg.cfd, best.numInl, arg.N
|
|
* Reads (callees): None.
|
|
* Writes (direct): arg.maxI
|
|
* Writes (callees): None.
|
|
*/
|
|
|
|
inline void RHO_HEST_REFC::updateBounds(void){
|
|
arg.maxI = sacCalcIterBound(arg.cfd,
|
|
(double)best.numInl/arg.N,
|
|
SMPL_SIZE,
|
|
arg.maxI);
|
|
}
|
|
|
|
/**
|
|
* Output the best model so far to the output argument.
|
|
*
|
|
* Reads (direct): arg.finalH, best.H, arg.inl, best.inl, arg.N
|
|
* Reads (callees): arg.finalH, arg.inl, arg.N
|
|
* Writes (direct): arg.finalH, arg.inl
|
|
* Writes (callees): arg.finalH, arg.inl
|
|
*/
|
|
|
|
inline void RHO_HEST_REFC::outputModel(void){
|
|
if(isBestModelGoodEnough()){
|
|
memcpy(arg.finalH, best.H, HSIZE);
|
|
if(arg.inl){
|
|
memcpy(arg.inl, best.inl, arg.N);
|
|
}
|
|
}else{
|
|
outputZeroH();
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Output a zeroed H to the output argument.
|
|
*
|
|
* Reads (direct): arg.finalH, arg.inl, arg.N
|
|
* Reads (callees): None.
|
|
* Writes (direct): arg.finalH, arg.inl
|
|
* Writes (callees): None.
|
|
*/
|
|
|
|
inline void RHO_HEST_REFC::outputZeroH(void){
|
|
if(arg.finalH){
|
|
memset(arg.finalH, 0, HSIZE);
|
|
}
|
|
if(arg.inl){
|
|
memset(arg.inl, 0, arg.N);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Compute the real-valued number of samples per phase, given the RANSAC convergence speed,
|
|
* data set size and sample size.
|
|
*/
|
|
|
|
static inline double sacInitPEndFpI(const unsigned ransacConvg,
|
|
const unsigned n,
|
|
const unsigned s){
|
|
double numer=1, denom=1;
|
|
|
|
unsigned i;
|
|
for(i=0;i<s;i++){
|
|
numer *= s-i;
|
|
denom *= n-i;
|
|
}
|
|
|
|
return ransacConvg*numer/denom;
|
|
}
|
|
|
|
/**
|
|
* Estimate the number of iterations required based on the requested confidence,
|
|
* proportion of inliers in the best model so far and sample size.
|
|
*
|
|
* Clamp return value at maxIterationBound.
|
|
*/
|
|
|
|
static inline unsigned sacCalcIterBound(double confidence,
|
|
double inlierRate,
|
|
unsigned sampleSize,
|
|
unsigned maxIterBound){
|
|
unsigned retVal;
|
|
|
|
/**
|
|
* Formula chosen from http://en.wikipedia.org/wiki/RANSAC#The_parameters :
|
|
*
|
|
* \[ k = \frac{\log{(1-confidence)}}{\log{(1-inlierRate**sampleSize)}} \]
|
|
*/
|
|
|
|
double atLeastOneOutlierProbability = 1.-pow(inlierRate, (double)sampleSize);
|
|
|
|
/**
|
|
* There are two special cases: When argument to log() is 0 and when it is 1.
|
|
* Each has a special meaning.
|
|
*/
|
|
|
|
if(atLeastOneOutlierProbability>=1.){
|
|
/**
|
|
* A certainty of picking at least one outlier means that we will need
|
|
* an infinite amount of iterations in order to find a correct solution.
|
|
*/
|
|
|
|
retVal = maxIterBound;
|
|
}else if(atLeastOneOutlierProbability<=0.){
|
|
/**
|
|
* The certainty of NOT picking an outlier means that only 1 iteration
|
|
* is needed to find a solution.
|
|
*/
|
|
|
|
retVal = 1;
|
|
}else{
|
|
/**
|
|
* Since 1-confidence (the probability of the model being based on at
|
|
* least one outlier in the data) is equal to
|
|
* (1-inlierRate**sampleSize)**numIterations (the probability of picking
|
|
* at least one outlier in numIterations samples), we can isolate
|
|
* numIterations (the return value) into
|
|
*/
|
|
|
|
retVal = (unsigned)ceil(log(1.-confidence)/log(atLeastOneOutlierProbability));
|
|
}
|
|
|
|
/**
|
|
* Clamp to maxIterationBound.
|
|
*/
|
|
|
|
return retVal <= maxIterBound ? retVal : maxIterBound;
|
|
}
|
|
|
|
|
|
/**
|
|
* Given 4 matches, computes the homography that relates them using Gaussian
|
|
* Elimination. The row operations are as given in the paper.
|
|
*
|
|
* TODO: Clean this up. The code is hideous, and might even conceal sign bugs
|
|
* (specifically relating to whether the last column should be negated,
|
|
* or not).
|
|
*/
|
|
|
|
static void hFuncRefC(float* packedPoints,/* Source (four x,y float coordinates) points followed by
|
|
destination (four x,y float coordinates) points, aligned by 32 bytes */
|
|
float* H){ /* Homography (three 16-byte aligned rows of 3 floats) */
|
|
float x0=*packedPoints++;
|
|
float y0=*packedPoints++;
|
|
float x1=*packedPoints++;
|
|
float y1=*packedPoints++;
|
|
float x2=*packedPoints++;
|
|
float y2=*packedPoints++;
|
|
float x3=*packedPoints++;
|
|
float y3=*packedPoints++;
|
|
float X0=*packedPoints++;
|
|
float Y0=*packedPoints++;
|
|
float X1=*packedPoints++;
|
|
float Y1=*packedPoints++;
|
|
float X2=*packedPoints++;
|
|
float Y2=*packedPoints++;
|
|
float X3=*packedPoints++;
|
|
float Y3=*packedPoints++;
|
|
|
|
float x0X0=x0*X0, x1X1=x1*X1, x2X2=x2*X2, x3X3=x3*X3;
|
|
float x0Y0=x0*Y0, x1Y1=x1*Y1, x2Y2=x2*Y2, x3Y3=x3*Y3;
|
|
float y0X0=y0*X0, y1X1=y1*X1, y2X2=y2*X2, y3X3=y3*X3;
|
|
float y0Y0=y0*Y0, y1Y1=y1*Y1, y2Y2=y2*Y2, y3Y3=y3*Y3;
|
|
|
|
|
|
/**
|
|
* [0] [1] Hidden Prec
|
|
* x0 y0 1 x1
|
|
* x1 y1 1 x1
|
|
* x2 y2 1 x1
|
|
* x3 y3 1 x1
|
|
*
|
|
* Eliminate ones in column 2 and 5.
