mirror of
https://github.com/opencv/opencv.git
synced 2024-12-25 18:18:04 +08:00
ba5f343c38
- updated existing Doxyfile.in - added corresponding cmake instructions - added some specific files (layout, icon) - clean existing doxygen warnings
544 lines
15 KiB
C++
544 lines
15 KiB
C++
/***********************************************************************
|
|
* Software License Agreement (BSD License)
|
|
*
|
|
* Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
|
|
* Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
|
|
*
|
|
* THE BSD LICENSE
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
|
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*************************************************************************/
|
|
|
|
#ifndef OPENCV_FLANN_RESULTSET_H
|
|
#define OPENCV_FLANN_RESULTSET_H
|
|
|
|
#include <algorithm>
|
|
#include <cstring>
|
|
#include <iostream>
|
|
#include <limits>
|
|
#include <set>
|
|
#include <vector>
|
|
|
|
namespace cvflann
|
|
{
|
|
|
|
/* This record represents a branch point when finding neighbors in
|
|
the tree. It contains a record of the minimum distance to the query
|
|
point, as well as the node at which the search resumes.
|
|
*/
|
|
|
|
template <typename T, typename DistanceType>
|
|
struct BranchStruct
|
|
{
|
|
T node; /* Tree node at which search resumes */
|
|
DistanceType mindist; /* Minimum distance to query for all nodes below. */
|
|
|
|
BranchStruct() {}
|
|
BranchStruct(const T& aNode, DistanceType dist) : node(aNode), mindist(dist) {}
|
|
|
|
bool operator<(const BranchStruct<T, DistanceType>& rhs) const
|
|
{
|
|
return mindist<rhs.mindist;
|
|
}
|
|
};
|
|
|
|
|
|
template <typename DistanceType>
|
|
class ResultSet
|
|
{
|
|
public:
|
|
virtual ~ResultSet() {}
|
|
|
|
virtual bool full() const = 0;
|
|
|
|
virtual void addPoint(DistanceType dist, int index) = 0;
|
|
|
|
virtual DistanceType worstDist() const = 0;
|
|
|
|
};
|
|
|
|
/**
|
|
* KNNSimpleResultSet does not ensure that the element it holds are unique.
|
|
* Is used in those cases where the nearest neighbour algorithm used does not
|
|
* attempt to insert the same element multiple times.
|
|
*/
|
|
template <typename DistanceType>
|
|
class KNNSimpleResultSet : public ResultSet<DistanceType>
|
|
{
|
|
int* indices;
|
|
DistanceType* dists;
|
|
int capacity;
|
|
int count;
|
|
DistanceType worst_distance_;
|
|
|
|
public:
|
|
KNNSimpleResultSet(int capacity_) : capacity(capacity_), count(0)
|
|
{
|
|
}
|
|
|
|
void init(int* indices_, DistanceType* dists_)
|
|
{
|
|
indices = indices_;
|
|
dists = dists_;
|
|
count = 0;
|
|
worst_distance_ = (std::numeric_limits<DistanceType>::max)();
|
|
dists[capacity-1] = worst_distance_;
|
|
}
|
|
|
|
size_t size() const
|
|
{
|
|
return count;
|
|
}
|
|
|
|
bool full() const
|
|
{
|
|
return count == capacity;
|
|
}
|
|
|
|
|
|
void addPoint(DistanceType dist, int index)
|
|
{
|
|
if (dist >= worst_distance_) return;
|
|
int i;
|
|
for (i=count; i>0; --i) {
|
|
#ifdef FLANN_FIRST_MATCH
|
|
if ( (dists[i-1]>dist) || ((dist==dists[i-1])&&(indices[i-1]>index)) )
|
|
#else
|
|
if (dists[i-1]>dist)
|
|
#endif
|
|
{
|
|
if (i<capacity) {
|
|
dists[i] = dists[i-1];
|
|
indices[i] = indices[i-1];
|
|
}
|
|
}
|
|
else break;
|
|
}
|
|
if (count < capacity) ++count;
|
|
dists[i] = dist;
|
|
indices[i] = index;
|
|
worst_distance_ = dists[capacity-1];
