mirror of
https://github.com/opencv/opencv.git
synced 2025-01-11 06:48:19 +08:00
d789cb459c
dnn: cleanup of halide backend for 5.x #24231 Merge with https://github.com/opencv/opencv_extra/pull/1092. ### Pull Request Readiness Checklist See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request - [x] I agree to contribute to the project under Apache 2 License. - [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV - [x] The PR is proposed to the proper branch - [x] There is a reference to the original bug report and related work - [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable Patch to opencv_extra has the same branch name. - [x] The feature is well documented and sample code can be built with the project CMake
246 lines
9.1 KiB
C++
246 lines
9.1 KiB
C++
//
|
|
// You can download a baseline ReID model and sample input from:
|
|
// https://github.com/ReID-Team/ReID_extra_testdata
|
|
//
|
|
// Authors of samples and Youtu ReID baseline:
|
|
// Xing Sun <winfredsun@tencent.com>
|
|
// Feng Zheng <zhengf@sustech.edu.cn>
|
|
// Xinyang Jiang <sevjiang@tencent.com>
|
|
// Fufu Yu <fufuyu@tencent.com>
|
|
// Enwei Zhang <miyozhang@tencent.com>
|
|
//
|
|
// Copyright (C) 2020-2021, Tencent.
|
|
// Copyright (C) 2020-2021, SUSTech.
|
|
//
|
|
#include <iostream>
|
|
#include <fstream>
|
|
|
|
#include <opencv2/imgproc.hpp>
|
|
#include <opencv2/highgui.hpp>
|
|
#include <opencv2/dnn.hpp>
|
|
|
|
using namespace cv;
|
|
using namespace cv::dnn;
|
|
|
|
std::string param_keys =
|
|
"{help h | | show help message}"
|
|
"{model m | | network model}"
|
|
"{query_list q | | list of query images}"
|
|
"{gallery_list g | | list of gallery images}"
|
|
"{batch_size | 32 | batch size of each inference}"
|
|
"{resize_h | 256 | resize input to specific height.}"
|
|
"{resize_w | 128 | resize input to specific width.}"
|
|
"{topk k | 5 | number of gallery images showed in visualization}"
|
|
"{output_dir | | path for visualization(it should be existed)}";
|
|
std::string backend_keys = cv::format(
|
|
"{ backend | 0 | Choose one of computation backends: "
|
|
"%d: automatically (by default), "
|
|
"%d: Intel's Deep Learning Inference Engine (https://software.intel.com/openvino-toolkit), "
|
|
"%d: OpenCV implementation, "
|
|
"%d: VKCOM, "
|
|
"%d: CUDA }", cv::dnn::DNN_BACKEND_DEFAULT, cv::dnn::DNN_BACKEND_INFERENCE_ENGINE, cv::dnn::DNN_BACKEND_OPENCV, cv::dnn::DNN_BACKEND_VKCOM, cv::dnn::DNN_BACKEND_CUDA);
|
|
std::string target_keys = cv::format(
|
|
"{ target | 0 | Choose one of target computation devices: "
|
|
"%d: CPU target (by default), "
|
|
"%d: OpenCL, "
|
|
"%d: OpenCL fp16 (half-float precision), "
|
|
"%d: VPU, "
|
|
"%d: Vulkan, "
|
|
"%d: CUDA, "
|
|
"%d: CUDA fp16 (half-float preprocess) }", cv::dnn::DNN_TARGET_CPU, cv::dnn::DNN_TARGET_OPENCL, cv::dnn::DNN_TARGET_OPENCL_FP16, cv::dnn::DNN_TARGET_MYRIAD, cv::dnn::DNN_TARGET_VULKAN, cv::dnn::DNN_TARGET_CUDA, cv::dnn::DNN_TARGET_CUDA_FP16);
|
|
std::string keys = param_keys + backend_keys + target_keys;
|
|
|
|
namespace cv{
|
|
namespace reid{
|
|
|
|
static Mat preprocess(const Mat& img)
|
|
{
|
|
const double mean[3] = {0.485, 0.456, 0.406};
|
|
const double std[3] = {0.229, 0.224, 0.225};
|
|
Mat ret = Mat(img.rows, img.cols, CV_32FC3);
|
|