|
|
* R(0)-=R(2)
|
|
* R(1)-=R(2)
|
|
* R(3)-=R(2)
|
|
*
|
|
* [0] [1] Hidden Prec
|
|
* x0-x2 y0-y2 0 x1+1
|
|
* x1-x2 y1-y2 0 x1+1
|
|
* x2 y2 1 x1
|
|
* x3-x2 y3-y2 0 x1+1
|
|
*
|
|
* Eliminate column 0 of rows 1 and 3
|
|
* R(1)=(x0-x2)*R(1)-(x1-x2)*R(0), y1'=(y1-y2)(x0-x2)-(x1-x2)(y0-y2)
|
|
* R(3)=(x0-x2)*R(3)-(x3-x2)*R(0), y3'=(y3-y2)(x0-x2)-(x3-x2)(y0-y2)
|
|
*
|
|
* [0] [1] Hidden Prec
|
|
* x0-x2 y0-y2 0 x1+1
|
|
* 0 y1' 0 x2+3
|
|
* x2 y2 1 x1
|
|
* 0 y3' 0 x2+3
|
|
*
|
|
* Eliminate column 1 of rows 0 and 3
|
|
* R(3)=y1'*R(3)-y3'*R(1)
|
|
* R(0)=y1'*R(0)-(y0-y2)*R(1)
|
|
*
|
|
* [0] [1] Hidden Prec
|
|
* x0' 0 0 x3+5
|
|
* 0 y1' 0 x2+3
|
|
* x2 y2 1 x1
|
|
* 0 0 0 x4+7
|
|
*
|
|
* Eliminate columns 0 and 1 of row 2
|
|
* R(0)/=x0'
|
|
* R(1)/=y1'
|
|
* R(2)-= (x2*R(0) + y2*R(1))
|
|
*
|
|
* [0] [1] Hidden Prec
|
|
* 1 0 0 x6+10
|
|
* 0 1 0 x4+6
|
|
* 0 0 1 x4+7
|
|
* 0 0 0 x4+7
|
|
*/
|
|
|
|
/**
|
|
* Eliminate ones in column 2 and 5.
|
|
* R(0)-=R(2)
|
|
* R(1)-=R(2)
|
|
* R(3)-=R(2)
|
|
*/
|
|
|
|
/*float minor[4][2] = {{x0-x2,y0-y2},
|
|
{x1-x2,y1-y2},
|
|
{x2 ,y2 },
|
|
{x3-x2,y3-y2}};*/
|
|
/*float major[8][3] = {{x2X2-x0X0,y2X2-y0X0,(X0-X2)},
|
|
{x2X2-x1X1,y2X2-y1X1,(X1-X2)},
|
|
{-x2X2 ,-y2X2 ,(X2 )},
|
|
{x2X2-x3X3,y2X2-y3X3,(X3-X2)},
|
|
{x2Y2-x0Y0,y2Y2-y0Y0,(Y0-Y2)},
|
|
{x2Y2-x1Y1,y2Y2-y1Y1,(Y1-Y2)},
|
|
{-x2Y2 ,-y2Y2 ,(Y2 )},
|
|
{x2Y2-x3Y3,y2Y2-y3Y3,(Y3-Y2)}};*/
|
|
float minor[2][4] = {{x0-x2,x1-x2,x2 ,x3-x2},
|
|
{y0-y2,y1-y2,y2 ,y3-y2}};
|
|
float major[3][8] = {{x2X2-x0X0,x2X2-x1X1,-x2X2 ,x2X2-x3X3,x2Y2-x0Y0,x2Y2-x1Y1,-x2Y2 ,x2Y2-x3Y3},
|
|
{y2X2-y0X0,y2X2-y1X1,-y2X2 ,y2X2-y3X3,y2Y2-y0Y0,y2Y2-y1Y1,-y2Y2 ,y2Y2-y3Y3},
|
|
{ (X0-X2) , (X1-X2) , (X2 ) , (X3-X2) , (Y0-Y2) , (Y1-Y2) , (Y2 ) , (Y3-Y2) }};
|
|
|
|
/**
|
|
* int i;
|
|
* for(i=0;i<8;i++) major[2][i]=-major[2][i];
|
|
* Eliminate column 0 of rows 1 and 3
|
|
* R(1)=(x0-x2)*R(1)-(x1-x2)*R(0), y1'=(y1-y2)(x0-x2)-(x1-x2)(y0-y2)
|
|
* R(3)=(x0-x2)*R(3)-(x3-x2)*R(0), y3'=(y3-y2)(x0-x2)-(x3-x2)(y0-y2)
|
|
*/
|
|
|
|
float scalar1=minor[0][0], scalar2=minor[0][1];
|
|
minor[1][1]=minor[1][1]*scalar1-minor[1][0]*scalar2;
|
|
|
|
major[0][1]=major[0][1]*scalar1-major[0][0]*scalar2;
|
|
major[1][1]=major[1][1]*scalar1-major[1][0]*scalar2;
|
|
major[2][1]=major[2][1]*scalar1-major[2][0]*scalar2;
|
|
|
|
major[0][5]=major[0][5]*scalar1-major[0][4]*scalar2;
|
|
major[1][5]=major[1][5]*scalar1-major[1][4]*scalar2;
|
|
major[2][5]=major[2][5]*scalar1-major[2][4]*scalar2;
|
|
|
|
scalar2=minor[0][3];
|
|
minor[1][3]=minor[1][3]*scalar1-minor[1][0]*scalar2;
|
|
|
|
major[0][3]=major[0][3]*scalar1-major[0][0]*scalar2;
|
|
major[1][3]=major[1][3]*scalar1-major[1][0]*scalar2;
|
|
major[2][3]=major[2][3]*scalar1-major[2][0]*scalar2;
|
|
|
|
major[0][7]=major[0][7]*scalar1-major[0][4]*scalar2;
|
|
major[1][7]=major[1][7]*scalar1-major[1][4]*scalar2;
|
|
major[2][7]=major[2][7]*scalar1-major[2][4]*scalar2;
|
|
|
|
/**
|
|
* Eliminate column 1 of rows 0 and 3
|
|
* R(3)=y1'*R(3)-y3'*R(1)
|
|
* R(0)=y1'*R(0)-(y0-y2)*R(1)
|
|
*/
|
|
|
|
scalar1=minor[1][1];scalar2=minor[1][3];
|
|
major[0][3]=major[0][3]*scalar1-major[0][1]*scalar2;
|
|
major[1][3]=major[1][3]*scalar1-major[1][1]*scalar2;
|
|
major[2][3]=major[2][3]*scalar1-major[2][1]*scalar2;
|
|
|
|
major[0][7]=major[0][7]*scalar1-major[0][5]*scalar2;
|
|
major[1][7]=major[1][7]*scalar1-major[1][5]*scalar2;
|
|
major[2][7]=major[2][7]*scalar1-major[2][5]*scalar2;