|
|
}
|
|
|
|
DistanceType worstDist() const
|
|
{
|
|
return worst_distance_;
|
|
}
|
|
};
|
|
|
|
/**
|
|
* K-Nearest neighbour result set. Ensures that the elements inserted are unique
|
|
*/
|
|
template <typename DistanceType>
|
|
class KNNResultSet : public ResultSet<DistanceType>
|
|
{
|
|
int* indices;
|
|
DistanceType* dists;
|
|
int capacity;
|
|
int count;
|
|
DistanceType worst_distance_;
|
|
|
|
public:
|
|
KNNResultSet(int capacity_) : capacity(capacity_), count(0)
|
|
{
|
|
}
|
|
|
|
void init(int* indices_, DistanceType* dists_)
|
|
{
|
|
indices = indices_;
|
|
dists = dists_;
|
|
count = 0;
|
|
worst_distance_ = (std::numeric_limits<DistanceType>::max)();
|
|
dists[capacity-1] = worst_distance_;
|
|
}
|
|
|
|
size_t size() const
|
|
{
|
|
return count;
|
|
}
|
|
|
|
bool full() const
|
|
{
|
|
return count == capacity;
|
|
}
|
|
|
|
|
|
void addPoint(DistanceType dist, int index)
|
|
{
|
|
if (dist >= worst_distance_) return;
|
|
int i;
|
|
for (i = count; i > 0; --i) {
|
|
#ifdef FLANN_FIRST_MATCH
|
|
if ( (dists[i-1]<=dist) && ((dist!=dists[i-1])||(indices[i-1]<=index)) )
|
|
#else
|
|
if (dists[i-1]<=dist)
|
|
#endif
|
|
{
|
|
// Check for duplicate indices
|
|
int j = i - 1;
|
|
while ((j >= 0) && (dists[j] == dist)) {
|
|
if (indices[j] == index) {
|
|
return;
|
|
}
|
|
--j;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (count < capacity) ++count;
|
|
for (int j = count-1; j > i; --j) {
|
|
dists[j] = dists[j-1];
|
|
indices[j] = indices[j-1];
|
|
}
|
|
dists[i] = dist;
|
|
indices[i] = index;
|
|
worst_distance_ = dists[capacity-1];
|
|
}
|
|
|
|
DistanceType worstDist() const
|
|
{
|
|
return worst_distance_;
|
|
}
|
|
};
|
|
|
|
|
|
/**
|
|
* A result-set class used when performing a radius based search.
|
|
*/
|
|
template <typename DistanceType>
|
|
class RadiusResultSet : public ResultSet<DistanceType>
|
|
{
|
|
DistanceType radius;
|
|
int* indices;
|
|
DistanceType* dists;
|
|
size_t capacity;
|
|
size_t count;
|
|
|
|
public:
|
|
RadiusResultSet(DistanceType radius_, int* indices_, DistanceType* dists_, int capacity_) :
|
|
radius(radius_), indices(indices_), dists(dists_), capacity(capacity_)
|
|
{
|
|
init();
|
|
}
|
|
|
|
~RadiusResultSet()
|
|
{
|
|
}
|
|
|
|
void init()
|
|
{
|
|
count = 0;
|
|
}
|
|
|
|
size_t size() const
|
|
{
|
|
return count;
|
|
}
|
|
|
|
bool full() const
|
|
{
|
|
return true;
|
|
}
|
|
|
|
void addPoint(DistanceType dist, int index)
|
|
{
|
|
if (dist<radius) {
|
|
if ((capacity>0)&&(count < capacity)) {
|
|
dists[count] = dist;
|
|
indices[count] = index;
|
|
}
|
|
count++;
|
|
}
|
|
}
|
|
|
|
DistanceType worstDist() const
|
|
{
|
|
return radius;
|
|
}
|
|
|
|
};
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
/** Class that holds the k NN neighbors
|
|
* Faster than KNNResultSet as it uses a binary heap and does not maintain two arrays
|
|
*/
|
|
template<typename DistanceType>
|
|
class UniqueResultSet : public ResultSet<DistanceType>
|
|
{
|
|
public:
|
|
struct DistIndex
|
|
{
|
|
DistIndex(DistanceType dist, unsigned int index) :
|
|
dist_(dist), index_(index)
|
|
{
|
|
}
|
|
bool operator<(const DistIndex dist_index) const
|
|
{
|
|
return (dist_ < dist_index.dist_) || ((dist_ == dist_index.dist_) && index_ < dist_index.index_);
|
|
}
|
|
DistanceType dist_;
|
|
unsigned int index_;
|
|
};
|
|
|
|
/** Default cosntructor */