for (int y = 0; y < ret.rows; y ++)
|
|
{
|
|
for (int x = 0; x < ret.cols; x++)
|
|
{
|
|
for (int c = 0; c < 3; c++)
|
|
{
|
|
ret.at<Vec3f>(y,x)[c] = (float)((img.at<Vec3b>(y,x)[c] / 255.0 - mean[2 - c]) / std[2 - c]);
|
|
}
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static std::vector<float> normalization(const std::vector<float>& feature)
|
|
{
|
|
std::vector<float> ret;
|
|
float sum = 0.0;
|
|
for(int i = 0; i < (int)feature.size(); i++)
|
|
{
|
|
sum += feature[i] * feature[i];
|
|
}
|
|
sum = sqrt(sum);
|
|
for(int i = 0; i < (int)feature.size(); i++)
|
|
{
|
|
ret.push_back(feature[i] / sum);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static void extractFeatures(const std::vector<std::string>& imglist, Net* net, const int& batch_size, const int& resize_h, const int& resize_w, std::vector<std::vector<float>>& features)
|
|
{
|
|
for(int st = 0; st < (int)imglist.size(); st += batch_size)
|
|
{
|
|
std::vector<Mat> batch;
|
|
for(int delta = 0; delta < batch_size && st + delta < (int)imglist.size(); delta++)
|
|
{
|
|
Mat img = imread(imglist[st + delta]);
|
|
batch.push_back(preprocess(img));
|
|
}
|
|
Mat blob = dnn::blobFromImages(batch, 1.0, Size(resize_w, resize_h), Scalar(0.0,0.0,0.0), true, false, CV_32F);
|
|
net->setInput(blob);
|
|
Mat out = net->forward();
|
|
for(int i = 0; i < (int)out.size().height; i++)
|
|
{
|
|
std::vector<float> temp_feature;
|
|
for(int j = 0; j < (int)out.size().width; j++)
|
|
{
|
|
temp_feature.push_back(out.at<float>(i,j));
|
|
}
|
|
features.push_back(normalization(temp_feature));
|
|
}
|
|
}
|
|
return ;
|
|
}
|
|
|
|
static void getNames(const std::string& ImageList, std::vector<std::string>& result)
|
|
{
|
|
std::ifstream img_in(ImageList);
|
|
std::string img_name;
|
|
while(img_in >> img_name)
|
|
{
|
|
result.push_back(img_name);
|
|
}
|
|
return ;
|
|
}
|
|
|
|
static float similarity(const std::vector<float>& feature1, const std::vector<float>& feature2)
|
|
{
|
|
float result = 0.0;
|
|
for(int i = 0; i < (int)feature1.size(); i++)
|
|
{
|
|
result += feature1[i] * feature2[i];
|
|
}
|
|
return result;
|
|
}
|
|
|
|
static void getTopK(const std::vector<std::vector<float>>& queryFeatures, const std::vector<std::vector<float>>& galleryFeatures, const int& topk, std::vector<std::vector<int>>& result)
|
|
{
|
|
for(int i = 0; i < (int)queryFeatures.size(); i++)
|
|
{
|
|
std::vector<float> similarityList;
|
|
std::vector<int> index;
|
|
for(int j = 0; j < (int)galleryFeatures.size(); j++)
|
|
{
|
|
similarityList.push_back(similarity(queryFeatures[i], galleryFeatures[j]));
|
|
index.push_back(j);
|
|
}
|
|
sort(index.begin(), index.end(), [&](int x,int y){return similarityList[x] > similarityList[y];});
|
|
std::vector<int> topk_result;
|
|
for(int j = 0; j < min(topk, (int)index.size()); j++)
|
|
{
|
|
topk_result.push_back(index[j]);
|
|
}
|
|
result.push_back(topk_result);
|
|
}
|
|
return ;
|
|
}
|
|
|
|
static void addBorder(const Mat& img, const Scalar& color, Mat& result)
|
|
{
|
|
const int bordersize = 5;
|
|
copyMakeBorder(img, result, bordersize, bordersize, bordersize, bordersize, cv::BORDER_CONSTANT, color);
|
|
return ;
|
|
}
|
|
|
|
static void drawRankList(const std::string& queryName, const std::vector<std::string>& galleryImageNames, const std::vector<int>& topk_index, const int& resize_h, const int& resize_w, Mat& result)