|
|
|
|
scalar2=minor[1][0];
|
|
minor[0][0]=minor[0][0]*scalar1-minor[0][1]*scalar2;
|
|
|
|
major[0][0]=major[0][0]*scalar1-major[0][1]*scalar2;
|
|
major[1][0]=major[1][0]*scalar1-major[1][1]*scalar2;
|
|
major[2][0]=major[2][0]*scalar1-major[2][1]*scalar2;
|
|
|
|
major[0][4]=major[0][4]*scalar1-major[0][5]*scalar2;
|
|
major[1][4]=major[1][4]*scalar1-major[1][5]*scalar2;
|
|
major[2][4]=major[2][4]*scalar1-major[2][5]*scalar2;
|
|
|
|
/**
|
|
* Eliminate columns 0 and 1 of row 2
|
|
* R(0)/=x0'
|
|
* R(1)/=y1'
|
|
* R(2)-= (x2*R(0) + y2*R(1))
|
|
*/
|
|
|
|
scalar1=1.0f/minor[0][0];
|
|
major[0][0]*=scalar1;
|
|
major[1][0]*=scalar1;
|
|
major[2][0]*=scalar1;
|
|
major[0][4]*=scalar1;
|
|
major[1][4]*=scalar1;
|
|
major[2][4]*=scalar1;
|
|
|
|
scalar1=1.0f/minor[1][1];
|
|
major[0][1]*=scalar1;
|
|
major[1][1]*=scalar1;
|
|
major[2][1]*=scalar1;
|
|
major[0][5]*=scalar1;
|
|
major[1][5]*=scalar1;
|
|
major[2][5]*=scalar1;
|
|
|
|
|
|
scalar1=minor[0][2];scalar2=minor[1][2];
|
|
major[0][2]-=major[0][0]*scalar1+major[0][1]*scalar2;
|
|
major[1][2]-=major[1][0]*scalar1+major[1][1]*scalar2;
|
|
major[2][2]-=major[2][0]*scalar1+major[2][1]*scalar2;
|
|
|
|
major[0][6]-=major[0][4]*scalar1+major[0][5]*scalar2;
|
|
major[1][6]-=major[1][4]*scalar1+major[1][5]*scalar2;
|
|
major[2][6]-=major[2][4]*scalar1+major[2][5]*scalar2;
|
|
|
|
/* Only major matters now. R(3) and R(7) correspond to the hollowed-out rows. */
|
|
scalar1=major[0][7];
|
|
major[1][7]/=scalar1;
|
|
major[2][7]/=scalar1;
|
|
|
|
scalar1=major[0][0];major[1][0]-=scalar1*major[1][7];major[2][0]-=scalar1*major[2][7];
|
|
scalar1=major[0][1];major[1][1]-=scalar1*major[1][7];major[2][1]-=scalar1*major[2][7];
|
|
scalar1=major[0][2];major[1][2]-=scalar1*major[1][7];major[2][2]-=scalar1*major[2][7];
|
|
scalar1=major[0][3];major[1][3]-=scalar1*major[1][7];major[2][3]-=scalar1*major[2][7];
|
|
scalar1=major[0][4];major[1][4]-=scalar1*major[1][7];major[2][4]-=scalar1*major[2][7];
|
|
scalar1=major[0][5];major[1][5]-=scalar1*major[1][7];major[2][5]-=scalar1*major[2][7];
|
|
scalar1=major[0][6];major[1][6]-=scalar1*major[1][7];major[2][6]-=scalar1*major[2][7];
|
|
|
|
|
|
/* One column left (Two in fact, but the last one is the homography) */
|
|
scalar1=major[1][3];
|
|
|
|
major[2][3]/=scalar1;
|
|
scalar1=major[1][0];major[2][0]-=scalar1*major[2][3];
|
|
scalar1=major[1][1];major[2][1]-=scalar1*major[2][3];
|
|
scalar1=major[1][2];major[2][2]-=scalar1*major[2][3];
|
|
scalar1=major[1][4];major[2][4]-=scalar1*major[2][3];
|
|
scalar1=major[1][5];major[2][5]-=scalar1*major[2][3];
|
|
scalar1=major[1][6];major[2][6]-=scalar1*major[2][3];
|
|
scalar1=major[1][7];major[2][7]-=scalar1*major[2][3];
|
|
|
|
|
|
/* Homography is done. */
|
|
H[0]=major[2][0];
|
|
H[1]=major[2][1];
|
|
H[2]=major[2][2];
|
|
|
|
H[3]=major[2][4];
|
|
H[4]=major[2][5];
|
|
H[5]=major[2][6];
|
|
|
|
H[6]=major[2][7];
|
|
H[7]=major[2][3];
|
|
H[8]=1.0;
|
|
}
|
|
|
|
|
|
/**
|
|
* Returns whether refinement is possible.
|
|
*
|
|
* NB This is separate from whether it is *enabled*.
|
|
*
|
|
* @return 0 if refinement isn't possible, non-zero otherwise.
|
|
*
|
|
* Reads (direct): best.numInl
|
|
* Reads (callees): None.
|
|
* Writes (direct): None.
|
|
* Writes (callees): None.
|
|
*/
|
|
|
|
inline int RHO_HEST_REFC::canRefine(void){
|
|
/**
|
|
* If we only have 4 matches, GE's result is already optimal and cannot
|
|
* be refined any further.