|
|
UniqueResultSet() :
|
|
worst_distance_(std::numeric_limits<DistanceType>::max())
|
|
{
|
|
}
|
|
|
|
/** Check the status of the set
|
|
* @return true if we have k NN
|
|
*/
|
|
inline bool full() const
|
|
{
|
|
return is_full_;
|
|
}
|
|
|
|
/** Remove all elements in the set
|
|
*/
|
|
virtual void clear() = 0;
|
|
|
|
/** Copy the set to two C arrays
|
|
* @param indices pointer to a C array of indices
|
|
* @param dist pointer to a C array of distances
|
|
* @param n_neighbors the number of neighbors to copy
|
|
*/
|
|
virtual void copy(int* indices, DistanceType* dist, int n_neighbors = -1) const
|
|
{
|
|
if (n_neighbors < 0) {
|
|
for (typename std::set<DistIndex>::const_iterator dist_index = dist_indices_.begin(), dist_index_end =
|
|
dist_indices_.end(); dist_index != dist_index_end; ++dist_index, ++indices, ++dist) {
|
|
*indices = dist_index->index_;
|
|
*dist = dist_index->dist_;
|
|
}
|
|
}
|
|
else {
|
|
int i = 0;
|
|
for (typename std::set<DistIndex>::const_iterator dist_index = dist_indices_.begin(), dist_index_end =
|
|
dist_indices_.end(); (dist_index != dist_index_end) && (i < n_neighbors); ++dist_index, ++indices, ++dist, ++i) {
|
|
*indices = dist_index->index_;
|
|
*dist = dist_index->dist_;
|
|
}
|
|
}
|
|
}
|
|
|
|
/** Copy the set to two C arrays but sort it according to the distance first
|
|
* @param indices pointer to a C array of indices
|
|
* @param dist pointer to a C array of distances
|
|
* @param n_neighbors the number of neighbors to copy
|
|
*/
|
|
virtual void sortAndCopy(int* indices, DistanceType* dist, int n_neighbors = -1) const
|
|
{
|
|
copy(indices, dist, n_neighbors);
|
|
}
|
|
|
|
/** The number of neighbors in the set
|
|
* @return
|
|
*/
|
|
size_t size() const
|
|
{
|
|
return dist_indices_.size();
|
|
}
|
|
|
|
/** The distance of the furthest neighbor
|
|
* If we don't have enough neighbors, it returns the max possible value
|
|
* @return
|
|
*/
|
|
inline DistanceType worstDist() const
|
|
{
|
|
return worst_distance_;
|
|
}
|
|
protected:
|
|
/** Flag to say if the set is full */
|
|
bool is_full_;
|
|
|
|
/** The worst distance found so far */
|
|
DistanceType worst_distance_;
|
|
|
|
/** The best candidates so far */
|
|
std::set<DistIndex> dist_indices_;
|
|
};
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
/** Class that holds the k NN neighbors
|
|
* Faster than KNNResultSet as it uses a binary heap and does not maintain two arrays
|
|
*/
|
|
template<typename DistanceType>
|
|
class KNNUniqueResultSet : public UniqueResultSet<DistanceType>
|
|
{
|
|
public:
|
|
/** Constructor
|
|
* @param capacity the number of neighbors to store at max
|
|
*/
|
|
KNNUniqueResultSet(unsigned int capacity) : capacity_(capacity)
|
|
{
|
|
this->is_full_ = false;
|
|
this->clear();
|
|
}
|
|
|
|
/** Add a possible candidate to the best neighbors
|
|
* @param dist distance for that neighbor
|
|
* @param index index of that neighbor
|
|
*/
|
|
inline void addPoint(DistanceType dist, int index)
|
|
{
|
|
// Don't do anything if we are worse than the worst
|
|
if (dist >= worst_distance_) return;
|
|
dist_indices_.insert(DistIndex(dist, index));
|
|
|
|
if (is_full_) {
|
|
if (dist_indices_.size() > capacity_) {
|
|
dist_indices_.erase(*dist_indices_.rbegin());
|
|
worst_distance_ = dist_indices_.rbegin()->dist_;
|
|
}
|
|
}
|
|