|
|
{
|
|
const Size outputSize = Size(resize_w, resize_h);
|
|
Mat q_img = imread(queryName), temp_img;
|
|
resize(q_img, temp_img, outputSize);
|
|
addBorder(temp_img, Scalar(0,0,0), q_img);
|
|
putText(q_img, "Query", Point(10, 30), FONT_HERSHEY_COMPLEX, 1.0, Scalar(0,255,0), 2);
|
|
std::vector<Mat> Images;
|
|
Images.push_back(q_img);
|
|
for(int i = 0; i < (int)topk_index.size(); i++)
|
|
{
|
|
Mat g_img = imread(galleryImageNames[topk_index[i]]);
|
|
resize(g_img, temp_img, outputSize);
|
|
addBorder(temp_img, Scalar(255,255,255), g_img);
|
|
putText(g_img, "G" + std::to_string(i), Point(10, 30), FONT_HERSHEY_COMPLEX, 1.0, Scalar(0,255,0), 2);
|
|
Images.push_back(g_img);
|
|
}
|
|
hconcat(Images, result);
|
|
return ;
|
|
}
|
|
|
|
static void visualization(const std::vector<std::vector<int>>& topk, const std::vector<std::string>& queryImageNames, const std::vector<std::string>& galleryImageNames, const std::string& output_dir, const int& resize_h, const int& resize_w)
|
|
{
|
|
for(int i = 0; i < (int)queryImageNames.size(); i++)
|
|
{
|
|
Mat img;
|
|
drawRankList(queryImageNames[i], galleryImageNames, topk[i], resize_h, resize_w, img);
|
|
std::string output_path = output_dir + "/" + queryImageNames[i].substr(queryImageNames[i].rfind("/")+1);
|
|
imwrite(output_path, img);
|
|
}
|
|
return ;
|
|
}
|
|
|
|
};
|
|
};
|
|
|
|
int main(int argc, char** argv)
|
|
{
|
|
// Parse command line arguments.
|
|
CommandLineParser parser(argc, argv, keys);
|
|
|
|
if (argc == 1 || parser.has("help"))
|
|
{
|
|
parser.printMessage();
|
|
return 0;
|
|
}
|
|
parser = CommandLineParser(argc, argv, keys);
|
|
parser.about("Use this script to run ReID networks using OpenCV.");
|
|
|
|
const std::string modelPath = parser.get<String>("model");
|
|
const std::string queryImageList = parser.get<String>("query_list");
|
|
const std::string galleryImageList = parser.get<String>("gallery_list");
|
|
const int backend = parser.get<int>("backend");
|
|
const int target = parser.get<int>("target");
|
|
const int batch_size = parser.get<int>("batch_size");
|
|
const int resize_h = parser.get<int>("resize_h");
|
|
const int resize_w = parser.get<int>("resize_w");
|
|
const int topk = parser.get<int>("topk");
|
|
const std::string output_dir= parser.get<String>("output_dir");
|
|
|
|
std::vector<std::string> queryImageNames;
|
|
reid::getNames(queryImageList, queryImageNames);
|
|
std::vector<std::string> galleryImageNames;
|
|
reid::getNames(galleryImageList, galleryImageNames);
|
|
|
|
dnn::Net net = dnn::readNet(modelPath);
|
|
net.setPreferableBackend(backend);
|
|
net.setPreferableTarget(target);
|
|
|
|
std::vector<std::vector<float>> queryFeatures;
|
|
reid::extractFeatures(queryImageNames, &net, batch_size, resize_h, resize_w, queryFeatures);
|
|
std::vector<std::vector<float>> galleryFeatures;
|
|
reid::extractFeatures(galleryImageNames, &net, batch_size, resize_h, resize_w, galleryFeatures);
|
|
|
|
std::vector<std::vector<int>> topkResult;
|
|
reid::getTopK(queryFeatures, galleryFeatures, topk, topkResult);
|
|
reid::visualization(topkResult, queryImageNames, galleryImageNames, output_dir, resize_h, resize_w);
|
|
|
|
return 0;
|
|
}
|