|
|
*/
|
|
|
|
return best.numInl > (unsigned)SMPL_SIZE;
|
|
}
|
|
|
|
|
|
/**
|
|
* Refines the best-so-far homography (p->best.H).
|
|
*
|
|
* Reads (direct): best.H, arg.src, arg.dst, best.inl, arg.N, lm.JtJ,
|
|
* lm.Jte, lm.tmp1
|
|
* Reads (callees): None.
|
|
* Writes (direct): best.H, lm.JtJ, lm.Jte, lm.tmp1
|
|
* Writes (callees): None.
|
|
*/
|
|
|
|
inline void RHO_HEST_REFC::refine(void){
|
|
int i;
|
|
float S, newS; /* Sum of squared errors */
|
|
float gain; /* Gain-parameter. */
|
|
float L = 100.0f;/* Lambda of LevMarq */
|
|
float dH[8], newH[8];
|
|
|
|
/**
|
|
* Iteratively refine the homography.
|
|
*/
|
|
/* Find initial conditions */
|
|
sacCalcJacobianErrors(best.H, arg.src, arg.dst, best.inl, arg.N,
|
|
lm.JtJ, lm.Jte, &S);
|
|
|
|
/*Levenberg-Marquardt Loop.*/
|
|
for(i=0;i<MAXLEVMARQITERS;i++){
|
|
/**
|
|
* Attempt a step given current state
|
|
* - Jacobian-x-Jacobian (JtJ)
|
|
* - Jacobian-x-error (Jte)
|
|
* - Sum of squared errors (S)
|
|
* and current parameter
|
|
* - Lambda (L)
|
|
* .
|
|
*
|
|
* This is done by solving the system of equations
|
|
* Ax = b
|
|
* where A (JtJ) and b (Jte) are sourced from our current state, and
|
|
* the solution x becomes a step (dH) that is applied to best.H in
|
|
* order to compute a candidate homography (newH).
|
|
*
|
|
* The system above is solved by Cholesky decomposition of a
|
|
* sufficently-damped JtJ into a lower-triangular matrix (and its
|
|
* transpose), whose inverse is then computed. This inverse (and its
|
|
* transpose) then multiply Jte in order to find dH.
|
|
*/
|
|
|
|
while(!sacChol8x8Damped(lm.JtJ, L, lm.tmp1)){
|
|
L *= 2.0f;
|
|
}
|
|
sacTRInv8x8 (lm.tmp1, lm.tmp1);
|
|
sacTRISolve8x8(lm.tmp1, lm.Jte, dH);
|
|
sacSub8x1 (newH, best.H, dH);
|
|
sacCalcJacobianErrors(newH, arg.src, arg.dst, best.inl, arg.N,
|
|
NULL, NULL, &newS);
|
|
gain = sacLMGain(dH, lm.Jte, S, newS, L);
|
|
/*printf("Lambda: %12.6f S: %12.6f newS: %12.6f Gain: %12.6f\n",
|
|
L, S, newS, gain);*/
|
|
|
|
/**
|
|
* If the gain is positive (i.e., the new Sum of Square Errors (newS)
|
|
* corresponding to newH is lower than the previous one (S) ), save
|
|
* the current state and accept the new step dH.
|
|
*
|
|
* If the gain is below LM_GAIN_LO, damp more (increase L), even if the
|
|
* gain was positive. If the gain is above LM_GAIN_HI, damp less
|
|
* (decrease L). Otherwise the gain is left unchanged.
|
|
*/
|
|
|
|
if(gain < LM_GAIN_LO){
|
|
L *= 8;
|
|
if(L>1000.0f/FLT_EPSILON){
|
|
break;/* FIXME: Most naive termination criterion imaginable. */
|
|
}
|
|
}else if(gain > LM_GAIN_HI){
|
|
L *= 0.5;
|
|
}
|
|
|
|
if(gain > 0){
|
|
S = newS;
|
|
memcpy(best.H, newH, sizeof(newH));
|
|
sacCalcJacobianErrors(best.H, arg.src, arg.dst, best.inl, arg.N,
|
|
lm.JtJ, lm.Jte, &S);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* Compute directly the JtJ, Jte and sum-of-squared-error for a given
|
|
* homography and set of inliers.
|
|
*
|
|
* This is possible because the product of J and its transpose as well as with
|
|
* the error and the sum-of-squared-error can all be computed additively
|
|
* (match-by-match), as one would intuitively expect; All matches make
|
|
* contributions to the error independently of each other.
|
|
*
|
|
* What this allows is a constant-space implementation of Lev-Marq that can
|
|
* nevertheless be vectorized if need be.
|
|
*/
|
|
|
|
static inline void sacCalcJacobianErrors(const float* H,
|
|
const float* src,
|
|
const float* dst,
|
|
const char* inl,
|
|
unsigned N,
|
|
float (* JtJ)[8],
|
|
float* Jte,
|
|
float* Sp){
|
|
unsigned i;
|
|
float S;
|
|
|
|
/* Zero out JtJ, Jte and S */
|
|
if(JtJ){memset(JtJ, 0, 8*8*sizeof(float));}
|
|
if(Jte){memset(Jte, 0, 8*1*sizeof(float));}
|
|
S = 0.0f;
|
|
|
|
/* Additively compute JtJ and Jte */
|
|
for(i=0;i<N;i++){
|
|
/* Skip outliers */
|
|
if(!inl[i]){
|
|
continue;
|
|
}
|
|
|
|
/**
|
|
* Otherwise, compute additively the upper triangular matrix JtJ and
|
|
* the Jtd vector within the following formula:
|
|
*
|
|
* LaTeX:
|
|
* (J^{T}J + \lambda \diag( J^{T}J )) \beta = J^{T}[ y - f(\Beta) ]
|
|
* Simplified ASCII:
|
|
* (JtJ + L*diag(JtJ)) beta = Jt e, where e (error) is y-f(Beta).
|
|
*
|
|
* For this we need to calculate
|
|
* 1) The 2D error (e) of the homography on the current point i
|
|
* using the current parameters Beta.
|
|
* 2) The derivatives (J) of the error on the current point i under
|
|
* perturbations of the current parameters Beta.
|
|
* Accumulate products of the error times the derivative to Jte, and
|
|
* products of the derivatives to JtJ.