else if (dist_indices_.size() == capacity_) {
|
|
is_full_ = true;
|
|
worst_distance_ = dist_indices_.rbegin()->dist_;
|
|
}
|
|
}
|
|
|
|
/** Remove all elements in the set
|
|
*/
|
|
void clear()
|
|
{
|
|
dist_indices_.clear();
|
|
worst_distance_ = std::numeric_limits<DistanceType>::max();
|
|
is_full_ = false;
|
|
}
|
|
|
|
protected:
|
|
typedef typename UniqueResultSet<DistanceType>::DistIndex DistIndex;
|
|
using UniqueResultSet<DistanceType>::is_full_;
|
|
using UniqueResultSet<DistanceType>::worst_distance_;
|
|
using UniqueResultSet<DistanceType>::dist_indices_;
|
|
|
|
/** The number of neighbors to keep */
|
|
unsigned int capacity_;
|
|
};
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
/** Class that holds the radius nearest neighbors
|
|
* It is more accurate than RadiusResult as it is not limited in the number of neighbors
|
|
*/
|
|
template<typename DistanceType>
|
|
class RadiusUniqueResultSet : public UniqueResultSet<DistanceType>
|
|
{
|
|
public:
|
|
/** Constructor
|
|
* @param radius the maximum distance of a neighbor
|
|
*/
|
|
RadiusUniqueResultSet(DistanceType radius) :
|
|
radius_(radius)
|
|
{
|
|
is_full_ = true;
|
|
}
|
|
|
|
/** Add a possible candidate to the best neighbors
|
|
* @param dist distance for that neighbor
|
|
* @param index index of that neighbor
|
|
*/
|
|
void addPoint(DistanceType dist, int index)
|
|
{
|
|
if (dist <= radius_) dist_indices_.insert(DistIndex(dist, index));
|
|
}
|
|
|
|
/** Remove all elements in the set
|
|
*/
|
|
inline void clear()
|
|
{
|
|
dist_indices_.clear();
|
|
}
|
|
|
|
|
|
/** Check the status of the set
|
|
* @return alwys false
|
|
*/
|
|
inline bool full() const
|
|
{
|
|
return true;
|
|
}
|
|
|
|
/** The distance of the furthest neighbor
|
|
* If we don't have enough neighbors, it returns the max possible value
|
|
* @return
|
|
*/
|
|
inline DistanceType worstDist() const
|
|
{
|
|
return radius_;
|
|
}
|
|
private:
|
|
typedef typename UniqueResultSet<DistanceType>::DistIndex DistIndex;
|
|
using UniqueResultSet<DistanceType>::dist_indices_;
|
|
using UniqueResultSet<DistanceType>::is_full_;
|
|
|
|
/** The furthest distance a neighbor can be */
|
|
DistanceType radius_;
|
|
};
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
/** Class that holds the k NN neighbors within a radius distance
|
|
*/
|
|
template<typename DistanceType>
|
|
class KNNRadiusUniqueResultSet : public KNNUniqueResultSet<DistanceType>
|
|
{
|
|
public:
|
|
/** Constructor
|
|
* @param capacity the number of neighbors to store at max
|
|
* @param radius the maximum distance of a neighbor
|
|
*/
|
|
KNNRadiusUniqueResultSet(unsigned int capacity, DistanceType radius)
|
|
{
|
|
this->capacity_ = capacity;
|
|
this->radius_ = radius;
|
|
this->dist_indices_.reserve(capacity_);
|
|
this->clear();
|
|
}
|
|
|
|
/** Remove all elements in the set
|
|
*/
|
|
void clear()
|
|
{
|
|
dist_indices_.clear();
|
|
worst_distance_ = radius_;
|
|
is_full_ = false;
|
|
}
|
|
private:
|
|
using KNNUniqueResultSet<DistanceType>::dist_indices_;
|
|
using KNNUniqueResultSet<DistanceType>::is_full_;
|
|
using KNNUniqueResultSet<DistanceType>::worst_distance_;
|
|
|
|
/** The maximum number of neighbors to consider */
|
|
unsigned int capacity_;
|
|
|
|
/** The maximum distance of a neighbor */
|
|
DistanceType radius_;
|
|
};
|
|
}
|
|
|
|
#endif //OPENCV_FLANN_RESULTSET_H
|