|
|
*/
|
|
|
|
/* Compute Squared Error */
|
|
float x = src[2*i+0];
|
|
float y = src[2*i+1];
|
|
float X = dst[2*i+0];
|
|
float Y = dst[2*i+1];
|
|
float W = (H[6]*x + H[7]*y + 1.0f);
|
|
float iW = fabs(W) > FLT_EPSILON ? 1.0f/W : 0;
|
|
|
|
float reprojX = (H[0]*x + H[1]*y + H[2]) * iW;
|
|
float reprojY = (H[3]*x + H[4]*y + H[5]) * iW;
|
|
|
|
float eX = reprojX - X;
|
|
float eY = reprojY - Y;
|
|
float e = eX*eX + eY*eY;
|
|
S += e;
|
|
|
|
/* Compute Jacobian */
|
|
if(JtJ || Jte){
|
|
float dxh11 = x * iW;
|
|
float dxh12 = y * iW;
|
|
float dxh13 = iW;
|
|
/*float dxh21 = 0.0f;*/
|
|
/*float dxh22 = 0.0f;*/
|
|
/*float dxh23 = 0.0f;*/
|
|
float dxh31 = -reprojX*x * iW;
|
|
float dxh32 = -reprojX*y * iW;
|
|
|
|
/*float dyh11 = 0.0f;*/
|
|
/*float dyh12 = 0.0f;*/
|
|
/*float dyh13 = 0.0f;*/
|
|
float dyh21 = x * iW;
|
|
float dyh22 = y * iW;
|
|
float dyh23 = iW;
|
|
float dyh31 = -reprojY*x * iW;
|
|
float dyh32 = -reprojY*y * iW;
|
|
|
|
/* Update Jte: X Y */
|
|
if(Jte){
|
|
Jte[0] += eX *dxh11 ;/* +0 */
|
|
Jte[1] += eX *dxh12 ;/* +0 */
|
|
Jte[2] += eX *dxh13 ;/* +0 */
|
|
Jte[3] += eY *dyh21;/* 0+ */
|
|
Jte[4] += eY *dyh22;/* 0+ */
|
|
Jte[5] += eY *dyh23;/* 0+ */
|
|
Jte[6] += eX *dxh31 + eY *dyh31;/* + */
|
|
Jte[7] += eX *dxh32 + eY *dyh32;/* + */
|
|
}
|
|
|
|
/* Update JtJ: X Y */
|
|
if(JtJ){
|
|
JtJ[0][0] += dxh11*dxh11 ;/* +0 */
|
|
|
|
JtJ[1][0] += dxh11*dxh12 ;/* +0 */
|
|
JtJ[1][1] += dxh12*dxh12 ;/* +0 */
|
|
|
|
JtJ[2][0] += dxh11*dxh13 ;/* +0 */
|
|
JtJ[2][1] += dxh12*dxh13 ;/* +0 */
|
|
JtJ[2][2] += dxh13*dxh13 ;/* +0 */
|
|
|
|
/*JtJ[3][0] += ; 0+0 */
|
|
/*JtJ[3][1] += ; 0+0 */
|
|
/*JtJ[3][2] += ; 0+0 */
|
|
JtJ[3][3] += dyh21*dyh21;/* 0+ */
|
|
|
|
/*JtJ[4][0] += ; 0+0 */
|
|
/*JtJ[4][1] += ; 0+0 */
|
|
/*JtJ[4][2] += ; 0+0 */
|
|
JtJ[4][3] += dyh21*dyh22;/* 0+ */
|
|
JtJ[4][4] += dyh22*dyh22;/* 0+ */
|
|
|
|
/*JtJ[5][0] += ; 0+0 */
|
|
/*JtJ[5][1] += ; 0+0 */
|
|
/*JtJ[5][2] += ; 0+0 */
|
|
JtJ[5][3] += dyh21*dyh23;/* 0+ */
|
|
JtJ[5][4] += dyh22*dyh23;/* 0+ */
|
|
JtJ[5][5] += dyh23*dyh23;/* 0+ */
|
|
|
|
JtJ[6][0] += dxh11*dxh31 ;/* +0 */
|
|
JtJ[6][1] += dxh12*dxh31 ;/* +0 */
|
|
JtJ[6][2] += dxh13*dxh31 ;/* +0 */
|
|
JtJ[6][3] += dyh21*dyh31;/* 0+ */
|
|
JtJ[6][4] += dyh22*dyh31;/* 0+ */
|
|
JtJ[6][5] += dyh23*dyh31;/* 0+ */
|
|
JtJ[6][6] += dxh31*dxh31 + dyh31*dyh31;/* + */
|
|
|
|
JtJ[7][0] += dxh11*dxh32 ;/* +0 */
|
|
JtJ[7][1] += dxh12*dxh32 ;/* +0 */
|
|
JtJ[7][2] += dxh13*dxh32 ;/* +0 */
|
|
JtJ[7][3] += dyh21*dyh32;/* 0+ */
|
|
JtJ[7][4] += dyh22*dyh32;/* 0+ */
|
|
JtJ[7][5] += dyh23*dyh32;/* 0+ */
|
|
JtJ[7][6] += dxh31*dxh32 + dyh31*dyh32;/* + */
|
|
JtJ[7][7] += dxh32*dxh32 + dyh32*dyh32;/* + */
|
|
}
|
|
}
|
|
}
|
|
|
|
if(Sp){*Sp = S;}
|
|
}
|
|
|
|
|
|
/**
|
|
* Compute the Levenberg-Marquardt "gain" obtained by the given step dH.
|
|
*
|
|
* Drawn from http://www2.imm.dtu.dk/documents/ftp/tr99/tr05_99.pdf.
|
|
*/
|
|
|
|
static inline float sacLMGain(const float* dH,
|
|
const float* Jte,
|
|
const float S,
|
|
const float newS,
|
|
const float lambda){
|
|
float dS = S-newS;
|
|
float dL = 0;
|
|
int i;
|
|
|
|
/* Compute h^t h... */
|
|
for(i=0;i<8;i++){
|
|
dL += dH[i]*dH[i];
|
|
}
|
|
/* Compute mu * h^t h... */
|
|
dL *= lambda;
|
|
/* Subtract h^t F'... */
|
|
for(i=0;i<8;i++){
|
|
dL += dH[i]*Jte[i];/* += as opposed to -=, since dH we compute is
|
|
opposite sign. */
|
|
}
|
|
/* Multiply by 1/2... */
|
|
dL *= 0.5;
|
|
|
|
/* Return gain as S-newS / L0 - LH. */
|
|
return fabs(dL) < FLT_EPSILON ? dS : dS / dL;
|
|
}
|
|
|
|
|
|
/**
|
|
* Cholesky decomposition on 8x8 real positive-definite matrix defined by its
|
|
* lower-triangular half. Outputs L, the lower triangular part of the
|
|
* decomposition.
|
|
*
|
|
* A and L can overlap fully (in-place) or not at all, but may not partially
|
|
* overlap.
|
|
*
|
|
* For damping, the diagonal elements are scaled by 1.0 + lambda.
|
|
*
|
|
* Returns zero if decomposition unsuccessful, and non-zero otherwise.
|
|
*
|
|
* Source: http://en.wikipedia.org/wiki/Cholesky_decomposition#
|
|
* The_Cholesky.E2.80.93Banachiewicz_and_Cholesky.E2.80.93Crout_algorithms
|
|
*/
|
|
|
|
static inline int sacChol8x8Damped(const float (*A)[8],
|
|
float lambda,
|
|
float (*L)[8]){
|
|
const int N = 8;
|
|
int i, j, k;
|
|
float lambdap1 = lambda + 1.0f;
|
|
float x;
|
|
|
|
for(i=0;i<N;i++){/* Row */
|
|
/* Pre-diagonal elements */
|
|
for(j=0;j<i;j++){
|
|
x = A[i][j]; /* Aij */
|
|
for(k=0;k<j;k++){
|
|
x -= L[i][k] * L[j][k];/* - Sum_{k=0..j-1} Lik*Ljk */
|
|
}
|
|
L[i][j] = x / L[j][j]; /* Lij = ... / Ljj */
|
|
}
|
|
|
|
/* Diagonal element */
|
|
{j = i;
|
|
x = A[j][j] * lambdap1; /* Ajj */
|
|
for(k=0;k<j;k++){
|
|
x -= L[j][k] * L[j][k];/* - Sum_{k=0..j-1} Ljk^2 */
|
|
}
|
|
if(x<0){
|
|
return 0;
|
|
}
|
|
L[j][j] = sqrtf(x); /* Ljj = sqrt( ... ) */
|
|
}
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
|
|
/**
|
|
* Invert lower-triangular 8x8 matrix L into lower-triangular matrix M.
|
|
*
|
|
* L and M can overlap fully (in-place) or not at all, but may not partially
|
|
* overlap.
|
|
*
|
|
* Uses formulation from
|
|
* http://www.cs.berkeley.edu/~knight/knight_math221_poster.pdf
|
|
* , adjusted for the fact that A^T^-1 = A^-1^T. Thus:
|
|
*
|
|
* U11 U12 U11^-1 -U11^-1*U12*U22^-1
|
|
* ->
|
|
* 0 U22 0 U22^-1
|
|
*
|
|
* Becomes
|
|
*
|
|
* L11 0 L11^-1 0
|
|
* ->
|
|
* L21 L22 -L22^-1*L21*L11^-1 L22^-1
|
|
*
|
|
* Since
|
|
*
|
|
* ( -L11^T^-1*L21^T*L22^T^-1 )^T = -L22^T^-1^T*L21^T^T*L11^T^-1^T
|
|
* = -L22^T^T^-1*L21^T^T*L11^T^T^-1
|
|
* = -L22^-1*L21*L11^-1
|
|
*/
|
|
|
|
static inline void sacTRInv8x8(const float (*L)[8],
|
|
float (*M)[8]){
|
|
float s[2][2], t[2][2];
|
|
float u[4][4], v[4][4];
|
|
|
|
/*
|
|
L00 0 0 0 0 0 0 0
|
|
L10 L11 0 0 0 0 0 0
|
|
L20 L21 L22 0 0 0 0 0
|
|
L30 L31 L32 L33 0 0 0 0
|
|
L40 L41 L42 L43 L44 0 0 0
|
|
L50 L51 L52 L53 L54 L55 0 0
|
|
L60 L61 L62 L63 L64 L65 L66 0
|
|
L70 L71 L72 L73 L74 L75 L76 L77
|
|
*/
|
|
|
|
/* Invert 4*2 1x1 matrices; Starts recursion. */
|
|
M[0][0] = 1.0f/L[0][0];
|
|
M[1][1] = 1.0f/L[1][1];
|
|
M[2][2] = 1.0f/L[2][2];
|
|
M[3][3] = 1.0f/L[3][3];
|
|
M[4][4] = 1.0f/L[4][4];
|
|
M[5][5] = 1.0f/L[5][5];
|
|
M[6][6] = 1.0f/L[6][6];
|
|
M[7][7] = 1.0f/L[7][7];
|
|
|
|
/*
|
|
M00 0 0 0 0 0 0 0
|
|
L10 M11 0 0 0 0 0 0
|
|
L20 L21 M22 0 0 0 0 0
|
|
L30 L31 L32 M33 0 0 0 0
|
|
L40 L41 L42 L43 M44 0 0 0
|
|
L50 L51 L52 L53 L54 M55 0 0
|
|
L60 L61 L62 L63 L64 L65 M66 0
|
|
L70 L71 L72 L73 L74 L75 L76 M77
|
|
*/
|
|
|
|
/* 4*2 Matrix products of 1x1 matrices */
|
|
M[1][0] = -M[1][1]*L[1][0]*M[0][0];
|
|
M[3][2] = -M[3][3]*L[3][2]*M[2][2];
|
|
M[5][4] = -M[5][5]*L[5][4]*M[4][4];
|
|
M[7][6] = -M[7][7]*L[7][6]*M[6][6];
|
|
|
|
/*
|
|
M00 0 0 0 0 0 0 0
|
|
M10 M11 0 0 0 0 0 0
|
|
L20 L21 M22 0 0 0 0 0
|
|
L30 L31 M32 M33 0 0 0 0
|
|
L40 L41 L42 L43 M44 0 0 0
|
|
L50 L51 L52 L53 M54 M55 0 0
|
|
L60 L61 L62 L63 L64 L65 M66 0
|
|
L70 L71 L72 L73 L74 L75 M76 M77
|
|
*/
|
|
|
|
/* 2*2 Matrix products of 2x2 matrices */
|
|
|
|
/*
|
|
(M22 0 ) (L20 L21) (M00 0 )
|
|
- (M32 M33) x (L30 L31) x (M10 M11)
|
|
*/
|
|
|
|
s[0][0] = M[2][2]*L[2][0];
|
|
s[0][1] = M[2][2]*L[2][1];
|
|
s[1][0] = M[3][2]*L[2][0]+M[3][3]*L[3][0];
|
|
s[1][1] = M[3][2]*L[2][1]+M[3][3]*L[3][1];
|
|
|
|
t[0][0] = s[0][0]*M[0][0]+s[0][1]*M[1][0];
|
|
t[0][1] = s[0][1]*M[1][1];
|
|
t[1][0] = s[1][0]*M[0][0]+s[1][1]*M[1][0];
|
|
t[1][1] = s[1][1]*M[1][1];
|
|
|
|
M[2][0] = -t[0][0];
|
|
M[2][1] = -t[0][1];
|
|
M[3][0] = -t[1][0];
|
|
M[3][1] = -t[1][1];
|
|
|
|
/*
|
|
(M66 0 ) (L64 L65) (M44 0 )
|
|
- (L76 M77) x (L74 L75) x (M54 M55)
|
|
*/
|
|
|
|
s[0][0] = M[6][6]*L[6][4];
|
|
s[0][1] = M[6][6]*L[6][5];
|
|
s[1][0] = M[7][6]*L[6][4]+M[7][7]*L[7][4];
|
|
s[1][1] = M[7][6]*L[6][5]+M[7][7]*L[7][5];
|
|
|
|
t[0][0] = s[0][0]*M[4][4]+s[0][1]*M[5][4];
|
|
t[0][1] = s[0][1]*M[5][5];
|
|
t[1][0] = s[1][0]*M[4][4]+s[1][1]*M[5][4];
|
|
t[1][1] = s[1][1]*M[5][5];
|
|
|
|
M[6][4] = -t[0][0];
|
|
M[6][5] = -t[0][1];
|
|
M[7][4] = -t[1][0];
|
|
M[7][5] = -t[1][1];
|
|
|
|
/*
|
|
M00 0 0 0 0 0 0 0
|
|
M10 M11 0 0 0 0 0 0
|
|
M20 M21 M22 0 0 0 0 0
|
|
M30 M31 M32 M33 0 0 0 0
|
|
L40 L41 L42 L43 M44 0 0 0
|
|
L50 L51 L52 L53 M54 M55 0 0
|
|
L60 L61 L62 L63 M64 M65 M66 0
|
|
L70 L71 L72 L73 M74 M75 M76 M77
|
|
*/
|
|
|
|
/* 1*2 Matrix products of 4x4 matrices */
|
|
|
|
/*
|
|
(M44 0 0 0 ) (L40 L41 L42 L43) (M00 0 0 0 )
|
|
(M54 M55 0 0 ) (L50 L51 L52 L53) (M10 M11 0 0 )
|
|
(M64 M65 M66 0 ) (L60 L61 L62 L63) (M20 M21 M22 0 )
|
|
- (M74 M75 M76 M77) x (L70 L71 L72 L73) x (M30 M31 M32 M33)
|
|
*/
|
|
|
|
u[0][0] = M[4][4]*L[4][0];
|
|
u[0][1] = M[4][4]*L[4][1];
|
|
u[0][2] = M[4][4]*L[4][2];
|
|
u[0][3] = M[4][4]*L[4][3];
|
|
u[1][0] = M[5][4]*L[4][0]+M[5][5]*L[5][0];
|
|
u[1][1] = M[5][4]*L[4][1]+M[5][5]*L[5][1];
|
|
u[1][2] = M[5][4]*L[4][2]+M[5][5]*L[5][2];
|
|
u[1][3] = M[5][4]*L[4][3]+M[5][5]*L[5][3];
|
|
u[2][0] = M[6][4]*L[4][0]+M[6][5]*L[5][0]+M[6][6]*L[6][0];
|
|
u[2][1] = M[6][4]*L[4][1]+M[6][5]*L[5][1]+M[6][6]*L[6][1];
|
|
u[2][2] = M[6][4]*L[4][2]+M[6][5]*L[5][2]+M[6][6]*L[6][2];
|
|
u[2][3] = M[6][4]*L[4][3]+M[6][5]*L[5][3]+M[6][6]*L[6][3];
|
|
u[3][0] = M[7][4]*L[4][0]+M[7][5]*L[5][0]+M[7][6]*L[6][0]+M[7][7]*L[7][0];
|
|
u[3][1] = M[7][4]*L[4][1]+M[7][5]*L[5][1]+M[7][6]*L[6][1]+M[7][7]*L[7][1];
|
|
u[3][2] = M[7][4]*L[4][2]+M[7][5]*L[5][2]+M[7][6]*L[6][2]+M[7][7]*L[7][2];
|
|
u[3][3] = M[7][4]*L[4][3]+M[7][5]*L[5][3]+M[7][6]*L[6][3]+M[7][7]*L[7][3];
|
|
|
|
v[0][0] = u[0][0]*M[0][0]+u[0][1]*M[1][0]+u[0][2]*M[2][0]+u[0][3]*M[3][0];
|
|
v[0][1] = u[0][1]*M[1][1]+u[0][2]*M[2][1]+u[0][3]*M[3][1];
|
|
v[0][2] = u[0][2]*M[2][2]+u[0][3]*M[3][2];
|
|
v[0][3] = u[0][3]*M[3][3];
|
|
v[1][0] = u[1][0]*M[0][0]+u[1][1]*M[1][0]+u[1][2]*M[2][0]+u[1][3]*M[3][0];
|
|
v[1][1] = u[1][1]*M[1][1]+u[1][2]*M[2][1]+u[1][3]*M[3][1];
|
|
v[1][2] = u[1][2]*M[2][2]+u[1][3]*M[3][2];
|
|
v[1][3] = u[1][3]*M[3][3];
|
|
v[2][0] = u[2][0]*M[0][0]+u[2][1]*M[1][0]+u[2][2]*M[2][0]+u[2][3]*M[3][0];
|
|
v[2][1] = u[2][1]*M[1][1]+u[2][2]*M[2][1]+u[2][3]*M[3][1];
|
|
v[2][2] = u[2][2]*M[2][2]+u[2][3]*M[3][2];
|
|
v[2][3] = u[2][3]*M[3][3];
|
|
v[3][0] = u[3][0]*M[0][0]+u[3][1]*M[1][0]+u[3][2]*M[2][0]+u[3][3]*M[3][0];
|
|
v[3][1] = u[3][1]*M[1][1]+u[3][2]*M[2][1]+u[3][3]*M[3][1];
|
|
v[3][2] = u[3][2]*M[2][2]+u[3][3]*M[3][2];
|
|
v[3][3] = u[3][3]*M[3][3];
|
|
|
|
M[4][0] = -v[0][0];
|
|
M[4][1] = -v[0][1];
|
|
M[4][2] = -v[0][2];
|
|
M[4][3] = -v[0][3];
|
|
M[5][0] = -v[1][0];
|
|
M[5][1] = -v[1][1];
|
|
M[5][2] = -v[1][2];
|
|
M[5][3] = -v[1][3];
|
|
M[6][0] = -v[2][0];
|
|
M[6][1] = -v[2][1];
|
|
M[6][2] = -v[2][2];
|
|
M[6][3] = -v[2][3];
|
|
M[7][0] = -v[3][0];
|
|
M[7][1] = -v[3][1];
|
|
M[7][2] = -v[3][2];
|
|
M[7][3] = -v[3][3];
|
|
|
|
/*
|
|
M00 0 0 0 0 0 0 0
|
|
M10 M11 0 0 0 0 0 0
|
|
M20 M21 M22 0 0 0 0 0
|
|
M30 M31 M32 M33 0 0 0 0
|
|
M40 M41 M42 M43 M44 0 0 0
|
|
M50 M51 M52 M53 M54 M55 0 0
|
|
M60 M61 M62 M63 M64 M65 M66 0
|
|
M70 M71 M72 M73 M74 M75 M76 M77
|
|
*/
|
|
}
|
|
|
|
|
|
/**
|
|
* Solves dH = inv(JtJ) Jte. The argument lower-triangular matrix is the
|
|
* inverse of L as produced by the Cholesky decomposition LL^T of the matrix
|
|
* JtJ; Thus the operation performed here is a left-multiplication of a vector
|
|
* by two triangular matrices. The math is below:
|
|
*
|
|
* JtJ = LL^T
|
|
* Linv = L^-1
|
|
* (JtJ)^-1 = (LL^T)^-1
|
|
* = (L^T^-1)(Linv)
|
|
* = (Linv^T)(Linv)
|
|
* dH = ((JtJ)^-1) (Jte)
|
|
* = (Linv^T)(Linv) (Jte)
|
|
*
|
|
* where J is nx8, Jt is 8xn, JtJ is 8x8 PD, e is nx1, Jte is 8x1, L is lower
|
|
* triangular 8x8 and dH is 8x1.
|
|
*/
|
|
|
|
static inline void sacTRISolve8x8(const float (*L)[8],
|
|
const float* Jte,
|
|
float* dH){
|
|
float t[8];
|
|
|
|
t[0] = L[0][0]*Jte[0];
|
|
t[1] = L[1][0]*Jte[0]+L[1][1]*Jte[1];
|
|
t[2] = L[2][0]*Jte[0]+L[2][1]*Jte[1]+L[2][2]*Jte[2];
|
|
t[3] = L[3][0]*Jte[0]+L[3][1]*Jte[1]+L[3][2]*Jte[2]+L[3][3]*Jte[3];
|
|
t[4] = L[4][0]*Jte[0]+L[4][1]*Jte[1]+L[4][2]*Jte[2]+L[4][3]*Jte[3]+L[4][4]*Jte[4];
|
|
t[5] = L[5][0]*Jte[0]+L[5][1]*Jte[1]+L[5][2]*Jte[2]+L[5][3]*Jte[3]+L[5][4]*Jte[4]+L[5][5]*Jte[5];
|
|
t[6] = L[6][0]*Jte[0]+L[6][1]*Jte[1]+L[6][2]*Jte[2]+L[6][3]*Jte[3]+L[6][4]*Jte[4]+L[6][5]*Jte[5]+L[6][6]*Jte[6];
|
|
t[7] = L[7][0]*Jte[0]+L[7][1]*Jte[1]+L[7][2]*Jte[2]+L[7][3]*Jte[3]+L[7][4]*Jte[4]+L[7][5]*Jte[5]+L[7][6]*Jte[6]+L[7][7]*Jte[7];
|
|
|
|
|
|
dH[0] = L[0][0]*t[0]+L[1][0]*t[1]+L[2][0]*t[2]+L[3][0]*t[3]+L[4][0]*t[4]+L[5][0]*t[5]+L[6][0]*t[6]+L[7][0]*t[7];
|
|
dH[1] = L[1][1]*t[1]+L[2][1]*t[2]+L[3][1]*t[3]+L[4][1]*t[4]+L[5][1]*t[5]+L[6][1]*t[6]+L[7][1]*t[7];
|
|
dH[2] = L[2][2]*t[2]+L[3][2]*t[3]+L[4][2]*t[4]+L[5][2]*t[5]+L[6][2]*t[6]+L[7][2]*t[7];
|
|
dH[3] = L[3][3]*t[3]+L[4][3]*t[4]+L[5][3]*t[5]+L[6][3]*t[6]+L[7][3]*t[7];
|
|
dH[4] = L[4][4]*t[4]+L[5][4]*t[5]+L[6][4]*t[6]+L[7][4]*t[7];
|
|
dH[5] = L[5][5]*t[5]+L[6][5]*t[6]+L[7][5]*t[7];
|
|
dH[6] = L[6][6]*t[6]+L[7][6]*t[7];
|
|
dH[7] = L[7][7]*t[7];
|
|
}
|
|
|
|
|
|
/**
|
|
* Subtract dH from H.
|
|
*/
|
|
|
|
static inline void sacSub8x1(float* Hout, const float* H, const float* dH){
|
|
Hout[0] = H[0] - dH[0];
|
|
Hout[1] = H[1] - dH[1];
|
|
Hout[2] = H[2] - dH[2];
|
|
Hout[3] = H[3] - dH[3];
|
|
Hout[4] = H[4] - dH[4];
|
|
Hout[5] = H[5] - dH[5];
|
|
Hout[6] = H[6] - dH[6];
|
|
Hout[7] = H[7] - dH[7];
|
|
}
|
|
|
|
|
|
/* End namespace cv */
|
|
}
|